Euler characteristics of *p*-subgroup categories

Martin Wedel Jacobsen and Jesper Michael Møl·ler

University of Copenhagen

UAB Topology Seminar, December 17, 2010

Outline of talk

G is a finite group and p is a prime number

- S_G^* the poset of nonidentity *p*-subgroups of *G*
- $T_G^*(H, K) = N_G(H, K)$ the transporter category of G
- $\mathcal{L}_{G}^{*}(H,K) = O^{p}C_{G}(H)\backslash N_{G}(H,K)$ the linking category of G
- $\mathcal{F}_{G}^{*}(H,K) = C_{G}(H) \backslash N_{G}(H,K)$ the fusion category of G
- $\mathcal{O}_G^*(H,K) = N_G(H,K)/K$ the orbit category of G
- • F_G(H, K) = C_G(H)\N_G(H, K)/K the exterior quotient of the fusion category of G

What are the Euler characteristics of these finite categories?

Outline of talk

- Euler characteristics of matrices
 - Euler characteristic of an invertible matrix
 - ullet Euler characteristic of the poset \mathcal{S}_G^*
 - Euler characteristic of square matrix
- Euler characteristics of fusion categories
- Euler characteristics of p-subgroup categories
 - Categories of nonidentity subgroups
 - Categories of centric subgroups

Typical result

$$\chi(\mathcal{F}_G^*) = \sum_{[K]} \frac{-\mu(K)}{|\mathcal{F}_G^*(K)|}$$

Definition (The Euler characteristic of an invertible matrix)

The Euler characteristic of $\zeta = (\zeta(a, b))$ is the sum

$$\chi(\zeta) = \sum_{a,b} \mu(a,b)$$

of the entries in the inverse $\mu = \zeta^{-1} = \sum_{k=0}^{\infty} (-1)^k (\zeta - E)^k$.

Example

$$\zeta = (g) \qquad \qquad \mu = (g^{-1}) \qquad \qquad \chi(\zeta) = g^{-1}$$

$$\zeta = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \mu = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad \chi(\zeta) = 1$$

Definition (The incidence matrix of a poset S)

$$\zeta(S) = (\zeta(a,b))_{a,b}, \qquad \zeta(a,b) = \begin{cases} 1 & a \leq b \\ 0 & \text{otherwise} \end{cases}$$

Definition (The Euler characteristic of a finite poset S)

$$\chi(\mathcal{S}) = \chi(\zeta(\mathcal{S}))$$

Example (A poset with a terminal element)

$$\zeta(S) = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\chi(S) = \chi(\zeta(S)) = 1$$

Definition (Simplices in a poset)

A k-simplex, $k \ge 0$, (from a to b) is a totally ordered subset of k+1 points (with a as smallest and b as greatest element).

Example $((\zeta - E)^k$ counts k-simplices)

Lemma (Counting simplices in poset S)

$$(\zeta - E)^k(a, b) = \#\{k\text{-simplices from a to b}\}\ (k \ge 0)$$

 $\sum_{a,b} (\zeta - E)^k(a, b) = \#\{k\text{-simplices in }\mathcal{S}\}\ (k \ge 0)$

Topological Euler characteristic of the realization |S|

$$\chi(|\mathcal{S}|) = \sum_{k=0}^{\infty} (-1)^k \#\{k\text{-simplices in }\mathcal{S}\}$$

$$= \sum_{k=0}^{\infty} (-1)^k \sum_{a,b \in \mathcal{S}} (\zeta - E)^k (a,b)$$

$$= \sum_{a,b} \sum_{k=0}^{\infty} (-1)^k (\zeta - E)^k (a,b)$$

$$= \sum_{a,b} \sum_{k=0}^{\infty} (-1)^k (\zeta - E)^k (a,b)$$

$$= \sum_{a,b} \zeta^{-1}(a,b) = \sum_{a,b} \mu(a,b) = \zeta(\mathcal{S})$$

Assumptions

G is a finite group and p is a prime number

Definition (The posets S_G and S_G^*)

- S_G is the poset of all p-subgroups of G
- S_G^* is the poset of nonidentity *p*-subgroups of *G*

Proposition (Euler characteristic of the poset \mathcal{S}_G^* I)

$$\chi(\mathcal{S}_G^*) = \sum_{K \in \text{Ob}(\mathcal{S}_G^*)} -\mu(K) = \sum_{[K] \neq 1} -\mu(K)|G: N_G(K)|$$

Proof

$$1 = \chi(\mathcal{S}_G) = \sum_{H,K} \mu(H,K) = \sum_{1 \le K} \mu(1,K) + \sum_{1 \le H \le K \le G} \mu(H,K)$$
$$= \mu(1,1) + \sum_{1 \le K} \mu(1,K) + \chi(\mathcal{S}_G^*)$$

Lemma (The Möbius function on S_G [1, Lemme 4.1])

Let H and K be p-subgroups of G. Then $\mu(H, K) = 0$ unless $H \triangleleft K$ with elementary abelian factor group where

$$\mu(H,K) = (-1)^n p^{\binom{n}{2}}, \qquad |K:H| = p^n$$

In particular, $\mu(K) = \mu(1, K) = 0$ unless K is elementary abelian where

$$\mu(K) = (-1)^n p^{\binom{n}{2}}, \quad p^n = |K|$$

Example (Alternating groups at p = 2)

Proposition (Euler characteristic of the poset \mathcal{S}_G^* II)

$$\chi(\mathcal{S}_{G}^{*}) = \sum_{H} \left(1 - \chi(\mathcal{S}_{N_{G}(H)/H}^{*})\right)$$

Recursive calculations?

Proof

$$\begin{split} \chi(\mathcal{S}_{G}^{*}) &= \sum_{H,K} \mu(H,K) = \sum_{H} \sum_{K} \mu(H,K) = \sum_{H} \sum_{K \in [H,N_{G}(H)]} \mu(H,K) \\ &= \sum_{H} \sum_{K \in [H,N_{G}(H)]} \mu(K/H) = \sum_{H} \sum_{\bar{K} \in N_{G}(H)/H} \mu(\bar{K}) \\ &= \sum_{H} \left(1 - \chi(\mathcal{S}_{N_{G}(H)/H}^{*}) \right) \end{split}$$

What is known about $\chi(\mathcal{S}_G^*)$?

Theorem (Product formula)

$$1 - \chi(\mathcal{S}^*_{\prod_{i=1}^n G_i}) = \prod_{i=1}^n 1 - \chi(\mathcal{S}^*_{G_i})$$

Proposition

If G has a nonidentity normal p-subgroup then $\chi(\mathcal{S}_G^*)=1$

Theorem (Brown 1975, Quillen 1978)

$$1 - \chi(\mathcal{S}_G^*)$$
 is divisible by $|G|_p$

Example

$$\chi(\mathcal{S}^*_{\mathsf{SL}_n(\mathbf{F}_q)}) = 1 + (-1)^n q^{\binom{n}{2}}$$
 when q is a power of p

What is unknown about $\chi(S_G^*)!$

- (Euler characteristics of Chevalley groups) Is $1 \chi(S^*_{G_n(q)}) = (-1)^n q^{\#\{\text{positive roots}\}} \text{ for } G = A, B, C, D, E$?
- (Euler characteristics of alternating groups) Describe the sequence n → χ(S^{*}_{A_n})
- (Quillen conjecture 1978) $O_p(G) > 1 \iff S_G^* \simeq *$

The Euler characteristic of a matrix $\zeta = (\zeta(a, b))$

How do we define $\chi(\zeta)$ when ζ is not invertible?

Definition (Weightings and coweightings)

A weighting for ζ is a column vector (k^{\bullet}) such that

$$(\zeta(a,b))(k^b) = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

A coweighting for ζ is a row vector (k_{\bullet}) such that

$$(k_a)(\zeta(a,b))=(1 \cdots 1)$$

- A matrix may have none or many (co)weightings
- If $(\mu(a,b))$ is an inverse to $(\zeta(a,b))$ then

$$(k^a) = (\mu(a,b)) \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} = (\sum_{b \in S} \mu(a,b))$$
 (column sums)
 $(k_b) = (1 \cdots 1) (\mu(a,b)) = (\sum_{a \in S} \mu(a,b))$ (row sums)

are the unique weighting and coweighting for ζ

- $\chi(\zeta) = 1$ for $\zeta = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (and ζ is not invertible)
- $\zeta = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ has no Euler characteristic

If ζ admits both a weighting k^{\bullet} and a coweighting k_{\bullet} then the sum of the values of the weighting

$$\sum_b k^b = \sum_b \big(\sum_a k_a \zeta(a,b))\big) k^b = \sum_a k_a \big(\sum_b \zeta(a,b) k^b\big) = \sum_a k_a$$

Definition (The Euler characteristic of a matrix (Leinster 2008))

$$\chi(\zeta) = \sum_b k^b = \sum_a k_a$$

If ζ is invertible then

$$\chi(\zeta) = \sum_{a} k^{a} = \sum_{a,b} \mu(a,b)$$

as before.

Definition (The incidence matrix of a finite category C)

$$\zeta(\mathcal{C}) = (\zeta(a,b))_{a,b}$$
 $\zeta(a,b) = |\mathcal{C}(a,b)|$

Definition (Euler characteristic of a category (Leinster 2008))

$$\chi(\mathcal{C}) = \chi(\zeta(\mathcal{C}))$$

Proposition (Invarians under equivalence (Leinster 2008))

- If there is an adjunction $\mathcal{C} \longrightarrow \mathcal{D}$ then $\chi(\mathcal{C}) = \chi(\mathcal{D})$
- If C has an initial or terminal element then $\chi(C)=1$
- If C and D are equivalent then $\chi(C) = \chi(D)$

Example (Skeletal subcategory of $\mathcal{F}_{A_6}^*$, p=2)

$$\mu(\mathcal{C}) = \begin{pmatrix} 1 & -1/2 & -1/2 & -1/2 & 1/2 \\ 0 & 1/6 & 0 & 0 & -1/4 \\ 0 & 0 & 1/6 & 0 & -1/4 \\ 0 & 0 & 0 & 1/2 & -1/4 \\ 0 & 0 & 0 & 0 & 1/4 \end{pmatrix} \qquad \chi(\mathcal{C}) = \sum \mu(i,j) = 1/3$$

Theorem (A weighting, a coweighting, and the Euler characteristic of \mathcal{F}_G^*)

$$\begin{aligned} & k_{K}^{\mathcal{F}} = \frac{-\mu(K)}{|G: C_{G}(K)|} \\ & k_{\mathcal{F}}^{H} = \sum_{K} \frac{\mu(H, K)}{|G: C_{G}(K)|} = \frac{1}{|G|} \sum_{x \in C_{G}(H)} \left(1 - \chi(\mathcal{S}_{C_{N_{G}(H)}(x)/H}^{*}) \right) \\ & \chi(\mathcal{F}_{G}^{*}) = \sum_{K \in \text{Ob}(\mathcal{F}_{G}^{*})} \frac{-\mu(K)}{|G: C_{G}(K)|} = \sum_{[K] \in \pi_{0}(\mathcal{F}_{G}^{*})} \frac{-\mu(K)}{|\mathcal{F}_{G}^{*}(K)|} \end{aligned}$$

In all cases

$$k_K^{\mathcal{F}} \neq 0 \iff K$$
 is elementary abelian

If the Sylow *p*-subgroup *P* is normal in *G* then

$$k_{\mathcal{F}}^H \neq 0 \iff H = C_P(g) \text{ for some } g \in G$$

What is known about $\chi(\mathcal{F}_G^*)$?

Theorem (Product formula)

$$1 - \chi(\mathcal{F}^*_{\prod_{i=1}^n G_i}) = \prod_{i=1}^n 1 - \chi(\mathcal{F}^*_{G_i})$$

Proposition

- If G has a nonidentity central p-subgroup then $\chi(\mathcal{F}_G^*)=1$
- ullet $|G|_{p'}\cdot\chi(\mathcal{F}_G^*)\in\mathbf{Z}$
- $\chi(\mathcal{F}_G^*) = \frac{|\{\varphi \in \mathcal{F}_G^*(P) \mid C_P(\varphi) > 1\}}{|\mathcal{F}_G^*(P)|}$ when P, the Sylow p-subgroup, is abelian.
- $\chi(\mathcal{F}_{G}^{*}) = \chi(\mathcal{F}_{G}^{a})$ and $\chi(\mathcal{F}_{G}^{*}) = \chi(\widetilde{\mathcal{F}}_{G}^{*})$

Example (Alternating groups A_n at p = 2)

n	$\chi(\mathcal{S}_{A_n}^*)$	$\chi(\mathcal{F}_{A_n}^*)$	n	$\chi(\mathcal{S}_{A_n}^*)$	$\chi(\mathcal{F}_{A_n}^*)$
4	1	1/3	10	55105	18/35
5	5	1/3	11	55935	18/35
6	-15	1/3	12	-288255	389/567
7	–175	1/3	13	1626625	389/567
8	68	41/63	14	23664641	233/405
9	5121	41/63	15	150554625	233/405

Example (The smallest group with $\chi(\mathcal{F}_G^*) > 1$)

There is a group $G = C_2^4 \rtimes H$, where $H = (C_3 \times C_3) \rtimes C_2$, of order |G| = 288 with Euler characteristic $\chi(\mathcal{F}_G^*) = 10/9$ at p = 2.

What is unknown about $\chi(\mathcal{F}_G^*)$

- Are \mathcal{F}_G^* and \mathcal{F}_G^a homotopy equivalent?
- Are \mathcal{F}_{G}^{*} and $\widetilde{\mathcal{F}}_{G}^{*}$ homotopy equivalent?
- Is $\chi(\mathcal{F}_G^*)$ always positive when p divides the order of G?
- Can $\chi(\mathcal{F}_G^*)$ get arbitrarily large?
- What is $\chi(\mathcal{F}_{A_n}^*)$? Does it converge for $n \to \infty$?
- What is $\chi(\mathcal{F}^*_{\mathsf{SL}_n(\mathbf{F}_a)})$?
- Is there a $|G|_{p'}$ -fold covering map $E \to B\mathcal{F}_G^*$ where E is (homotopy) finite and $\chi(E) = |G|_{p'}\chi(\mathcal{F}_G^*)$?

Theorem (Euler characteristics of nonidentity *p*-subgroup categories)

$$\begin{array}{c|c} \mathcal{C} & \chi(\mathcal{C}) \\ \hline \mathcal{T}_{G}^{*} & \sum_{[H]} \frac{-\mu(H)}{|\mathcal{T}_{G}^{*}(H)|} \\ \mathcal{L}_{G}^{*} & \sum_{[H]} \frac{-\mu(H)}{|\mathcal{L}_{G}^{*}(H)|} \\ \\ \mathcal{F}_{G}^{*} & \sum_{[H]} \frac{-\mu(H)}{|\mathcal{F}_{G}^{*}(H)|} \\ \mathcal{O}_{G}^{*} & \chi(\mathcal{T}_{G}^{*}) + \frac{\rho - 1}{\rho} \sum_{[C]} \frac{1}{|\mathcal{O}_{G}^{*}(C)|} \\ \hline \end{array}$$

Combinatorial identities

Corollary

For any finite group G and any prime p,

$$\sum_{H} \left(1 - \chi(\mathcal{S}_{N_{G}(H)/H}^{*}) + \mu(H) \right) = 0$$

$$\sum_{H} \sum_{x \in C_{G}(H)} \left(1 - \chi(\mathcal{S}_{C_{N_{G}(H)}(x)/H}^{*}) + \mu(H) \right) = 0$$

$$\sum_{H} \left(|H| - \chi(\mathcal{S}_{N_{G}(H)/H}^{*})|H| + \mu(H) \right) = \frac{p-1}{p} \sum_{G} |C|$$

where H runs over the set of nonidentity p-subgroups of G and C over the set of nonidentity cyclic p-subgroups of G.

Definition

The *p*-subgroup $H \leq G$ is *p*-centric if $p \nmid |C_G(H): C_H(H)|$

Example (Euler characteristics of centric subgroup categories for alternating groups at p=2)

n	4	5	6	7	8	9	10	11
$A_n \chi(\mathcal{L}_{A_n}^c)$	1	5	-15	-105	65	585	11745	129195
$\chi(\mathcal{S}_{A_n}^c)$	1	5	-15	–175	65	585	11745	107745
$\chi(\mathcal{L}_{A_n}^c)$	1/12		-1/24		13/4032		29/4480	
$\chi(\mathcal{F}_{A_n}^c)$	1/3 1		/3 13/63		19/105			
$\chi(\widetilde{\mathcal{F}}_{A_n}^c)$	1,	/3	1	/3	13/63		19/105	

Conjecture

$$\chi(\mathcal{F}_{G}^{c}) = \chi(\widetilde{\mathcal{F}}_{G}^{c})$$

References

Charles Kratzer and Jacques Thévenaz, *Type d'homotopie des treillis et treillis des sous-groupes d'un groupe fini*, Comment. Math. Helv. **60** (1985), no. 1, 85–106. MR 787663 (87b:06017)