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Single Nucleotide Polymorphisms (SNPs) are positions in a DNA sequence that are vari-
able among different individuals of a population. Many of the large scale genomic efforts have
currently switched from direct DNA sequencing to the production of SNP data in humans.
To human geneticists and population geneticists, the availability of large scale SNP data is
exciting because such data can be used to answer many important scientific questions regard-
ing recombination and mutation in the human genome, and regarding the demographics and
ancestry of human populations. Unfortunately, there are very few appropriate statistical tools
available for the population genetic analysis of SNP data. Let ψ be a vector of parameters,
and let X be the binary data matrix with columns corresponding to individual SNPs and rows
corresponding to DNA sequences. The matrix is assumed binary because in human SNP data
more than two different nucleotides (among {A,C, T,G}) are rarely observed in a specific site.
The full likelihood function is then given by

p(X | ψ) =

∫

G
p(X | G,ψ)p(G | ψ)dG, (1)

where G ∈ G is a stochastic graph (called the ancestral recombination graph) specifying the
genealogical (ancestral) relationship of the DNA sequences. The genealogy of a single site in
the DNA sequences is described by a stochastic binary tree, the coalescent (Kingman 1982), and
the graph G can thus be seen as a collection of trees, one for each site in the sequences (Hudson
1983, Griffiths and Marjoram 1996, Wiuf and Hein 1999). The trees might vary between sites
becuase of genetic recombination. For some important models, known as neutral models, the
parameters specifying G are disjoint from the parameters specifying X conditional on G. For
an overview of coalescent theory, see Hudson (1991), and Hein et al (2005).

Even under the most simple (reasonable) models, the likelihood function cannot be eval-
uated analytically for just a few SNPs. Instead population geneticists have been using compu-
tationally intensive methods to evaluate the likelihood function such as MCMC (e.g. Nielsen
2000, Kuhner et al. 2000) and sequential importance sampling (e.g. Fearnhead and Donnelly
2001, Griffiths and Marjoram 1996, Stephens and Donnelly 2000). Unfortunately, these meth-
ods have not proven fast and efficient enough to scale up to real data. The fundamental problem
is that the expected number of nodes in G increases exponentially with the recombination rate
parameter, which is approximately linearly dependent on the length of the DNA sequences.
This makes methods that stochastically integrate over G inapplicable to large scale genomic
data. To overcome this problem, there has been several recent efforts to devise approximate
methods for inference. Among the most promising methods are the composite likelihood meth-
ods suggested by Hudson (2001), Kim and Stephan (2002) and McVean et al. (2002). In these



methods the likelihood function is calculated marginally for one or a small number of SNPs,
or for a small region of the DNA sequences. A composite likelihood function is then formed
by taking the product of these marginal likelihood functions, thereby treating SNPs or regions
as being independent. In some cases it is known that composite likilihood methods provide
consistent estimators of population parameters (e.g., Fearnhead 2003). We will here give two
examples of the use of composite likelihood estimators for neutral models.

Estimation of θ under Kingman’s coalescent

We are interested in estimating the scaled mutation rate θ (= 4Nµ, where N is the
effective population size and µ is the mutation rate per site per generation, Watterson 1975).
The likelihood in a variable site (i) is given by

Eψ((1− e−θTi/2)e−θ(T−Ti)/2), (2)

where ψ is a vector of parameters not containing θ, T is the length of the tree (G) relating
the sequences in site i, and Ti is the sum of the length of all branches in G in which a single
mutation would induce the observed data pattern in site i. Because the per site mutation rate
is very low, it is common to consider equation (2) for θ ≈ 0. As θ becomes small, equation (2)
tends to θEψ(Ti)/2. Likewise, the probability that a site is invariable is

Eψ(1− e−θT/2) (3)

which tends to 1− θEψ(T )/2 as θ becomes small. The composite likelihood function, the
product over all sites, is for small scaled mutation rates approximately proportional

θS

(
1− θEψ(T )

2

)k−S

(4)

where S is the number of variable sites and k the total number of sites. The maximum composite
likelihood estimate θ̂ψ of θ is then

θ̂ψ =
2S

Eψ(T )k
, (5)

and an estimator of the scaled mutation rate for the whole DNA sequences is kθ̂ψ (also known as
Watterson’s estimator). It is usually derived as a method of moments estimator. In the case of
Kingman’s coalescent, ψ is zero-dimensional and Eψ(T ) = 2

∑n−1
j=1 1/j, while for generalizations

of Kingman’s coalescent, the expectation typically depends on parameters describing the shape
of the genealogy. In the latter case θ̂ψ is a profile estimator.

The expectation of θ̂ψ is (Watterson 1975, Hudson 1991)

Eψ(θ̂ψ) =
2Eψ(S)

kEψ(T )
= θ, (6)

and a useful approximation to the variance is given by (Kaplan and Hudson 1985, Hudson
1991)

Varψ(θ̂ψ) ≈ θ

kEψ(T )
+

2θ2

k2Eψ(T )2

∫ k

0

(k − x)fn,ψ(x)dx, (7)

where fn,ψ(x) is the covariance of the total tree lengths in two positions x sites away. It depends
on the sample size n. Equation (6) and (7) rely on the Poisson nature of the mutation process.
For many interesting models (e.g. Kingman’s coalescent) fn,ψ(x) decays like 1/x, and

Varψ(θ̂ψ) ≈ Cn,ψ log(k)

k
(8)



for large k (Kaplan and Hudson 1985, Wiuf and Nielsen, unpublished results), where Cn,ψ is a

constant depending on n and ψ. Thus, θ̂ψ is unbiased and consistent for k →∞. It is possible

to show that θ̂ψ is as good as possible, i.e. its variance decays at the same rate as the maximum
likelihood estimator (Wiuf and Nielsen, unpublished results).

Application to the estimation of demographic parameters

In this section we discuss the properties of the the composite likelihood estimator of the
scaled migration rate between a pair of populations (e.g. Hudson 1991). In a single SNP site,
the data consists of the vector x = (x00, x01, x10, x11), where x00 is the number of copies of the
first allele in the first subpopulation, x01 is the number of copies of the second allele in the first
subpopulation, and so forth.

The basic model for G is a model of symmetric migration between two subpopulations that
may have different sizes. Technically, the model of G is two coupled coalescent processes, one
describing the ancestral relationships between sequences in the first subpopulation, the other
describing the ancestral relationship between sequences in the second subpopulation. The two
processes are coupled through migration: Each sequence migrates to the other subpopulation at
rate M = Nm, where m is the probability of migration per sequence per generation. M is thus
the expected number of migrants entering a subpopulation in a given generation. Additionally,
the model has a parameter, f , describing the ratio of the two subpopulation sizes; i.e. ψ =
(M, f).

Many data sets that are generated today consist only of variable sites. This is a conse-
quence of SNP technology and the way SNPs normally are being typed in large samples. It has
the further important statistical consequence that equation (1) should be interpreted as being
conditional on all sites being variable. If only variable sites are observed (or typed), it is part
of the sampling strategy and must be reflected in the likelihood.

The effect of this procedure is to eliminate θ, which here is considered a nuisance param-
eter. As in Nielsen (2000), the likelihood function calculated for a single SNP site (i) can then
be expressed as

Eψ(Ti)

Eψ(T )
(9)

(again assuming θ is small). These expectations cannot be calculated analytically for the present
model, but they can be approximated very fast using simulation. Simulate k trees under the
previously defined coalescence process for a particular value of ψ, then a simulation consistent
estimate of the likelihood function can be obtained as

∑k
j=1 Ti(j)∑k
j=1 T (j)

(10)

where T (j) and Ti(j) are the values of T and Ti, respectively, for simulated tree j. The likelihood
surface can then be estimated by repeating this procedure for different values of ψ and/or by
the application of various importance sampling schemes for generating surfaces from single
value simulations (not shown). Notice that the same set of simulations can be used for multiple
SNPs making this approach very computationally attractive. Wiuf and Nielsen (unpublished
results) have shown that the maximum composite estimators of M and f are consistent for
large number of SNPs. Other properties of the estimators, such as the precision, can easily be
addressed through simulation.

This simulation procedure was applied to 12,836 SNPs from the Seattle SNP database
(NHLBI Program for Genomic Applications, UW-FHCRC, Seattle, WA, http://pga.gs.washington.edu).



Each SNP was typed for 46 Caucasian Americans chromosomes and 48 African American chro-
mosomes. For the purpose of this study, these two groups are considered to be subpopulations
in the population genetic sense. The likelihood surface was estimated on a grid of 400 values
of ψ using a value of k = 106 for each value of ψ. Composite maximum likelihood estimates
of M̂ = 2.3 and f̂ = 5.8 were obtained, indicating that the effective African (American) pop-
ulation size is considerably larger than the European (American) population and that there is
considerable amounts of gene flow between these subpopulations. The estimates are in good
accordance with previous estimates of demographic parameters for these populations.

The composite likelihood procedure is relative fast and easy to implement for many pop-
ulation genetic models of interest. The fact that the composite likelihood methods often have
desirable statistical properties (such as consistency) and are easy and fast to implement make
them attractive vehicles for statistical inference of population genetic parameters based on SNP
data.
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RÉSUMÉ

Composite likelihood methods are used in population genetics in models where full likeli-
hood approaches are computationally intractable. The composite likelihood methods often have
desirable statistical properties (such as consistency) and can be used for the estimation of muta-
tion parameters and demographic parameters. We discuss some examples of composite likelihood
methods that can be used for the analysis of Single Nucleotide Polymorphism (SNP) data and
discuss their statistical properties.


