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This paper discusses an area of application that seems somewhat remote from the other 
application areas of the symposia. The intension is not to dwell on biological and 
experimental issues, but briefly to introduce the biological background and setting and then 
move on to discuss aspects of statistical methodology that frequently are applied in the 
biosciences and elsewhere: Markov chain Monte Carlo (MCMC), likelihood-free inference 
and Bayesian Statistics. Whereas the MCMC has a long history in applied statistics, 
likelihood-free inference approaches are more recent, but have already found numerous 
applications in many areas of applied statistics; e.g. in econometrics.  
Over the past decade networks have played a prominent, even central, role in many different 
disciplines, ranging from theoretical physics (1-4) and technology all the way to sociology 
(5, 6) and the humanities (7, 8). In biology they have gained particular prominence (9-11) 
and now descriptions in terms of networks hold a fundamental role in systems biology as 
well as other parts of biology. Their appeal may, at least partly, be due to the fact that in 
addition to being based on a rigorous mathematical base (mostly graph theory; 12, 13; and 
statistical physics; 14-16) they also provide a convenient graphical representation of 
complex processes which can – at least partially – be interpreted visually. 

 
1. Protein Interaction Networks (PINs) 

Today it is possible to obtain massive amounts of data relating to the molecular complexity, 
organization and structure of a single cell. These data can be obtained in a single experiment 
and has thus geared the biosciences towards ‘system-level science’ or systems biology, 
where the attempt is to understand the system and its organization in broader and overall 
terms, rather than understanding the system’s individual components one by one. 
 

Organism Nodes Links Fraction 

S. cerevisiae 4,959 17,226 91 

D. melanogaster 7,451 22,636 58 

C. elegans 2,638 3,970 12 

H. pylori 675 1,096 45 
Table 1 Number of nodes and links in typical PIN data sets. Fraction: Number of  

nodes (proteins) in % of estimated number of proteins in the organism. 
 
One type of system-level data that are becoming available is PIN data (17, 18). The cell, e.g. 
a human cell, contains thousand of proteins. Proteins are the products of genes. The 



function(s) of a protein are (very loosely speaking) determined by the protein’s interaction 
partners, other proteins the protein is able to bind to physically. By binding the proteins can 
restrain or promote molecular processes and thereby influence the functioning of the cell. A 
typical PIN data set consists of virtually all known proteins in an organism together with the 
experimentally determined physical interactions. Thus, the data can be represented by a 
graph or network (both terms will be used), where nodes are proteins and links are 
interactions. Table 1 summaries some typical PIN data sets (19-23). 
PIN data sets are incomplete (19-23). First of all in the obvious sense that some proteins are 
unknown and thus cannot be included in the experiment; secondly the experimental 
techniques have limitations resulting in false and missing links, and finally the data is 
essentially qualitative, i.e. either there is a link or not. In reality, some links would be 
stronger than others, and some links will only be present in certain tissues and not in the 
entire organism, etc. Dealing with incompleteness is a whole issue in itself (24) and it will 
mainly be ignored here. 
 

2. Mathematical Models of PIN Data 
To analyse PIN data sets we need a stochastic model of a graph; stochastic in the sense that 
we consider each link the result of a stochastic variable, and potentially also each node or 
the number of nodes depending on how we construct the model and how incompleteness is 
taken into account. 
Naturally, the model should reflect the questions, hypotheses or issues we set out to 
investigate. In ‘early’ papers (2, 6, 9) the questions was mainly about determining the shape 
of the degree distribution (degree = number of links of a node) and researchers would fit 
various distributions to the observed degree distribution; e.g. a power-law k –(1+γ), where k 
denotes the degree of a node and γ is a parameter to be determined. This approach could be 
carried out without an explicit model of the network. Also simple network models, like 
Erdös-Renyi graphs, were applied. An Erdös-Renyi graph has a fixed number of nodes N, 
and each pair of non-identical nodes is connected with probability p. If N is large and p 
small, then the degree of a random node is approximately Poisson with intensity λ=Np. 
From a biological point of view such analyses have limited value in that neither γ nor λ has a 
biological interpretation and the biological importance of one value of λ rather than another 
is difficult to assess. 
More recently, a number of different graph models have been proposed (16, 25-27). They 
resolve around a common theme, namely creating the graph by gradually adding nodes and 
modifying/adding links to a small initial graph. These models have their origin in physics 
where they have been used to demonstrate that complex structures could emerge through 
application of simple rules (2, 16). 
The rules for adding and modifying the graph all have resemblances to evolutionary rules or 
processes in biology; though the interpretation of some rules is more obvious than others, 
see the next section. The stochastic algorithm for generating a graph is (26, 28): 

1. Start with an initial graph Gs of size s 
2. At step t +1:  



a. (Duplication) With probability α, choose a node in Gt to duplicate and modify 
the links of the original and the new node according to Figure 1. The 
modification step has two parameters p and r 

b. (Preferential Attachment) With probability 1–α, choose a node in Gt 
proportional to its degree and create a link between the chosen node and a new 
node; see Figure 1 

3. Continue until the graph has a predefined size given by Nodes/Fraction, where Nodes 
and Fraction are given in Table 1 (these are examples) 

4. Sample Fraction of the nodes randomly. Keep all links between the sampled nodes 
 
The last two steps could be made stochastic, but are kept fixed here for simplicity. Note that 
steps 3 and 4 are the only aspects of incompleteness that are taken into account.  
 
 
 
 
 
 
 
 
In total there are three parameters θ = (α, p, r). Simulation of networks is straight forward 
and fairly efficient in terms of computational time and memory. The model is a Markov 
chain on graphs and at most one node in Gt and its links are used to create Gt+1. Typically, 
we consider labelled graphs; e.g. labels could be protein names. The order by which labelled 
nodes are introduced is called the history of the graph. Thus, a graph with t nodes has 
potentially t! histories, if we start from one node. The probability of a graph and its history 
Pθ(Gt, History) is straight forward to calculate (according to the algorithm and Figure 1), 
whereas the probability of Pθ(Gt) in principle requires summation over all possible histories. 
Note that a simulated network of the same (large) size as an observed network will rarely be 
identical to an observed network. This is a common problem for complex stochastic 
systems: Each instance of the system has a vanishing small probability to occur. 
 

3. Biological Relevance of the Model 
A duplication event mimics the biological process of gene duplication (remember: proteins 
are the products of genes). After a duplication event the two genes are identical and 
consequently so are their products and interactions. As time go by the original gene and the 
duplicate might not evolve under the same selective and evolutionary constraints and some 
of their links might be lost. However, the organism is likely to maintain most of its 

Figure 1 Top, duplication: A node is chosen 
at random (green node) and copied with its 
links (red). Afterwards an original link to a 
neighbour and the corresponding new link 
are retained with probability p. If not then 
one of the two links are deleted with equal 
probability. With probability r a link is 
created between the new and the original 
node (blue line). Bottom, preferential 
attachment: A node is chosen proportional to 
its degree and a new node is attached to it.  



functions and require that the original and the duplicate together maintain all links to the 
neighbours of the original node. The probability p is then the probability that the organism 
maintains two proteins (the new and the original) for a given function (link). 
Preferential attachment has a less clear biological meaning. However, occasionally an 
organism acquire a completely new gene (and hence a new protein) by horizontal transfer; 
i.e. import of a gene from another organism. In the mammalian world, the other organism is 
typical a virus and in the bacterial world, the other organism is typically also a bacteria. 
However, these biological processes are not understood in detail yet.  
The probability α represents the balance between the two processes. It is debated to what 
extent both processes play a role in evolution. The relevance of the two processes and their 
modelling in biological terms are discussed in (29-34). 
One important aspect of the model is that it is based on evolutionary ideas. In the future this 
should allow us to draw inference on multiple PIN data sets at the same time (e.g. related 
species) and thereby be able to obtain information about their joint evolution. The model as 
described here is very simple, though somewhat relevant, and could be improved in many 
ways. For the joint analysis of several PINs one important aspect in missing, namely a 
measure of physical time – in the model presented here time is an ‘event counter’; moving 
one step each time a new node is included in the network.  
  

4. Statistical Methodology 
a. The Full Likelihood 

Despite the simplicity of the model it is far from straight forward to calculate the likelihood 
under reasonable circumstances. It was shown in (27) that a recursive scheme could be 
applied to calculate the likelihood for a simpler model (and less relevant) than the one 
considered here. However, for networks of size >50 this approach became impractical and 
an Importance Sampling (IS) scheme was suggested. The idea behind the IS scheme is to 
sample histories of the observed network and calculate the contribution to the likelihood for 
each sampled history. The ideal proposal distribution is Pθ(History|Data) (35) – and not e.g. 
Pθ(History) – in the former case every history is supporting the data, whereas this is not the 
case in the latter. However, Pθ(History|Data) is difficult to characterize in the present 
setting. 
It turns out that a reasonable proposal distribution can be chosen independently of the 
parameters of the model and consequently the same sampled histories can be reused to 
calculate the likelihood for all parameters values. This accelerates the speed of computation 
enormously, but introduces dependencies between likelihoods for different parameter 
values, because the same sampled histories are used for all parameters. However, these 
dependencies appear generally to be of minor importance. On the positive side counts that 
the sampled histories are sampled independently of each other; this guarantees that a history 
is chosen proportional to its proposal probability. Unfortunately, the IS scheme is likely to 
break down in the present case because the proposal distribution becomes intractable. 
An alternative to IS is MCMC (36). The MCMC has been used in numerous contexts and 
has shown to be extremely useful for complex statistical systems. One approach in 



continuation of the IS approach would be to devise a Markov chain on the space of histories 
of the network and use the histories to approximate the likelihood. However, we have not 
been able to construct a Markov chain that visits a large proportion of the state space in 
reasonable time.  
Hence other approaches must be considered. 
 

b. Likelihood-free Inference 
Instead of considering the whole observed network one could consider a summary or a 
collection of summary statistics of the network. Summaries could be the degree sequence, 
the number of triangles etc. By carefully selecting the summary statistics one might be able 
to retain most of the information in the network about the parameters. However, also with 
this approach we run into problems, because in order to calculate the likelihood of the 
summaries, we need to simulate summaries according to the model, and to do so we need to 
simulate random graphs and histories. Further, most of the simulated histories and graphs 
will not match the observed summary statistics.  
To circumvent these problems we loosen the criteria for matching the observed summary 
statistics and consider all simulated summaries to match if they are within a certain distance 
of the observed summaries (37-38); i.e. if d(SSIM(θ), SOBS) = |SSIM(θ) – SOBS| ≤ ε, where θ 
indicates that simulation is done under this parameter. (Under exact simulation, ε = 0.) 
However, in contrast to the IS scheme discussed in the previous sub-section, simulations 
must now be done for all parameters values (or a grid of values). To loosen the burden of 
computation we suggest a Bayesian scheme assuming a prior distribution on θ, and updating 
θ in the simulation using a MCMC approach and Metropolis-Hastings’ algorithm (37-38). 
The goal of the inference procedure is thus to calculate (or estimate) the posterior 
distribution of θ given the summary statistics and not to find the maximum likelihood 
estimate as in Sub-section 4a. The details of the scheme are below: 

1. Assign a uniform prior on θ. Calculate SOBS from the data. Start at θ0 = (α0, p0, r0) 
2. If now at θ, propose a move to θ* according to a Gaussian proposal kernel 

normalized to the interval [0, 1] for each parameter. Denote the kernel by q(θ  θ*) 
3. Generate a simulated PIN data set with parameter θ* according to the model in 

Section 2. Compute the summary SSIM(θ*) 
4. If |SSIM(θ*) – SOBS| ≤ ε go to 5, otherwise go to 2 and stay at θ 
5. Calculate h = min{1, q(θ  θ*)/ q(θ*  θ) }. The term involving the prior 

distribution of θ disappears in h because the prior is uniform 
6. Accept θ* with probability h; otherwise stay at θ. Then return to 2 

In the literature this approach is known as likelihood-free inference or Approximate 
Bayesian Computation (ABC) (37-38). Strictly speaking, the algorithm generates data from 
the posterior distribution P(θ| d(·, SOBS) ≤ ε). In the limit as ε  0, this distribution becomes 
the posterior P(θ| SOBS). 



To increase the performance of the algorithm we further adopt a simulated annealing 
scheme (or tempered simulation scheme), such that ε and the variance of the kernel 
distribution depends on how many times steps 2-6 have been performed. In the beginning, 
high values of ε and the variance are used to increase the Markov chain’s possibilities to 
wander round in the parameter space. After a burn-in period the scheme is cooled down, i.e. 
the values are lowered. Acceptance probabilities (h) are typically in the range 15-40% for 
the applications we consider. 
 

5. Statistical Analysis 
a. Simulated PIN Data 

We will validate the approach on simulated PIN data sets. We aim to show that it is possible 
to select reasonable summary statistics that capture most of the information in the data and 
to show that the posterior peaks approximately at the true parameter value. 
We have chosen a number of summary statistics, some of which have frequently been used 
in the literature, while others are less used. Here we mention a selection of these: The 
degree sequence (DISTND; number of nodes with k links, k = 0, 1,…) or just the mean 
degree of a node (AVGND); The within-reach distribution (WR; number of nodes that can 
be reaches within k links from a given node, k = 0, 1,…) or the mean of this distribution; 
The diameter (DIA) of the network; The number of triangles (TRIA); The fragmentation 
(FRAG; a measure of the disconnectedness of the network); And the cluster coefficient 
(CC; a measure of groupings in the network). The frequently used summaries are DISTND 
(as discussed in Section 2) and CC. 
One criterion for a summary statistic to be useful is that its expectation varies over the set of 
parameters. To illustrate this one can calculate (or approximate by simulation) the derivative 
of the expectation with respects to the parameter (39). In Figure 2 this is shown for 
DISTND and WR. 
 
 
 
 
 
 
 
 
 
In Figure 3 we show how the number of summary statistics affects the peak-ness of the 
posterior distribution. However, it also transpires that the commonly applied DISTND does 
barely capture the information in the data. PIN networks were simulated with 120 nodes and 
100 retained after sampling. 

Figure 2 The figure shows 
the derivative of the 
expectation of DISTND 
and the derivative of the 
expectation of WR for α. 
The derivatives are 
normalized by α. Clearly, 
there appears to be more 
information in WR than 
DISTND for this choice of 
parameter. 



Calculation of the Gelman-Rubin convergence statistic (40; see also next sub-section) 
indicates that the likelihood-free scheme works sufficiently well (again for small networks 
of size 100; results not shown here). Now, we will move on the analysis of a real data set.  
 

   

   
 

b. H. pylori PIN Data 
Helicobacter pylori is a small bacteria that is associated with various forms of ulcer as well 
as stomach cancer. It has a relatively small genome with an approximated number of 
genes/proteins of 1500 (in comparison the human genome has approximately 23,000 genes). 
The PIN data set to be analysed here holds less than half of the estimated number of 
proteins; namely 675, and has 1096 links (see Table 1).  
We did various runs with different choices of summary statistics, see Table 2. From the 
previous sub-section it was clear that to obtain a reasonable performance of the likelihood-
free inference scheme more than one summary statistic should be chosen. Again it transpires 
that the node degree distribution (DISTND) is very unreliable and cannot alone be used for 
inference. Interestingly, the estimates of α indicate that both processes might play a role in 
the evolution of H. pylori.   

 
Network Summaries p r α 

WR+DIA+CC+AVGND+FRAG 0.275 (0.16, 0.39) 0.034 (0.002, 0.065) 0.206 (0.02, 0.36) 

WR+DISTND+CC+FRAG 0.277 (0.12, 0.40) 0.027 (0.002, 0.055) 0.154 (0.01, 0.31) 

DISTND 0.518 (0.09, 0.86) 0.645 (0.12, 0.97) 0.338 (0.03, 0.74) 

CC+TRIA 0.35 (0.06, 0.63) 0.236 (0.03, 0.79) 0.577 (0.12, 0.88) 

Table 2 Posterior inference using different summary statistics. If one or few statistics are used then the 95% credibility 
intervals become very large (in parentheses) and do not always agree (or agree poorly) with inference performed using 

many summaries. As an example, inference on r and α is markedly affected when using only DISTND. 

Figure 3 The top row shows 
heat diagrams of the posterior 
density for all three pairs of 
parameters α, p, and r when 
using only DISTND. The 
bottom row shows the same 
when using WR+DIA+CC+ 
AVGND+FRAG. Clearly, the 
peak-ness depends strongly on 
the summary statistics. The red 
dots indicate the true values. 



 
Figure 4 shows that the convergence properties of the likelihood-free inference scheme 
appear to be good for the H. pylori PIN network. 
 

 
 

6. Conclusions 
In this paper we have discussed inference on large (biological) network data. This type of 
data is becoming abundant, not only in biology, but also in many other sciences including 
sociology, physics, and economics. We have found that the likelihood of the network is 
difficult to calculate even for simple models. To compensate this we suggested a likelihood-
free inference scheme, based on summary statistics, MCMC and Bayesian ideas. We 
demonstrated that it is possible to obtain reasonable inference using this scheme, if care is 
taken in selecting the summary statistics. Essentially, this appears to be the main problem 
with the proposed approach: As shown in Table 2, poorly chosen summary statistics might 
lead to unreliable or even wrong statistical conclusions. We speculate that similar issues and 
conclusions can be made in many other sciences where complex statistical systems are 
being applied in the analysis of data. 
Biologically, we were able to obtain estimates of biologically relevant parameters in an 
analysis of a H. pylori PIN data set. In the future, it is going to be interesting to compare the 
estimates obtained in this particular case with estimates obtained for other, but perhaps 
related, species. 
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