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Summary

In the present thesis we describe the simplicial Lusternik-Schnirelmann cate-
gory and the simplicial geometric category for finite simplicial complexes. More-
over, we relate these categories with the Lusternik-Schnirelmann and geometric
categories of finite T0-spaces, showing that they behave in a similar way under
specific conditions. For example, the L-S category is a homotopy invariant and the
simplicial L-S category is a strong homotopy invariant, and the geometric category
for finite T0-spaces increases under elimination of beat points and its simplicial ver-
sion increases under elimination of dominated vertices. With this aim, we describe
the structure of finite T0-spaces and finite simplicial complexes and we relate them
through the Order Complex functor K and the Face Poset functor χ. Finally, we
show that the L-S category of the geometric realisation provides a lower bound for
the simplicial L-S category and a lower bound for the simplicial L-S category of the
iterated subdivision. There will be computations of simplicial L-S categories and
examples of the main theorems. However, no examples have been found for sim-
plicial complexes, such that the value of the geometric category strictly increases
under removing a dominated vertex, or such that the category of its face poset
is strictly smaller than its simplicial category. Moreover, there is no criteria for
defining an upper bound for the value of the simplicial L-S category.
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Chapter 0

Introduction

0.1 The simplicial Lusternik-Schnirelmann cate-

gory

The simplicial Lusternik-Schnirelmann category is the definition of Lusternik-
Schnirelmann category for simplicial complexes. The Lusternik-Schnirelmann (L-
S) category of a topological space X represents the least number n such that there
is an open cover of X of n+ 1 subsets contractible to a point in the space X.

Originally, this concept was introduced in 1930 by L. Lusternik and L. Schnirel-
mann [9] in the study of manifolds. The L-S category, in fact, provides a lower
bound for the number of critical points for any smooth function on a manifold and
links invariants of manifolds with topological invariants. Later on, other definitions
of L-S category were given. R. Fox [7] introduced the geometric category, where
each subset of the cover is required to be contractible in itself, and he developed the
L-S category in the field of algebraic topology. In the ’50s and ’60s G.W. Whitehead
gave the first homotopy theoretic definition of L-S category of a space and later
T. Genea gave a second one. A description of the two alternative definitions and a
complete view of the results about the L-S category for topological spaces can be
found in [4].

Recently, definitions of L-S category have been extended to the case of simpli-
cial complexes. These definitions do not refer to the L-S category of the geometric
realisation of the simplicial complex but they are built on the simplicial structure
itself. The first simplicial version of L-S category was given in 2013 by S. Aaronson
and N. A. Scoville [1]. This definition uses the notion of simplicial collapse, that
was introduced by G.W. Whitehead in the late thirties. A simplicial collapse is the
deletion from the simplicial complex of a free face, that is a simplex τ such that
there is a simplex σ that is a face of τ and σ has no other cofaces. A simplicial
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collapse of the simplicial complex K onto the simplicial complex L is denoted by
K ↘ L. The definition of the simplicial category given in [1] is based on the defi-
nition of geometric category given by Fox [7] and represents the minimum, among
the simplicial complexes L such that K ↘ L, of the smallest number of collapsible
subcomplexes that can cover L. However, the concept of collapsibility presents
some difficulties, for example the core of a simplicial complex is not unique and
a simplicial complex can collapse to two non-isomorphic minimal complexes (that
are complexes without any free face). Therefore, it results difficult to understand
whether a space is collapsible or not. Already in 2009, and not in relation with the
simplicial L-S category, J.Barmak and E. Minian [3] developed the idea of strong
collapsibility. An elementary strong collapse is a deletion of a dominated vertex,
that is a vertex v such that its link lk(v) is a simplicial cone. A strong collapse
is a sequence of elementary strong collapses and it is denoted by K ↘↘ L, for
two simplicial complexes K and L. This new notion is a special case of the old
collapse and it satisfies some useful properties, for example the core of a simplicial
complex K is unique up to isomorphisms and it is strong homotopic to K. More-
over, the concepts of contiguity classes of simplicial maps and strong homotopy
type provide a simplicial analogous of homotopy classes of continuous functions
between topological spaces and homotopy type. In the same paper a correspon-
dence between finite T0-spaces and finite simplicial complexes is established and,
for example, homotopic finite spaces have a correspondent strong homotopic finite
simplicial complexes (via order complex) and vice-versa (via face poset). In 2015,
D. Fernández-Ternero, E. Maćıas-Virgós and J. A. Vilches [14] gave a new defi-
nition of simplicial L-S category and simplicial geometric category based on the
concept of strong collapsibility. In this way the simplicial L-S category of a finite
simplicial complex K, denoted by scat(K), is defined as the least integer n such
that there is a cover of K of n+1 subcomplexes that strong collapse to a vertex in
K. With this definition the simplicial L-S category is a strong homotopy invariant.
Therefore, a simplicial complex and its core have the same category. The simplicial
geometric category is defined in the same way but the subcomplexes are required
to be strong collapsible. It is not an homotopic invariant, but differently from the
geometric category defined with simple collapsibility, the geometric category of the
core of a simplicial complex is the maximum of the category in its strong homo-
topy classes. Moreover, in the article they relate the simplicial category to the L-S
category of a finite T0-space via order complex and face poset, deducing some new
results about the category of finite spaces. In fact, simplicial L-S category defined
on strong collapsibility behaves in a symmetric way to the classical L-S category
in the case of a finite topological space. Since the simplicial L-S category is a new
concept there is not a general overview of the results related to it and concrete
examples of some theorems have not yet been found. The objective of this thesis
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is to provide a complete overall view of the simplicial L-S category, including also
examples, some new results and computations of simplicial L-S category.

0.2 Structure of the thesis

This thesis aims to study the Lusternik-Schrinelmann category for simplicial com-
plexes. In particular, we will present the results concerning the topic in order to
give a complete idea of how the concept is structured. We will add some new re-
sults, examples and computations of the simplicial L-S category. This work is based
on “Lusternik-Schrinelmann category for simplicial complexes and finite spaces”
by D. Fernández-Ternero, E. Maćıas-Virgós and J. A. Vilches [14]. It is structured
in three main chapter: first, we will introduce some preliminary notions, then we
will define the L-S category for simplicial complexes and give the results related
to it and finally, we will show some additional results and computations. In order
to clarify some notions that will be used in the thesis, we include two appendices.

In the first chapter, we describe the relation between finite T0-spaces, finite par-
tially ordered sets (posets) and finite simplicial complexes. We will first show that
the category of finite T0-spaces and the category of finite posets are equivalent.
In fact, continuous maps between finite T0-spaces correspond to order preserving
maps and in the category of posets we can define a relation between order pre-
serving functions that is given by the order, and we show that functions in the
same order component are homotopic. We will therefore consider finite T0-spaces
and finite posets as the same object. Then we show that given a finite topological
space we can always associate a minimal finite T0-space. Moreover, we will define
the core of a finite T0-space that is the minimal space obtained by removing all
beat points. An important result is that the core is unique up to homeomorphism
and two finite T0-spaces are homotopy equivalent if and only if their cores are
homeomorphic. We then define the category of finite simplicial complexes and the
functors between the category of finite simplicial complexes and the one of finite
posets. In fact, to every finite poset X we can associate its order complex and to
each finite simplcial complex we can associate its face poset. Moreover, we define
the relation of contiguity between simplicial maps. The notion of contiguity cor-
responds to that of homotopy. In fact, contiguity classes of simplicial maps are
sent by the functor to homotopy classes of continuous maps and vice-versa. As in
the case of finite T0-spaces, we can define the core of a simplicial complex that is
the simplicial complex obtained by removing dominated vertices. The removal of a
dominated vertex is called a strong collapse and two simplicial complexes have the
same strong homotopy type if there is a sequence of strong collapses and expansion
from one to the other. Two simplicial complexes have the same strong homotopy
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type if and only if they are strong equivalent (homotopy equivalent in the sense
of contiguity). As in the case of finite T0-space, the core of a simplicial complex
is unique up to isomorphism and two simplicial complexes have the same strong
homotopy type if and only if their cores are isomorphic. Finally, we will present
some results that show some properties that are preserved if we pass from finite
posets to finite simplicial complexes and vice-versa via the order complex functor
and face poset functor. For example, homotopy equivalent posets correspond to
strong homotopy equivalent simplicial complexes.

In the second chapter, we will introduce the definition of L-S category and
geometric category for topological spaces in general and then in the specific case
of finite T0-spaces. For example, one of the results shows the relation between the
geometric category and the L-S category. In fact, the latter is always smaller than
or equal to the former. Then, we define the L-S category and the geometric category
for simplicial complexes. In this case the definition is given using the concept of
contiguity. The categorical subcomplexes are defined as the subcomplexes such that
the inclusion map is in the same contiguity class of some constant map. We will
show that results that are similar to the case of finite space, hold also for simplicial
complexes. Finally, we compare the L-S category and the geometric category for
finite T0-spaces with the one of finite simplicial complexes. In particular, we will
show some inequalities that relate the category of a finite topological space with
the one of its order complex and the category of a simplicial complex with the
one of its face poset. One interesting result is that the category of the subdivision
is smaller or equal than the category of the simplicial complex. In this chapter
we will also present some examples of finite spaces and simplicial complexes that
satisfy these results.

In the third chapter, we discuss the L-S category of the geometric realization
and we show that it is always smaller or equal to the simplicial category of the
simplicial complex. Moreover, it provides a lower bound for the category of the
iterated subdivision sdn(K) of the simplicial complex K. We will use these results
to compute the value of the simplicial category of the triangulation of the projective
plane and the torus. We also compute the simplicial category of the n sphere.

Appendix A shows some results regarding the general theory of L-S category
for topological spaces. In fact, we will show that it can be bounded from below by
the cup length and that the dimension of the space gives an upper bound for the
value of the L-S category.

Appendix B discusses the topology of the geometric realisation. We introduce
the closed L-S category, that is the category defined with a closed cover of cate-
gorical subsets, and we will show that in the case of the geometric realisation of
a finite simplicial complex the value of the closed L-S category coincides with the
value of the classical L-S category.
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0.3 Notation

We give here a list of symbols used in our thesis.
TOP , fTOP and fT0 denote the category of topological spaces, finite topolog-
ical spaces and the category of finite T0-spaces
fPOSET is the category of finite partially ordered sets.
h(fT0) and h(fPOSET ) are the Homotopy category and Order category
fSC denotes the category of finite simplicial complexes
T and P represent the finite topological space functor and the poset functor
K denotes the Order Complex functor and χ denotes the Face Poset functor
K0 is the set of vertices of a simplicial complex K
|K| denotes the geometric realisation of a simplicial complex K
sd(K) represents the barycentric subdivision of a simplicial complex K
≺ denotes the relation of being covered between elements of the Hasse diagram
Definition 1.1.4
Ux is the intersection of all open subset containing x and it is an element of the
base of the topology, if X is a finite space (finite T0-space). If we regard X as a
finite preorder (finite poset) Ux = {y ∈ X : y ≤ x}
' is the relation of being homotopic functions or homotopy equivalent spaces
∼≤ denotes the equivalent relation generated by the order ≤
X ↘↘ Y and K ↘↘ L indicate a strong collapse between finite posets and
finite simplicial complexes
∼c denotes the relation of being contiguous simplicial maps
∼ represents the relation between simplicial maps of being in the same contiguity
class

lk(v), st(v) and ∗ represent the link and the star of a vertex v of a simplicial
complex, and the operation of join between simplicial complexes
cat(X) and gcat(X) denote the L-S category and the geometric category for a
topological space X
scat(K) and gscat(K) denote the simplicial category and the simplicial geo-
metric category for a simplicial complex K
catcl(X) represents the closed category, that is the L-S category defined for a
cover of closed categorical subsets
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Chapter 1

Preliminaries

1.1 The category of finite T0-spaces and the cat-

egory of finite posets

In this section, we will define the category of finite topological spaces, that we
will denote by fTOP , the category of finite T0-spaces fT0 and the category of
finite partially ordered set fPOSET . We will show that fT0 and fPOSET are
equivalent categories. The results in this sections refer to Barmak’s Chapter 1 [2]
but they are presented in the language of Category Theory. Proposition 1.1.18 is
due to the author.

Definition 1.1.1. The category fTOP of finite topological spaces is defined by

the class of objects ob(fTOP ) that is the class of all finite topological spaces

(X, τ), where τ is the topology on X, and its set of morphisms Hom(fTOP ),that

is the set of continuous functions between finite topological spaces. We denote

Hom((X, τ), (X ′, τ ′)) the set of continuous functions from (X, τ) to (X, τ ′) ∈
ob(fTOP ).

We recall the definition of T0 separation property for a topological space.

Definition 1.1.2. Let X be a topological space, X is a T0 − space if for any two

points of X, there is an open neighbourhood of one that does not contain the

other.

17
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Definition 1.1.3. The category fT0 of finite T0-spaces is the subcategory of fTOP

such that the objects are the finite T0-spaces and the morphisms are continuous

maps between finite T0-spaces.

A finite partially ordered set is a finite set on which a partial order relation is
defined. Morphisms between partially order sets are order preserving functions,
that are functions f : X → Y , X and Y partially ordered sets, such that x ≤ x′

implies f(x) ≤ f(x′), ∀x, x′ ∈ X.
On a partially ordered set X we can define maximal elements and minimal ele-
ments, maximum, minimum and chains that are subset Y ⊆ X such that Y is
totally ordered.

Definition 1.1.4. [2] The Hasse diagram of a finite poset X is the digraph whose

vertices are the points of X and whose edges are the ordered pairs (x, y), x, y ∈ X
such that x < y and there is no z such that x < z < y. If the segment with vertices

x and y is an edge of the Hasse diagram we say that x covers y, in the literature

this relation is denoted by x ≺ y.

The next example shows a representation of an Hasse diagram, we will not write
arrows in the edges but the relation is given by the position of the elements in the
diagram.

Example 1.1.5. Let X be a finite ordered set X = {a, b, c, d} with the order ≤
defined by a ≤ b, a ≤ c ≤ d. The Hasse diagram of X is showed in the following

figure. Here a is a minimum, b and d are maximal elements, a ≺ b, a ≺ c and

c ≺ d.

d

b c

a

Figure 1.1.1: The Hasse diagram associated to the set X.
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Definition 1.1.6. The category fPOSET is the category that has as class of

objects ob(fPOSET ) the class of finite partially order sets and as set of morphisms

Hom(fPOSET ) the set of order preserving maps between partially ordered sets.

Remark 1.1.7. The categories fTOP , fT0 and fPOSET are well defined because

we can define a composition of maps Hom(A,B)×Hom(B,C)→ Hom(A,C) for

all A, B, C ∈ ob(fTOP ), ob(fT0) or ob(fPOSET ). This composition is associa-

tive and there are identity functions in all these sets of morphisms.

We remind some definitions from Category Theory that we will use in order to
show that the categories fT0 and fPOSET are equivalent. More details about
Category Theory ca be found in [12].

Definition 1.1.8. Two categories C and D are equivalent if and only if there is

a functor F : C → D and a functor G : D → G and two natural isomorphisms

GF ∼= IdC and FG ∼= IdD.

Definition 1.1.9. Let F and G : C → D be covariant functors, a natural transfor-

mation τ : F → G is a family of morphisms in D, τ = {τX : F (X)→ G(X)}X∈ob(C)

that make the following diagram commute for all morphisms f : X → X ′ in

Hom(C):

F (X)
τX→ G(X)

↓F (f) ↓G(f)

F (X ′)
τX′→ G(X ′)

A natural transformation is called a natural isomorphisms if every morphism τX

is an isomorphism.

Now we want to define functors from fT0 to fPOSET and vice-versa from fPOSET
to fT0. With this aim we will show that given a finite topological space we can
define a partial order on it and given a finite partially ordered set we can define a
T0 topology on it.

Lemma 1.1.10. Let (X, τ) be a finite T0-space, then there is a partial order rela-

tion ≤ on X.
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Proof. Let Ux be the intersection of all open sets containing x, it is open because

X is finite. We can define the relation ≤ in this way: x ≤ y if and only if Ux ⊆ Uy.

This relation is reflexive: x ≤ x because Ux ⊆ Ux and transitive x ≤ y and y ≤ z

implies Ux ⊆ Uy and Uy ⊆ Uz, so Ux ⊆ Uz. The antisymmetry is given by the T0

separation property, in fact x ≤ y and y ≤ x implies that Ux ⊆ Uy and Uy ⊆ Ux so

Ux = Uy. ∩Wx = ∩Wy where Wx and Wy are open subsets of Ux = Uy containing

respectively x and y. So every open set that contains x contains also y and every

open set that contains y contains also x, but since X is a T0−space, if x 6= y there

is an open neighbourhood of x that does not contain y, so the only case is that

x = y.

Lemma 1.1.11. Let (X,≤) be a finite partially order set, then we can define a T0

topology on it.

Proof. Consider the set Ux = {y ∈ X : y ≤ x}. We want to show that {Ux}x∈X
is a base of open sets that induce a T0-topology. In fact, for every x ∈ X we have

that x ∈ Ux and if x ∈ Uy and x ∈ Uz so x ≤ y and x ≤ z then Ux = {w ∈ X :

w ≤ x} ⊆ Uy∩Uz by the transitivity of the relation. The T0 property is verified by

the antisymmetry of the relation, in fact for any two distinct points x, y we have

that x < y or y < x or x and y are not in relation, because if x ≤ y and y ≤ x

then x = y. In the first case x < y so Ux is the open neighbourhood of x that does

not contain y, in the second case y < x so the open neighbourhood is Uy and in

the third case is either Ux or Uy.

Remark 1.1.12. The previous two proofs show that given a finite topological space

(X, τ) we can define a preorder relation ≤ on X, that is a symmetric and transitive

relation, and given a finite preordered set (X,≤) we can define a topology τ on X.

In fact, the T0 separation property is equivalent to antisymmetry of the relation ≤.

That means that in general finite topological spaces can be considered as preordered

sets and vice-versa. In the specific, finite T0-spaces can be seen as finite posets.
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Definition 1.1.13. Let (X,≤) be a finite poset. We define the base of the T0-

topology τ on X as the collection of sets {Ux}x∈X , where Ux = {y ∈ X : y ≤ x}.
We will call Ux basic open set. Moreover, Ux is the intersection of all open subset

of X containing x.

Lemma 1.1.14. A function f : X → Y , X and Y finite spaces, is continuous if

and only if it is order preserving.

Proof. If f is continuous the pre-image of an open set is open, so f−1(Uy) is open

for all y ∈ Y . Suppose that x ≤ x′, we have that f−1(Uf(x′)) is open and x′ ∈
f−1(Uf(x′)) so x ∈ f−1(Uf(x′)). Therefore f(x) ∈ (Uf(x′)) that implies f(x) ≤ f(x′).

Suppose now that f is order preserving. We want to show that the pre-image of

every open set Uy y ∈ Y that form a basis for the topology of Y , is open. Let

x ∈ f−1(Uy) and x′ ≤ x so f(x′) ≤ f(x) ≤ y because f is order preserving.

Therefore x′ ∈ f−1(Uy) that means that f−1(Uy) = Uz for some z ∈ X that is an

open set of the base of the topology on X. So f−1(Uy) is open and therefore f is

continuous.

Definition 1.1.15. The poset functor P : fT0 → fPOSET is a functor such that

for all (X, τ) ∈ ob(fT0) P ((X, τ)) = (X,≤) where ≤ is the partial order defined

in lemma 1.1.10 and for all morphisms f ∈ Hom((X, τ), (X ′, τ ′)) P (f) = f ∈
Hom(P (X, τ), P (X ′, τ ′)) for all (X, τ), (X ′, τ ′) ∈ ob(fT0). These morphisms are

order preserving by lemma 1.1.14.

Definition 1.1.16. The finite topological space functor T : fPOSET → fT0 is a

functor such that for all (X,≤) ∈ ob(fPOSET ) T ((X,≤)) = (X, τ) with the T0

topology τ defined in lemma 1.1.11. For all morphisms f ∈ Hom((X,≤), (X ′,≤′

)), (X,≤), (X ′,≤′) ∈ ob(fPOSET ) P (f) = f ∈ Hom(T (X, τ), T (X ′, τ ′)), f is

continuous by lemma 1.1.14.

Remark 1.1.17. The functors P and T are well defined. In fact, P (X, τ) ∈
ob(fPOSET ) by lemma 1.1.10, T (X,≤) ∈ ob(fT0) by lemma 1.1.11, by lemma

1.1.14 we have that f : X → X ′ ∈ Hom(fPOSET ) if and only if f : X → X ′ ∈
Hom(fT0) and the composition of function is preserved. Moreover P (idX) = idP (X)

for all X ∈ ob(fT0)and T (X) = idT (X) for all X ∈ ob(fPOSET ).
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Proposition 1.1.18. The categories fPOSET and fT0 are equivalent.

Proof. Consider the functors P : fT0 → fPOSET and T : fPOSET → fT0.

We want to show that there are natural isomorphisms TP ∼= IdfT0 and PT ∼=
IdfPOSET . Consider the diagram for X and X ′ in ob(fT0) and f : X → X ′ in

Hom(fT0):

TP (X)
τX→ IdfT0(X)

↓TP (f) ↓IdfT0 (f)

TP (X ′)
τX′→ IdfT0(X

′)

The base of the topology τ is given by the set Ux that are the intersection of all

open subsets that contain x, and the order in P (X, τ) is defined by y ≤ x if and

only if Uy ⊆ Ux by lemma 1.1.10. Moreover the base of the topology in TP (X, τ) is

given by Ux = {y ∈ X : y ≤ x} by lemma 1.1.11. Therefore, we have that y ∈ Ux
if and only if y ≤ x if and only if Uy ⊆ Ux, that is if and only if y ∈ Ux. Then

we have that Ux = Ux and so (X, τ) = TP (X, τ). Therefore, by lemma 1.1.14 the

previous diagram is equivalent to the following one:

X
τX→ X

↓f ↓f
X ′

τX′→ X ′

This diagram is clearly commutative and τX is the identity morphism so it is an

isomorphism for all X ∈ ob(fT0). The proof that PT ∼= IdfPOSET is analogous. In

fact PT (X,≤) = (X,≤) because the topology τ in T (X,≤) is given by the base

Ux = {y ∈ X : y ≤ x}x∈X and the relation ≤′ in PT (X,≤) is defined by y ≤ x if

and only if Uy ⊆ Ux, where Ux is the intersection of the open sets that contain x.

Now Ux = Ux therefore y ≤ x if and only if y ∈ Ux if and only if Uy ⊆ Ux if and

only if y ≤′ x.

1.2 Homotopy Category and Order Category

In this section we will define the Homotopy Category for finite T0-spaces and the
Order Category that is its analogous for finite partially ordered sets and we will
prove that they are equivalent categories. The following results refer to Barmak’s
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Chapter 1 [2], with the exception of Lemma 1.2.6, Proposition 1.2.13 and the
definition of Order Category that are due to the author. They are proved in general
for finite topological spaces and preordered sets (that are sets with a symmetric
and transitive relation defined on it) but we will later use the results in the specific
case of finite T0-spaces and partially ordered sets.
We give first some basics definitions. We say that two maps between topological
spaces f : X → Y and g : X → Y are homotopic if there is a continuous function
H : X× I → Y where I = [0, 1], such that H(x, 0) = f(x) and H(x, 1) = g(x) and
we denote it as f ' g.

Definition 1.2.1. The Homotopy Category of finite T0 spaces, h(fT0) is the cat-

egory that has as objects all finite T0-spaces and as morphisms the equivalence

classes of homotopic morphisms between them. The morphisms f and g of finite

T0-spaces are in the same equivalent class, that we denote as [f ], if and only if

they are homotopic f ' g.

Remark 1.2.2. The composition of functions is defined for all classes [f ], [g] ∈
Hom(h(fT0)) by [f ][g] = [fg]. It is well defined because f ' f ′ and g ' g′ implies

fg ' f ′g′, it is associative and the identity morphism is the class [idfT0 ].

Lemma 1.2.3. (Lemma 1.2.3 [2]) Let X be a finite topological space and x and y

two comparable points, then there is a path from x to y in X.

Proof. We want to show that there is a continuous function α : I → X, I = [0, 1]

such that α(0) = x and α(1) = y. We assume without loss of generality that x ≤ y

and we define α as α(t) = x for t 6= 1 and α(1) = y. Let U ⊆ X be a open subset,

then α−1(U) equal ∅, I or [0, 1) because we suppose that x ≤ y so an open set that

contain y also contains x. These sets are open in I, so α is continuous.

Definition 1.2.4. A fence of a finite preorder set (X,≤) is a sequence of elements

z0, ..., zn such that any two consecutive elements are comparable z0 ≤ z1 ≥ z2 ≤
... ≤ zn.

On a preorder set X we can define an equivalence relation that we will call equiv-
alence relation generated by the order.

Definition 1.2.5. Let X be a preorder set. The equivalence relation generated by

the order ∼≤ is defined for all x, y ∈ X by x ∼≤ y if there is a fence between x
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and y. And we call the equivalence classes the order components of X. If there is

only one order component we call X order connected.

Lemma 1.2.6. The connected components of a finite topological space X are the

order components, that are the equivalence classes of the equivalence relation gen-

erated by the order.

Proof. Suppose without loss of generality that X has one connected component

and suppose by contradiction that there are n order components, n > 1. So there is

no fence between the elements in the different components. If for each component

we take the union U = ∪Ux where x is a maximal element in the component, we

obtain n disjoint open sets such that the union is X and this is a contradiction.

Suppose now that X has one order component and more then one connected

components. So there are at least two points x and y that are contained in different

components. But there is a fence between x and y, therefore by Lemma 1.2.3 there

is a sequence of paths from x to y. The two points are in the same path component

so they are in the same component.

Corollary 1.2.7. (Proposition 1.2.4 [2]) Let X be a finite topological space. The

following are equivalent:

• X is a path connected topological space

• X is a connected topological space

• X is an order connected preordered set

Proof. X is path connected implies that X is connected. X is connected if and

only if it is order connected by Lemma 1.2.6. Finally X is order connected implies

that X is path connected by Lemma 1.2.3.

We define the relation ≤ between continuous functions between finite spaces as f ≤
g if and only if f(x) ≤ g(x) for all x ∈ X. As in the previous case, the equivalence
relation generated by the order, that we denote ∼≤ is defined by f ∼≤ g if and
only if there is a fence of functions from f to g f = h0 ≤ h1 ≥ h2 ≤ ... ≤ hn = g.
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Definition 1.2.8. The Order category for finite partially ordered sets h(fPOSET )

is defined by a class of objects that is the class of finite partially ordered sets and

the set of morphisms that is the set of classes of morphisms, denoted by [f ]≤

generated by the relation ∼≤.

Remark 1.2.9. The composition of morphisms is defined for all classes [f ], [g] ∈
Hom(h(fPOSET )) by [f ][g] = [fg]. It is well defined because f ∼≤ f ′ and g ∼≤ g′

implies fg ∼≤ f ′g′. In fact, if there is a fence between f and f ′ f(x) = h0(x) ≤
h1(x) ≥ h2(x) ≤ ... ≤ hn(x) = f ′(x) for all x ∈ X, and we consider fg we have

the fence f(g(x)) = h0(g(x)) ≤ h1(g(x)) ≥ h2(g(x)) ≤ ... ≤ hn(g(x)) = f ′(g(x)).

Then we consider the fence between g and g′ g = h0 ≤ h1 ≥ h2 ≤ ... ≤ hn = g′

and we combine the two, since the morphisms are order preserving, we get a fence

f(g) = h0(g) ≤ h1(g) ≥ h2(g) ≤ ... ≤ hn(g)) = f ′(g) ≤ f ′(h1) ≥ f ′(h2) ≤ ... ≤
f ′(hn) = f ′(g′) from fg to f ′g′. The composition is associative and the identity

morphism is the class [idfPOSET ].

Proposition 1.2.10. (Corollary 1.2.6 [2]) Let f and g be two functions between

finite topological spaces X and Y , f : X → Y and g : X → Y . f ' g if and only

if f ∼≤ g.

Moreover, Let A ⊆ X then f ' g rel A if and only if f ∼≤ g and the fence

f = h0 ≤ h1 ≥ h2 ≤ ... ≤ hn = g given by the relation satisfies hi|A = f |A for all

0 ≤ i ≤ n.

Proof. Consider the set Y X of functions from X to Y . Since X and Y are finite

set Y X is also finite. We can define a preorder on it given by f ≤ g if and only

if f(x) ≤ g(x) for all x ∈ X. This relation is a preorder because the relation on

Y is a preorder. Moreover, we can define on Y X the topology τ induced by the

functor T (we consider here the generalisation of T to the case of finite preorder.

The topology is constructed in the same way but is not in general T0). Therefore,

f and g are homotopic if and only if there is a homotopy function between them,

that mean that there is a path between them in Y X . There is a path if an only

if f and g are in the same connected component. By Corollary 1.2.7 this holds if

and only if they are in the same order component.
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Corollary 1.2.11. A finite space X with a maximum or minimum is contractible.

Proof. If X has a maximum or minimum the identity map idX is comparable to

the constant map cm, where m is the maximum or minimum.

Corollary 1.2.12. The open sets {Ux}x∈X of the base for the topology induce by

the preorder are contractible.

Proof. x is a maximum for Ux so by Corollary 1.2.11 it is contractible.

Proposition 1.2.13. The categories h(fT0) and h(fPOSET ) are equivalent.

Proof. Consider the functors P : fT0 → fPOSET and T : fPOSET → fT0

defined in section 1.1. By Proposition 1.2.10 we know that for all morphisms

f , g : X → X ′ in Hom(fT0) f ' g if and only if f '≤ g f , g : X → X ′ in

Hom(fPOSET ). So the functor P sends equivalence classes of homotopic func-

tions to order classes of functions and T sends order classes of functions to equiv-

alence classes of homotopic functions. Therefore we can define

P : h(fT0) → h(fPOSET ) and T : h(fPOSET ) → h(fT0). We want to show

that there are natural isomorphisms TP ∼= idh(fT0) and PT ∼= idh(fPOSET ). Con-

sider the diagram for X and X ′ in ob(h(fT0)) and [f ] : X → X ′ in Hom(h(fT0)):

TP (X)
τX→ IdfT0(X)

↓TP ([f ]) ↓IdfT0 ([f ])

TP (X ′)
τX′→ IdfT0(X

′)

By the same argument in Proposition 1.1.18 we have that TP (X, τ) = (X, τ),

therefore the previous diagram is equivalent to:

X
τX→ X

↓[f ] ↓[f ]

X ′
τX′→ X ′

This diagram is clearly commutative and τX is an isomorphism for all X ∈
ob(h(fT0)). The proof that PT ∼= Idh(fPOSET ) is analogous.
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1.3 Finite spaces and minimal finite posets

We showed in the previous sections that the categories of fT0 and fPOSET are
equivalent, as well as the categories of h(fT0) and h(fPOSET ). Finite topological
spaces and finite preordered sets are the same object and finite T0-spaces corre-
spond to finite posets. Therefore from now on we will consider finite sets (X, τ,≤)
with the topology τ , with basis {Ux}x∈X , and the corresponding order relation ≤
defined in Definition 1.1.13. In this section we will show that we can associate
to every finite topological space a minimal (in the sense of number of points) T0-
space, called the core of X.
Proposition 1.3.1 and Corollary 1.3.3 refer to Proposition 1.3.1 and Remark 1.3.2
in Barmak’s book [2].

Proposition 1.3.1. Any finite topological space has the same homotopy type of a

finite T0 − space.

Proof. Let (X, τ) be a finite topological space. We want to show that X is homo-

topic equivalent to a finite T0-space that we denote as X ′. We take X ′ to be the

space X quotient by the equivalent relation given by x ∼ y if and only if x ≤ y and

y ≤ x (or equivalently Ux = Uy). Let q : X → X ′ be the quotient map and consider

a section s : X ′ → X, so qs(x) = idX′ . s is continuous because q is continuous and

qs(x) = idX′ is order preserving so by lemma 1.1.14 it is continuous. sq ≤ idX

because for all x ∈ X sq(x) = s([x]) where [x] = {y ∈ X : x ≤ y and y ≤ x}, so

s([x]) = y ≤ x. Therefore sq(x) ≤ idX(x), for all x ∈ X. There is a fence between

sq and idX so sq ∼≤ idX , by Proposition 1.2.10 sq and idX are homotopic maps.

Therefore X ' X ′.

Now we want to show that X ′ is a finite T0 − space. In fact, if [x] ≤ [y] then

q(x) ≤ q(y), since s is continuous x ≤ sq(x) ≤ sq(y) ≤ y (sq(x) ≤ idX(x), but

also sq(x) ≥ idX(x) by definition of [x]). If also [y] ≤ [x], we have that y ≤ x, so

by definition of the quotient space [x] = [y]. The relation on X ′ is antisymmetric

so X ′ is a T0-space.

We recall the definition of retraction and strong deformation retraction, that will
be used in the following results.

Definition 1.3.2. Let X be a topological space and A ⊆ X a subset. A continuous

map r : X → A is called a retraction of A if ri = idA, where i : A ↪→ X is the
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inclusion map. Moreover, a continuous map F : X × I → X, where I = [0, 1] is a

deformation retraction of X onto A if F (x, 0) = x, F (x, 1) ∈ A and F (a, 1) = a

for all x ∈ X and a ∈ A. Equivalently A is a deformation retract of X if there is a

retraction r such that ir ' idX . A strong deformation retraction is a deformation

retract F : X × I → X such that F (a, t) = a for all t ∈ I and for all a ∈ A.

Equivalently, A is a strong deformation retract of X if there is a retraction r such

that ir ' idX rel A.

Corollary 1.3.3. X ′ is a strong deformation retract of X.

Proof. Consider the section s and the quotient map q defined in Proposition 1.3.1.

As showed in the proof we have that qs(x) = idX′ and sq(x) ≤ idX(x). Moreover,

sq(x) and idX(x) coincide on X ′ so by Proposition 1.2.10 sq ' idX rel X ′. So X ′

is a strong deformation retract of X.

Proposition 1.3.1 implies that in order to study finite topological spaces up to
homotopy we can reduce ourself to finite T0-space. In fact, every topological space
X is homotopic equivalent to a finite T0-space called the core of X, that is obtained
from X ′ by eliminating beat points (beat points are also called linear and colinear
points in [13] or up-beat, down-beat points in [2]).

Definition 1.3.4. (Definition 5.3 [14]) Let X be a finite T0 topological space. A

point x in X is called beat point if there exists an other point x′ 6= x such that:

• for all y ∈ X, if x < y then x′ ≤ y

• for all y ∈ X, if y < x then y ≤ x′

• x and x′ are comparable

Remark 1.3.5. Equivalently, x ∈ X is a beat point if and only if it covers exactly

one point or it is covered exactly by one point, if and only if U ′x = Ux r x has a

maximum or F ′x = Fx r x has a minimum, where Fx = {y ∈ X : y ≥ x}.
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Example 1.3.6. The picture represents a beat point x ≤ x′.

• • •

•x′

•x

• • •

Figure 1.3.1: An example of beat point from [14], page 12.

Proposition 1.3.7. (Proposition 1.3.4 [2]) Let X be a finite T0-space and let

x ∈ X be a beat point. Then X r {x} is a strong deformation retract of X.

Proof. Define the map r : X → X r {x} such that r(z) = z for all z ∈ X such

that z 6= x and r(x) = x′, where x′ is the point described in the Definition 1.3.4.

r is order preserving, so continuous and it is a retraction, in fact r(z) ∈ X r {x}
for all z ∈ X and r(y) = y for all y ∈ X r {x} . Let i : X r {x} → X be the

inclusion map, so ri = idXr{x}. Moreover, x ad x′ are comparable, so x ≤ x′ or

x′ ≤ x. Therefore we have that ir ≤ idX or ir ≥ idX and idX |Xr{x} = ir|Xr{x}, by

Proposition 1.2.10 ir ' idX rel X r {x}.

Definition 1.3.8. Let X be a finite T0 topological space and Y ⊆ X obtained

by removing beat points from X. We say that Y is a strong collapse of X and we

denote it by X ↘↘ Y . Moreover, we have by Proposition 1.3.7 that Y ' X.

Lemma 1.3.9. (Lemma 2.2.2 [2]) Let X be a finite T0 topological space and Y ⊆ X

such that all beat points of X are in Y . Let f : X → X then f ' idX rel Y if and

only if f = idX .

Proof. Since f ' idX rel Y then by Proposition 1.2.10 we can suppose without loss

of generality that f ≤ idX or f ≥ idX . Suppose f ≤ idX and define U ′x = Ux r x.
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If x ∈ Y then f(x) = x. Define the set A = {y ∈ X : f(y) 6= y} and suppose by

contradiction that A 6= ∅. Consider a minimal element x of A, then f |U ′x = idU ′x

and f(x) 6= x. Then f(x) ∈ U ′x and for every y < x, y = f(y) ≤ f(x). So f(x) is a

maximum of U ′x. So x is a beat point because it is covered by just one point. Then

x ∈ Y and so f(x) = x but this is contradiction because x ∈ A. Therefore, A = ∅
and f = idX .

Proposition 1.3.10. (Corollary 2.2.5 [2]) Let X be a finite T0 topological space

and Y ⊆ X. X ↘↘ Y if and only if Y is a strong deformation retract of X.

Proof. If X ↘↘ Y then Y is obtained by removing beat points, by Proposition

1.3.7 follows that Y is obtained from X by performing a sequence of strong defor-

mation retractions, so Y is a strong deformation retract of X.

Suppose now that Y is a strong deformation retract of X. Let Z be the set Z ⊆ X

such that X ↘↘ Z by removing all beat points of X that are not in Y . We claim

that Y and Z are homeomorphic. In fact, since Y ⊆ Z and Y and Z are strong

deformation retracts of X there are functions f : Y → Z and g : Z → Y such that

gf ' idY rel Y and fg ' idZ rel Y . By Lemma 1.3.9, Y and Z are homeomorphic

so X ↘↘ Z = Y .

Proposition 1.3.1 allows us to associate to each finite topological space X a homo-
topic finite T0-space X ′. In addition, we can reduce X ′ to a minimal finite space
by eliminating its beats points. The minimal finite space is the smallest (in terms
of cardinality) finite T0-space that has the same homotopy type of X.

Definition 1.3.11. A finite T0-space is a minimal finite space if it has no beat

points.

Definition 1.3.12. A core of a finite topological space X is a deformation retract

of X that is a minimal finite space.

Remark 1.3.13. Every finite topological space has a core.

Proposition 1.3.14. (Theorem 1.3.6 [2]) Let X be a minimal finite space. A map

f : X → X is homotopic to the identity if and only if f = idX .
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Proof. It is a special case of Proposition 1.3.9.

Proposition 1.3.15. Classification Theorem.(Corollary 1.3.7 [2]) A homotopy

equivalence between minimal finite spaces is a homeomorphism. In particular the

core of a finite space is unique up to homeomorphism and two finite spaces are

homotopy equivalent if and only if they have homeomorphic cores.

Proof. Let X and Y be homotopy equivalent minimal finite space and f : X → Y

and g : Y → X the homotopic maps. By Proposition 1.3.14 f ◦ g = idY and

f ◦ g = idX so X and Y are homeomorphic. If X ′ and X ′′ are two cores of X they

are homotopy equivalent to X so they are homotopy equivalent minimal spaces

and therefore homeomorphic. Two space X ad Y are homotopy equivalent if and

only if their cores are homotopy equivalent if and only if they have homeomorphic

cores.

1.4 The Face Poset and the Order Complex func-

tors

In this section we will introduce the category of finite simplicial complexes. We will
define the functor that associates to each finite poset a finite simplicial complex
and the one that associates to every finite simplicial complex a finite poset. We will
then describe the concept of contiguity for simplicial maps, that is the analogous
of homotopy for functions between simplicial complexes. The results in this section
refer to Barmak [2], Proposition 1.4.18 and Proposition 1.4.19 are presented in the
language of category theory, the definitions of Order Complex functor and Face
poset functor are due to the author.

Definition 1.4.1. An abstract simplicial complex K is a non empty set K0 of

n > 0 vertices and sets Ki 0 ≤ i ≤ n of subsets of K0 of cardinality (i + 1) (not

necessarily all subsets), called simplices, such that any subset of cardinality (j+1)

of a simplex in Ki is a simplex in Kj. A simplex σ of cardinality (n+ 1) is called

n-simplex.

Definition 1.4.2. Let K and L be two simplicial complexes. A simplicial map is

a function φ : K → L such that for all simplices σ ⊆ K, φ(σ) is a simplex in L.
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A simplicial map φ is determined by the map φ′ : K0 → L0 and the image of a

simplex σ = {x0, ..., xi}, x0,...,xi ∈ K0 is given by φ(σ) = {φ′(x0), ..., φ′(xi)}.

Definition 1.4.3. The category fSC of finite simplicial complexes is the cate-

gory that has as class of objects all finite simplicial complexes (that are simplicial

complexes with a finite number of vertices) and as set of morphisms the set of

simplicial maps between finite simplicial complexes.

Definition 1.4.4. (Definition 1.4.4 [2]) Let (X,≤) be a finite partially ordered

set. The order complex K(X) associated with X is the simplicial complex whose

set of vertices K0 is X and whose simplices are given by the finite non-empty

chains given by the order relation ≤ on X.

Example 1.4.5. Let X = {0, 1, 2, 3, 4} be the following poset.

3 4

2

1

0

The order complex K(X) associated to X is

Figure 1.4.1: The order complex K(X) associated to the finite poset X
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It is the simplicial complex with sets of n-simplices given by K0 = X,

K1 = {[01], [02], [03], [04], [12], [13], [14], [23], [24]},
K2 = {[012], [023], [013], [024], [123], [124], [014]} and K3 = {[0123], [0124]}.

Definition 1.4.6. The Order Complex functor K : fPOSET → fSC is a functor

such that for all X ∈ ob(fPOSET ) K(X) is the order complex associated to

X, and for all order preserving maps f : X → Y ∈ Hom(fPOSET ), X, Y ∈
ob(fPOSET ), K(f) : K(X)→ K(Y ) is defined as K(f)(x) = f(x) for all x ∈ X.

Remark 1.4.7. The map K(f) is a simplicial map because it is defined by the

function f : X → Y on the sets of vertices of K(X) and K(Y ).

Definition 1.4.8. (Definition 1.4.10 [2]) Let K be a finite simplicial complex. The

face poset associated to K, χ(K) is the poset whose elements are the simplices of

K ordered by inclusion.

Example 1.4.9. Let K be the simplicial complex in Example 1.4.5. The face poset

associated to K, χ(K) is:

[0123] [0124]

[012] [023] [013] [024] [123] [124] [014]

[01] [02] [03] [04] [12] [13] [14] [23] [24]

0 1 2 3 4

Figure 1.4.2: The face poset χ(K) associated to the simplicial complex K.

Definition 1.4.10. The Face Poset functor χ : fSC → fPOSET is a functor

such that for all K ∈ ob(fSC), χ(K) is the face poset associated to the simplicial
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complex K, and for all simplicial maps ψ : K → L ∈ Hom(fSC), χ(ψ) : χ(K)→
χ(L) defined by χ(ψ)(σ) = ψ(σ) for all simplex σ ∈ K.

Remark 1.4.11. χ(ψ) is order preserving. I fact, σ′ ≤ σ in χ(K) implies σ′ =

{x0, ..., xn} ⊆ σ = {x0, ..., xn, ..., xk} in K. So ψ(σ′) = {ψ′(x0), ..., ψ′(xn)} ⊆
ψ(σ) = {ψ(x0), ..., ψ(xn), ..., ψ(xk)} that means χ(ψ′) ≤ χ(ψ).

From now on we will work in the category fSC. We define the concept of contigu-
ous simplicial maps and contiguity classes and describe the relationship between
homotopic maps between finite T0-spaces and contiguous maps between finite sim-
plicial complexes.

Definition 1.4.12. Let φ, ψ : K → L be two simplicial maps between two sim-

plicial complexes K and L. φ and ψ are said to be contiguous if for every simplex

σ ∈ K φ(σ) ∪ ψ(σ) is a simplex in L. We denote this relation by φ ∼c ψ.

Remark 1.4.13. The relation ∼c is reflexive and symmetric but in general not

transitive.

Definition 1.4.14. Let φ, ψ : K → L be two simplicial maps between two sim-

plicial complexes K and L. φ and ψ are in the same contiguity class if there is a

sequence of maps φ0...φn such that φ = φ0 ∼c φ1 ∼c ... ∼c φn = ψ, φi : K → L for

all 0 ≤ i ≤ n. Being in the same contiguity class is an equivalence relation and we

write it φ ∼ ψ.

Definition 1.4.15. The Contiguity category h(fSC) is the category that has as

class of objects ob(h(fSC)) the class of all finite simplicial complexes and as set of

morphisms the contiguity classes [f ]∼ of morphisms between simplicial complexes

f : K → L, K, L ∈ ob(h(fSC).

Remark 1.4.16. Let f : K → L and g : N → K be two simplicial maps.

The composition of morphisms is defined for all classes [f ]∼ ∈ Hom(h(fSC))

by [f ]∼[g]∼ = [fg]∼. It is well defined because f ∼ f ′ and g ∼ g′ implies f =

h0 ∼c h1 ∼c ... ∼c hn = f ′ and g = k0 ∼c k1 ∼c ... ∼c kn = g′. So we have that

g(σ) is a simplex in K for all σ′inN . Therefore f(g) = h0(g) ∼c h1(g) ∼c ... ∼c
hn(g) = f ′(g), that means that fg ∼c f ′g. Moreover,f(g) = h0(g) ∼c h1(g) ∼c



1.4. THE FACE POSET AND THE ORDER COMPLEX FUNCTORS 35

... ∼c hn(g) = f ′(g) = f ′(k0) ∼c f ′(k1) ∼c ... ∼c f ′(kn) = f ′g′ because ki(σ
′) is

a simplex in K for all σ′ ∈ N , so fg ∼c f ′g′. It is associative and the identity

morphism is the class [idfSC ].

As proved in Section 1.1 the category of finite partially ordered sets and the
category of finite T0-spaces are equivalent. Therefore in the next theorems finite
T0-spaces and finite partially ordered sets are considered as the same objects.

Lemma 1.4.17. (2.1.1 [2]) Let f , g : X → Y be homotopic maps between T0-

spaces. Then there is a sequence of functions f = f0, ..., fn = g such that for every

i, 0 ≤ i ≤ n there is a point xi ∈ X such that:

• fi and fi+1 coincide in X r xi

• fi ≺ fi+1 or fi � fi+1, that is fi cover fi+1 or fi is covered by fi+1

Proof. We can assume without loss of generality that f = f0 ≤ g by Proposition

1.2.10. Let A = {x ∈ X : f(x) 6= g(x)}, if A = ∅ then f = g and the theorem

holds. Suppose A 6= ∅, let x0 be a maximal element of A. Take y ∈ Y such that

f(x0) ≺ y ≤ g(x0). Define f1 : X → Y by f1|Xrx0 = f |Xrx0 and f1(x0) = y. f1

is continuous because f is and if x′ ≤ x0 then f1(x′) = f(x′) ≤ f(x0) ≤ y and if

x′ ≥ x0 then x′ is not in A therefore f1(x′) = f(x′) = g(x′) ≥ g(x0) ≥ y = f1(x0).

We define in the same way, by induction fi+1. The process ends because X and Y

are finite sets.

Proposition 1.4.18. (Proposition 2.1.2 [2]) Let f , g : X → Y be homotopic maps

between T0-spaces. Then the simplicial maps K(f), K(g) : K(X) → K(Y ) lie in

the same contiguity class K(f) ∼ K(g). That is, the functor K sends homotopic

maps to maps in the same contiguity class.

Proof. By the previous lemma we can assume without loss of generality that

f(x) = g(x) for all x ∈ X r x′ and f(x′) ≺ g(x′). Therefore if C is a chain in X,

f(C) ∪ g(C) is a chain C ′ in Y . The map C ↪→ X induces a map K(C) ↪→ K(X)

and C correspond to the simplex in K(X), σ = K(C) and in the same way C ′

corresponds to a simplex K(C ′) in K(Y ). Therefore K(f(C) ∪ g(C)) = K(f(C)) ∪
K(g(C)) = f(C) ∪ g(C) is a simplex in K(Y ). So we have that K(f) ∼ K(g).



36 CHAPTER 1. PRELIMINARIES

Proposition 1.4.19. (Proposition 2.1.3 [2]) Let φ and ψ : K → L be two simpli-

cial maps that lies in the same contiguity class φ ∼ ψ, then χ(φ) ' χ(ψ). That is,

the functor χ sends maps in the same contiguity class in homotopic maps.

Proof. φ and ψ : K → L be two simplicial maps that lies in the same contiguity

class, we can suppose without loss of generality that they are contiguous, so that

for all simplices σ ∈ K we have that φ(σ) ∪ ψ(σ) is a simplex in L. We define the

function f : χ(K) → χ(L) as f(σ) = φ(σ) ∪ ψ(σ) for all σ ∈ χ(K). So we have

that the induced functions satisfies χ(φ) ≤ f ≥ χ(ψ) so χ(φ) ∼≤ χ(ψ), then by

Proposition 1.2.10 χ(φ) ' χ(ψ).

Remark 1.4.20. The functors K : fPOSET → fSC and χ : fSC → fPOSET

can be restricted to the functors K : h(fPOSET ) → h(fSC) and χ : h(fSC) →
h(fPOSET ) by Proposition 1.4.18 and Proposition 1.4.19.

Remark 1.4.21. The functors K : fPOSET → fSC and χ : fSC → fPOSET

do not provide an equivalence between the category fPOSET and fSC or h(fPOSET )

and h(fSC). In fact, given a simplicial complex K, K(χ(K)) is in general non

isomorphic to K and a partially ordered set X is in general non isomorphic to

χ(K(X)). Examples 1.4.5 and 1.4.9 show a partially ordered set X, its order com-

plex K(X) and χ(K(X)). X and χ(K(X)) are clearly non isomorphic because they

have different number of points. We can define K(χ(K)) and χ(K(X)) as follows.

Definition 1.4.22. Given a finite simplicial complex K, the barycentric subdivi-

sion of K, denoted as sd(K), is defined by sd(K) = K(χ(K)).

Definition 1.4.23. Given a finite partially ordered set X, the subdivision of X,

is defined by sd(X) = χ(K(X)).

1.5 Strong homotopy type

In this section we will define the notion of strong homotopy equivalence and strong
homotopy type. We will show that two simplicial complexes have the same strong
homotopy type if and only if they are strong homotopy equivalent. In this section
we will work in the category fSC, therefore we will consider just finite simplicial
complexes. The results refer to Barmak’s Chaper 5 in [2].
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Definition 1.5.1. A simplicial map φ : K → L is a strong equivalence if there is

a map ψ : L → K such that ψφ ∼ idK and φψ ∼ idL. In this case K and L are

strong equivalent simplicial complexes and the relation is denoted by K ∼ L.

Definition 1.5.2. A vertex v of a simplicial complex K is dominated by another

vertex v′ 6= v of K if every maximal simplex (in the sense of inclusion) that contains

v also contains v′.

Definition 1.5.3. Let K be a simplicial complex and v a vertex in K. The deletion

of v, denoted by Krv, is the full subcomplex of K spanned by the vertices different

from v.

Proposition 1.5.4. (Proposition 5.1.8 [2]) Let K be a simplicial complex and v a

vertex in K dominated by the vertex v′ in K. Then the inclusion i : Kr v ↪→ K is

a strong equivalence. The retraction r : K → K r v defined by r|Krv = idKrv and

r(v) = v′ is its contiguity inverse, that is ir ∼ idK and ri ∼ idKrv. In particular,

K ∼ K r v.

Proof. We want to show that ir ∼ idK and ri ∼ idKrv. Let σ ∈ K be a simplex

that contains v and σ′ ⊇ σ a maximal simplex, so v′ ⊆ σ′. r(σ) = σ∪{v′}r{v} ⊆ σ′

so it is a simplex in K r v. ir(σ) ∪ idK(σ) = σ ∪ {v′} ⊆ σ′ so it is a simplex in K

and so ir ∼ idK . Let now σ ∈ K r v then ri(σ) ∪ idKrv(σ) = σ that is a simplex

in K r v, so ri ∼ idKrv. Therefore K ∼ K r v.

Definition 1.5.5. The retraction r : K → K r v is called elementary strong

collapse from K to K r v and it is denoted by K ↘↘ K r v

Definition 1.5.6. A strong collapse is a finite sequence of elementary strong

collapses. The inverse of a strong collapse is called strong expansion.

Definition 1.5.7. Two simplicial complexes K and L have the same Strong ho-

motopy type if there is a sequence of strong collapses and strong expansions that

transform K into L.
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Example 1.5.8. The picture shows a simplicial complex K with a vertex v dom-

inated by the vertex v′. The second simplicial complex L = K r {v} represents an

elementary strong collapse of K. K and L have the same strong homotopy type.

Figure 1.5.1: A strong collapse: K ↘↘ K r v.

Definition 1.5.9. A finite simplicial complex is a minimal complex if it has no

dominated points.

Proposition 1.5.10. (Proposition 5.1.6 [2]) Let K be a minimal complex and

φ : K → K such that φ ∼ idK. Then φ = idK

Proof. We can assume without loss of generality that σ ∼c idK . Let v in K and σ

the maximal simplex that contains v. By contiguity φ(σ)∪σ is a simplex in K and

since v ∈ φ(σ) ∪ σ by the maximality of σ we have that φ(σ) ∪ σ = σ. Moreover

φ(v) ∈ φ(σ)∪ σ = σ, so every maximal simplex that contains v contains also φ(v)

that means that v is dominated by φ(v). But K is a minimal complex so φ(v) = v

for all v ∈ V .

Corollary 1.5.11. A strong equivalence between minimal complexes is an isomor-

phism.
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Proof. Let K and L be simplicial complexes, φ : K → L and ψ : L→ K such that

ψφ ∼ idK and φψ ∼ idL. Then ψφ = idK and φψ = idL.

Definition 1.5.12. The core of a simplicial complex K is a minimal subcomplex

K0 such that K ↘↘ K0

Theorem 1.5.13. (Proposition 5.1.10 [2]) Every simplicial complex has a core

that is unique up to isomorphisms. Two simplicial complexes have the same strong

homotopy type if and only if their cores are isomorphic.

Proof. Suppose that K has two cores K0 and K ′0 then they have the same strong

homotopy type ofK since they are obtained fromK by removing dominated points.

By Proposition 1.5.4K0 ∼ K ′0 and since they are minimal complex Corollary 1.5.11

they are isomorphic. If K and L have the same strong homotopy type then their

cores K0 and L0 do. Then K0 and L0 are isomorphic. On the other hand if K0 and

L0 are isomorphic, by Remark 5.1.2 in [2] they have the same strong homotopy

type, therefore there is a sequence of strong collapses and expansion between them.

Therefore there is a sequence of strong expansion and collapses between K and L,

that is K and L have the same strong homotopy type.

Corollary 1.5.14. Let K and L be two simplicial complexes. K and L have the

same strong homotopy type if and only if they are strong homotopy equivalent,

K ∼ L.

Proof. By Theorem 1.5.13, K and L have the same strong homotopy type if and

only if their cores K0 and L0 are strong homotopy equivalent K0 ∼ L0 if and only

if K ∼ L.

Definition 1.5.15. A complex is said to be strong collapsible if it strong collapses

to a point or equivalently if it has the strong homotopy type of a point.
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Example 1.5.16. The simplicial complex K, showed in the picture, is an example

of a non strong collapsible simplicial complex whose realisation |K| is contractible.

K in fact is a minimal space because it has no dominated points.

Figure 1.5.2: A non strong collapsible simplicial complex whose realisation |K| is con-

tractible, [2] page 76.

1.6 Homotopy type of finite T0-spaces and strong

homotopy type of finite simplicial complexes

In this section we want to describe the behaviour of the functors K and χ defined
in Section 1.4. In particular, we want to see which properties of finite T0-spaces
correspond to specific properties of finite simplicial complexes and vice-versa if
we apply the two functors. At the end of the section there will be a table that
summarises the results. Theorem 1.6.1 and Theorem 1.6.2 refer to Theorem 5.2.1
in Barmak’s book [2] but they are presented in the language of category theory,
Theorem 1.6.5 refers to Theorem 5.2.2 in [2] but the proof is due to the author.
Theorem 1.6.7 refers toTheorem 5.2.5 in [2] but the proof differs and it uses
the definition of dominated point given in Section 1.5. Theorem 1.6.9 and Remark
1.6.10 are due to the author. Theorem 1.6.16 and Theorem 1.6.17 correspond to
Theorem 5.2.6 and Corollary 5.2.7 in [2].

Theorem 1.6.1. If two finite T0-spaces are homotopic equivalent, then their order

complexes have the same strong homtopy type.

Proof. Let X and Y be two homotopic equivalent finite T0-spaces, and f : X → Y

and g : Y → X continuous functions such that fg ' idY and gf ' idX . The Order
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complex functor K induces the maps K(f) : K(X) → K(Y ) and K(g) : K(Y ) →
K(X) where K(X) and K(Y ) are the order complexes associated to X and Y .

By Proposition 1.4.18 we have that K(fg) ∼ idK(Y ) and K(gf) ∼ idK(X), that is

K(f)K(g) ∼ idK(Y ) and K(g)K(f) ∼ idK(X) so K(X) ∼ K(Y ) .

Theorem 1.6.2. If two finite simplicial complexes have the same strong homotopy

type then the associated face posets are homotopy equivalent finite T0-spaces.

Proof. Let K and L be finite simplicial complexes such that they have the same

strong homotopy type so there are the simplicial maps φ : K → L to ψ : L → K

and ψφ ∼ idK and φψ ∼ idL. We obtain the maps induced by the poset functor

χ(φ) : χ(K)→ χ(L), χ(ψ) : χ(L)→ χ(K) and by Proposition 1.4.19 we have that

χ(ψ)χ(φ) ' idχ(K) and χ(φ)χ(ψ) ' idχ(L) therefore χ(K) ' χ(L).

The implication in the previous theorem holds also in the other direction, as it is
proved in Corollary 9.2.2 in [2].

Theorem 1.6.3. (Corollary 9.2.2 [2]) Let K and L be finite simplicial complexes

and χ(K) ' χ(L), then K ∼ L.

Remark 1.6.4. The same theorem does not hold for the functor K. If K(X) ∼
K(Y ) then in general X and Y are not homotopic equivalent. An example is the

posets X and Xop showed in the following picture:

X

•x1 •x2

• • •

Xop

•x1 •x2 •X3

• •
X and Xop are not homotopic equivalent (we will show that they have different

category that is an homotopy invariant) but the associated order complexes are

isomorphic, K(X) = K(Y ).
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Theorem 1.6.5. Let X be a finite T0-space and let Y ⊆ X. If X ↘↘ Y then

K(X)↘↘ K(Y ).

Let K be a finite simplicial complex and L ⊆ K. If K ↘↘ L then χ(K)↘↘ χ(L).

Proof. We can suppose without loss of generality that Y = X r x′ where x′ is

a beat point. Let y be the unique point in X such that x′ ≺ y or y ≺ x′. Let

X ↘↘ Y so by Proposition 1.3.7 there is a retraction r : X → Y such that

ir ' idX rel Y and ri = idY . There are functions K(r) : K(X) → K(Y ) and

K(i) : K(Y )→ K(X) induced by the functor K, such that K(i)K(r) ∼ idK(X) and

K(r)K(i) ∼ idK(Y ). Now K(r) : K(X)→ K(Y ) is defined by K(r)(x) = r(x) for all

x ∈ X, that is K(r)(x) = x for all x 6= x′ and K(r)(x′) = y. Since x′ ≺ y or y ≺ x′,

all maximal chains in X that contain x′ contains y that means that all maximal

simplices in the order complex K(X) that contain x′ contain also y. So x′ ∈ K(X)

is dominated by y ∈ K(X) and K(r) is an elementary strong collapse. Therefore

K(X)↘↘ K(Y ).

Let suppose now that K is a finite simplicial complex, L ⊆ K and K ↘↘ L. We

can suppose without loss of generality that L is obtained from K by an elementary

strong collapse, so by eliminating the point v dominated by v′. Therefore there is a

retraction defined in Proposition 1.5.4 r : K → L such that ir ∼ idK and ri = idL.

We have induced maps χ(r) : χ(K)→ χ(L) and χ(ir) ' idχ(K) and χ(ri) = idχ(L).

Now χ(r)(σ) = r(σ) for all σ ∈ χ(K), therefore χ(i)χ(r) ' idχ(K) rel χ(Krv) and

χ(r)χ(i) = idχ(L). So χ(r) is a strong deformation retract, therefore by Proposition

1.3.10 χ(K)↘↘ χ(L).

Remark 1.6.6. The previous proof shows that the functor K sends beat points

to dominated points. On the other hand, the functor χ does not send, in general,

dominated points to beat points. Consider, for example the simplicial complex in

the following figure and its face poset. The vertex 1 is dominated, for example by

the vertex 2 but in the face poset 1 is clearly not a beat point.
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•123

•12 •13 •23

•1 •2 •3

Figure 1.6.1: The functor χ does not send dominated vertices to beat points.

Theorem 1.6.7. Let X be a finite T0-space. Then X is a minimal finite space if

and only if K(X) is a minimal simplicial complex.

Proof. Suppose that X is not a minimal space, so it has a beat point x, and

X ↘↘ X r x. Therefore by Theorem 1.6.5 we have that K(X) ↘↘ K(X r x).

Therefore K(X) is not a minimal complex.

Suppose now that K(X) is not minimal so there is a dominated vertex v ∈ K(X). If

v is dominated by v′ ∈ K all maximal subcomplexes that contain v also contain v′.

But maximal subcomplexes are induced by the functor K from maximal chains in

X, therefore all maximal chains that contain v also contain v′. Suppose that v < v′,

we have that all element that are comparable with v are also comparable with v′.

We define V = {x ∈ X : x > v and all elements comparable with x are comparable with v}
and we call x′ the minimum of V . Then v is the maximum of Ux′ r x′ therefore

x′ ∈ X is a beat point. So X is not a minimal space.

Remark 1.6.8. The functor K sends minimal finite spaces in minimal simplicial

complexes.
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Theorem 1.6.9. Let K be a finite simplicial complex. K is a minimal simplicial

complex if χ(K) is a minimal space.

Proof. Suppose that K is not a minimal simplicial complex then there is a domi-

nated vertex v of K and K ↘↘ K r v. Therefore by Theorem 1.6.5 we have that

χ(K)↘↘ χ(K r v).

Remark 1.6.10. The other implication does not hold. If K is a minimal simplicial

complex in general χ(K) is not a minimal space. An example of that is provided

by the simplicial complex in Example 1.5.16. K is a minimal complex but its face

poset has bit points that are the points that correspond to the 1-simplices in the

external triangle. Each 1-simplex is contained in just one 2-simplex therefore it is

a point in the face poset that is covered by just one other point, so it is a beat point.

We recall the definitions of link and star of a vertex of a simplicial complex and the
operation of join of two simplicial complexes that will be needed in the following
theorems.

Definition 1.6.11. Let K be a simplicial complex and v a vertex of K, the star

of v is the subcomplex

st(v) = {σ ∈ K : σ ∪ {v} ∈ K}

Definition 1.6.12. Let K be a simplicial complex and v a vertex of K, the link

of v is the subcomplex of st(v) of simplices that do not contain v

lk(v) = {σ ∈ K : σ ∪ {v} ∈ K, v /∈ σ}

Definition 1.6.13. Let K and L be two simplicial complexes, the simplicial join,

K ∗ L is the simplicial complex given by

K ∗ L = K ∪ L ∪ {σ ∪ τ : σ ∈ K, τ ∈ L}

The simplicial cone, vK with base K and v a vertex not in K is the simplicial join

K ∗ v.
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Remark 1.6.14. In the literature, for example in [2] an equivalent definition of

elementary strong collapse is given. We say that there is an elementary strong

collapse from K to K r v if lk(v) is a simplicial cone v′L, in this case we say that

v is dominated by v′.

Lemma 1.6.15. Let K be a finite simplicial complex and v a vertex of K. v is

dominated by v′, v 6= v′ if and only if lk(v) is a simplicial cone v′L.

Proof. Suppose that v is dominated by v′, then all maximal simplices that contain v

also contain v′. The maximal simplices that contain v are the simplices in st(v) =

vlk(v), therefore all maximal simplices in lk(v) contain v′, therefore lk(v) is a

simplicial cone v′L for some simplicial complex L. On the other hand, if lk(v) is

a simplicial cone v′L all maximal simplices contain v′. If we consider then st(v) =

vlk(v) we have that all maximal simplices that contain v also contain v′.

Theorem 1.6.16. (Theorem 5.2.6 [2]) Let K be a finite simplicial complex. Then

K is strong collapsible if and only if sd(K) is strong collapsible.

Proof. If K ↘↘ ∗ then χ(K)↘↘ ∗ then sd(K) = K(χ(K))↘↘ ∗ by Theorem

1.6.5.

Suppose now that sb(K) ↘↘ ∗ and suppose that L is the core of K therefore

K ↘↘ L implies by Theorem 1.6.5 that sd(K)↘↘ sd(L). Now sd(K) is strong

collapsible therefore sd(L) ↘↘ ∗ and sd(L) = L0 ↘↘ ... ↘↘ Ln = ∗ is a

sequences of elementary strong collapses from sd(L) to a point. We want to show

by induction that Li ⊆ sd(L) contains as vertices all the barycenters of all 0-

simplices and of all maximal simplices of L.

This is clearly true for L0 = sd(L), now we suppose that Li ⊆ sd(L) contains as

vertices all the barycenters of all 0-simplices and of all maximal simplices of L and

we want to show that this is true also for Li+1.

Let σ = [v0, ..., vk] be a maximal simplex of L. Suppose that b(σ) is a vertex of

Li, we want to show that it is a vertex of Li+1. First we claim that lkLi
(b(σ))

is not a cone. If σ is a 0-simplex the link is empty, so we can suppose that σ

is not a 0-simplex. Now, b(vj)b(σ) is a simplex in sd(L), b(vj) is in Li by the

inductive hypothesis and Li is a full subcomplex of sd(L) therefore vj ∈ lkLi
(b(σ))
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for all 0 ≤ j ≤ k. If lkLi
(b(σ)) is a cone then there is a simplex σ′ in L such

that b(σ′) ∈ lkLi
(b(σ)) and b(σ′)b(vj) ∈ lkLi

(b(σ)) for all 0 ≤ j ≤ k. Since σ is a

maximal simplex then σ′ ⊆ σ and vj ∈ σ′ for all 0 ≤ j ≤ k, therefore σ ⊆ σ′ but

this is a contradiction. Therefore b(σ) is not a dominated vertex therefore b(σ) is

a vertex of Li+1.

Let v be a vertex of L. Suppose that v is a vertex in Li. If v is maximal then

lkLi
(b(v)) is the empty set. Suppose that v is not a maximal simplex and σ0,...,

σk the maximal simplices of L that contain v, b(σj) for all 0 ≤ j ≤ k are vertices

of Li by inductive hypothesis and since Li is a full subcomplex of sd(L) we have

that b(σj) ∈ lkLi
(b(v)). Suppose that lkLi

(b(v)) is a cone. Then there is a simplex

σ in L such that b(σ) ∈ lkLi
(b(v)) and b(σ)b(σj) ∈ lkLi

(b(v)) for all 0 ≤ j ≤ k.

In particular v ⊆ σ and σ ⊆ σj for all 0 ≤ j ≤ k. Let v′ ∈ σ v′ 6= v, then v′ is

contained in every maximal simplex that contain v. Therefore there is a dominated

vertex and this contradicts the minimality of L. Therefore b(v) is not dominated

in Li and so b(v) is a vertex in Li+1.

By induction all Li contains as vertices all the barycenters of all 0-simplices and

all maximal simplices of L. We supposed that Ln = ∗ and Ln contains as vertices

all the barycenters of all vertices of L therefore L = ∗. Since L is the core of K we

can conclude that K is strong collapsible.

Theorem 1.6.17. X is a contractible finite T0-space if and only if X ′ = χ(K(X))

is contractible.

Proof. If X is a contractible finite T0-spaces then X ↘↘ ∗ so by Theorem 1.6.5

K(X)↘↘ ∗ and χ(K(X))↘↘ ∗.
Suppose that χ(K(X))↘↘ ∗. Let Y be the core of X then X ↘↘ Y implies by

Theorem 1.6.5 X ′ ↘↘ Y ′ and Y ′ ↘↘ ∗. Now K(Y ′) = K(χ(K(Y ))) = sd(K(Y ))

that is strong collapsible, therefore by Theorem 1.6.16 K(Y ) is strong collapsible.

Therefore by Theorem 1.6.7 since Y is a minimal spaceK(Y ) is a minimal simplicial

complex therefore K(Y ) = ∗ that implies Y = ∗ so X is contractible.

Corollary 1.6.18. Let X be a finite T0-space. X is contractible if and only if

K(X) is strong collapsible. Let K be a finite simplicial complex. Then K is strong

collapsible if and only if χ(K) is contractible.
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We can summarize the results in this chapter as follows:

The functor K:

• X ' Y ⇒ K(X) ∼ K(Y )

• X ↘↘ Y ⇒ K(X)↘↘ K(Y )

• x ∈ X is a beat point ⇒ K({x}) is a dominated vertex in K(X)

• X is a minimal finite space ⇔ K(X) is a minimal finite simplicial complex

• X is contractible ⇔ K(X) is strong collapsible

The functor χ

• K ∼ L⇔ χ(K) ' χ(L)

• K ↘↘ L⇒ χ(K)↘↘ χ(L)

• In general χ doesn’t send dominated vertices to beat points

• K is a minimal finite simplicial complex ⇐ χ(K) is a minimal finite space

• K is strong collapsible ⇔ χ(K) is contractible

• K is strong collapsible if and only if sd(K) is strong collapsible

• X is contractible if and only if sd(X) is contractible
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Chapter 2

The simplicial

Lusternik-Schnirelmann category

In this chapter we will introduce the simplicial L-S category. First we define the
L-S category in the classical way for topological spaces, then we will restrict to the
case of finite T0-topological spaces showing some results from [14]. Following [14]
in Section 3 and 4 we define the simplicial L-S category and geometric category
using the concept of contiguity. Finally we study how the L-S category for finite
T0-spaces and the simplicial category are related if we apply the functors K and
χ.

2.1 L-S category for topological spaces

The L-S category of a topological space X represents the minimal number of open
subsets contractible in the space that can cover X. The definitions and results
refer to [4], the proofs of Proposition 2.1.3, Proposition 2.1.8 and Example 2.1.5
are due to the author. Example 2.1.9 can be found in [14].

Definition 2.1.1. Let X be a topological space. A subset U ⊆ X is called cate-

gorical if U can be contracted to a point x in X. Equivalently, U ⊆ X is categorical

if the inclusion map iU : U ↪→ X is homotopic to some constant map cx, x ∈ X.

Definition 2.1.2. Let X be a topological space. The Lusternik-Schnirelmann

category, cat(X) is the least integer n ≥ 0 such that there is a cover of X of n+ 1

categorical open subsets. We write cat(X) =∞ if this cover does not exist.

49
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Proposition 2.1.3. Let X be a topological space. The L-S category cat(X) is an

homotopy invariant, that is if X ' Y for some topological space Y then

cat(X) = cat(Y ).

Proof. Since X ' Y we have two continuous maps f : X → Y and g : Y → X

such that gf ' idX and fg ' idY . Suppose that {Ui}i≥0 is a cover of Y of open

categorical subsets, then iUi
' cyi , yi ∈ Y . Then consider the open set f−1(U) ⊆ X

where U is an element of the cover, U = Ui for some i ≥ 0. We want to show that

f−1(U) is categorical, that is if−1(U) ' cx, x ∈ X. We define f ′ : f−1(U) → U

to be the restriction f|f−1(U), since gf ' idX we have that gfif−1(U) ' idXif−1(U).

Moreover fif−1(U) = iUf
′ so giUf

′ ' if−1(U) and giUf
′ ' gcyf

′, the last map is

constant so we have that f−1(U) is a categorical subset of X and {f−1(Ui)}i≥0

is a categorical cover of X, therefore cat(X) ≤ cat(Y ). In an analogous way we

can prove that if {Uj}j≥0 of X is a categorical cover of X then {g−1(Uj)}j≥0

is a categorical cover of Y , therefore cat(Y ) ≤ cat(X). We can conclude that

cat(X) = cat(Y ).

We can consider the minimal cover of open subsets of X that are contractible in
a point x in the subset. So we can define in a similar way the notion of geometric
category.

Definition 2.1.4. Let X be a topological space. A subset U ⊆ X is called con-

tractible in itself if U can be contracted to a point x in U . Equivalently, U ⊆ X is

contractible in itself if the identity map on U idU : U → X is homotopic to some

constant map cx, x ∈ U .
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Example 2.1.5. The subset U ⊆ S2, U ' S1 is an example of a subset of S2 that

is contractible in S2 but it is not contractible in itself. In fact idU is clearly non

homotopic to any constant map cx such that x ∈ U but iU ' cN as is shown in the

picture.

Figure 2.1.1: A subset of S2 that is contractible in the sphere but not in itself.

Definition 2.1.6. Let X be a topological space. The geometric category, gcat(X),

is the least integer n ≥ 0 such that there is a cover of X of n+ 1 open subsets that

are contractible in themselves.

Remark 2.1.7. The geometric category is not an homotopic invariant. A classical

example, due to Fox, is showed in Proposition 3.11 in [4]: let J be the wedge of

a sphere and two circles and J ′ is obtained from the sphere by identifying three

distinct points, then J ' J ′ but gcat(J) < gcat(J ′). An other example is Exam-

ple 2.2.7 that shows a topological space X and its homotopic core X0 such that

gcat(X) = 1 while gcat(X0) = 2.

Proposition 2.1.8. Let X be a topological space. Then cat(X) ≤ gcat(X).

Proof. Let U ⊆ X be an open subset that is contractible in itself and so idU ' cx,

x ∈ U . Consider the inclusion i : U ↪→ X, we have that iU = iU idU ' iUcx = cx,

so U is a categorical subset. Therefore if {Ui}i≥0 is a cover of X of open subset

contractible in themselves, {Ui}i≥0 is a cover of X of categorical subsets.
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Example 2.1.9. The following topological space X provides an example of a space

for which Proposition 2.1.8 holds with a strict inequality.

•x1 •x2 •x3 •x4

• • • • •

• • • •

Figure 2.1.2: An example of a finite poset X such that cat(X) < gcat(X), [14] page 15.

In fact, {Ux1 ∪Ux4 , Ux2 ∪Ux3} provides a cover of categorical subsets and X is

non contractible so cat(X) = 1. However {Ux1 ∪ Ux4 , Ux2 ∪ Ux3} is not a cover of

subsets contractible in themselves because Ux1 ∪ Ux4 doesn’t contract in itself and

there is no cover given by two subsets contractible in themselves because Ux2 ∪Ux3
is the only union of basic open subsets that contract in one of its points. We can

conclude that {Ux1 , Ux4 , Ux2 ∪ Ux3} is a cover of X and so gcat(X) = 2.

Remark 2.1.10. A categorical subset may not be connected. For example

{Ux1 ∪Ux4}, in the previous example is categorical. The two connected components

can be contracted in themselves to two different points, in this case x1 and x4 and

there is a path in X but not in {Ux1 ∪ Ux4} that connect two points, therefore we

can contract one point on the other.

2.2 L-S category and geometric category for fi-

nite T0-spaces

We will now consider the concept of L-S category, defined in the previous section,
in the special case of finite T0-spaces. Therefore we will study the L-S category
and geometric category for finite partially ordered set. The following results refer
to Chaper 5 in [14].
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The following result gives an upper bound for the categories of finite partially
ordered sets.

Proposition 2.2.1. Let X be a finite partially ordered set. Let M(X) be the

number of maximal elements of X. Then cat(X) ≤ gcat(X) < M(X).

Proof. Let x ∈ X be a maximal element. Then we have that Ux is contractible by

Corollary 1.2.12, so idUx ' cx. Therefore {Ux}, where x is a maximal element of

X, is a cover of X of subsets contractible in itself.

Remark 2.2.2. (Proposition 5.1 [14]) If X has a unique maximal or minimal ele-

ment then X is contractible. In fact the identity map is homotopic to the constant

map cmax in the first case and cmin in the second.

Example 2.2.3. (Example 5.2 [14]) Consider the following finite poset X:

•x1 •x2

• • •

The number of maximal elements is M(X) = 2 and X is clearly not contractible

therefore we have that 0 < cat(X) < M(X) = 2. Then cat(X) = 1. Consider now

the opposite poset Xop, that is the set X with order given by the reverse order of

the poset X.

•x1 •x2 •X3

• •
Xop has three maximal points M(Xop) = 3 > cat(Xop), moreover the union of two

open basic sets Uxi ∪ Uxj , i 6= j and i, j = 1, ..., 3 is not contractible, therefore the

smallest categorical cover is given by Ux1 , Ux2 , Ux3 and therefore cat(Xop) = 2.

Remark 2.2.4. The category of a poset and its opposite may be not the same, as

the previous example shows.

Now we want to consider the geometric category of a finite T0-space and its be-
haviour under elimination of a beat point (Definition 1.3.4). In particular the
following theorem shows that the geometric category increase when a beat point
is eliminated.
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Theorem 2.2.5. (Proposition 5.6 [14]) Let X be a finite T0-space and x a beat

point of X. Then gcat(X) ≤ gcat(X r x).

Proof. We want to show that a cover of X r x of open subsets contractible in

themselves is a cover of X. Let U0,...,Un be such a cover of X r x. Let x be the

beat point and x′ the point associated to x defined in Definition 1.3.4. We want to

define a cover U ′0,...,U ′n of X by taking for each Ui 0 ≤ i ≤ n the following subsets:

• If x is a maximal element of X, then x′ ≤ x and there is some Ui that

contains x′ then U ′i = Ui ∪ {x} and for the other Uj, j 6= i we take U ′j = Uj.

• If x is not a maximal element of X then if there is y ∈ Ui for some 0 ≤ i ≤ n

such that x < y, then we take U ′i = Ui∪{x}. For the other Uj, j 6= i we take

U ′j = Uj.

Now we want to check that every U ′i 0 ≤ i ≤ n is open. We will show that every

U ′i is the union of some basic open subset Uz for some z ∈ X (the basic open

subsets of X are the open subsets that form a base for the topology on X defined

in Section 1.1 ). Consider Ui of the cover of X r x, since it is open it is the union

of some basic open sets {Uzi,j}0≤j≤m for some zi,j ∈ X r x. In the first case if Ui

contains x′ then there is a basic open set Uzi,k , k ≤ m that contains x′, therefore

since U ′i = Ui ∪ {x} and x is a maximum U ′i is the union of {Uzi,j}j∈N where Uzi,k

is substituted with Ux, that is a basic subset of X. Therefore U ′i is open. For the

other Uj, j 6= i we take U ′j = Uj since Uj are union of basic open subset that do

not contain x then are U ′j. In the second case we have that x is not a maximal

element and so there is y ∈ Ui for some 0 ≤ i ≤ n such that x < y. Again Ui is

the union of some basic open set {Uzi,j}0≤j≤m for some zi,j ∈ X r x and there is a

basic open set Uzi,k , k ≤ m that contains y. Now Uzi,k ⊆ X contains x since x < y

then U ′i is the union of basic open sets {Uzj}0≤j≤m in X. For the other sets Uj

the argument is the same as in the previous case. Now we want to check that U ′i

0 ≤ i ≤ n is contractible in itself. We supposed that Ui are contractible in itself,

therefore that idUi
' c for some constant map c : Ui → Ui, if and only if there

is a fence of function from idUi
to c, idUi

= φ0 ≤ φ1 ≥ ... ≤ φn = c. In the first

case we can define φ′k : U ′i → U ′i by φ′k(z) = φk(z) if z 6= x and φ′k(x) = φk(x
′).
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The maps φ′k are order preserving because x is a beat point and therefore they are

continuous. Moreover, φk ≤ φk+1 implies φ′k ≤ φ′k+1 (the same for ≥). Therefore

we have that there is a fence between φ′0 and φ′n, φ′n is a constant map because

φn is constant and φ′0 is homotopic to the identity idUi
because it is comparable

with it by definition of φ′0. We have that U ′0,...,U ′n is a cover of X of open subsets

contractible in themselves therefore gcat(X) ≤ n.

By eliminating all the beat points of a finite T0-space X we obtain the core X0

of X, that is unique up to homeomorphism. Moreover, we showed that a space Y
such that X ↘↘ Y is homotopic equivalent to X. Therefore we have the following
result.

Corollary 2.2.6. (Corollario 5.8 [14]) Let X a finite T0-space and X0 the core

of X. The geometric category gcat(X0) equals the maximum of the geometric cat-

egories in its homotopy class.

gcat(X0) = max{gcat(Y ) : Y ' X}

Example 2.2.7. The following picture shows an example of a finite topological

space for which the inequality of Theorem 2.2.5 is strict. The example, provided by

J. Barmak and G. Minian, is presented in [14].

Consider the following finite topological space X.

•a •b

•c •d •e •j •k

•f •g •h •i •l •m

Figure 2.2.1: An example of a finite poset X such that gcat(X0) > gcat(X), [14] page

14.

The space X is not collapsible therefore cat(X) ≥ 1. Moreover we can find a

cover U of subsets collapsible in themselves given by U = {Ua ∪ Ub, Ue ∪ Uj ∪ Uk}.
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Ua ∪ Ub, showed in the picture, is collapsible in itself, in fact

•a •b

•c •d •e

•f •g •h •i •l •m

removing the beat points i, l and m we obtain

•a •b

•c •d •e

•f •g •h

If we remove the beat point e and then the beat points h and g we obtain a finite

space with a minimum f that is collapsible to f by Remark 2.2.2

•a •b

•c •d

•f

The other open set of the cover is Ue ∪ Uj ∪ Uk

•e •j •k

•g •h •i •l •m

Removing the beat points g, l, m we obtain a space that collapse to e
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•e •j •k

•h •i

We can conclude that 1 ≤ cat(X) ≤ gcat(X) = 1, then cat(X) = gcat(X) = 1.

On the other hand, we can consider the core X0 of X showed in the following

picture

•b •j •k

•h •i •l •m

Figure 2.2.2: The core X0 of the finite poset X such that gcat(X0) > gcat(X), [14] page

15.

A cover of X0 is given by U = {Ub, Uj, Uk} therefore gcat(X0) ≤ 2. On the

other hand it is not possible to cover X0 with less then three subsets collapsible in

themselves because an open subset is a union of basic open subsets but unions of

two of Ub, Uj or Uk give a non collapsible subset. Therefore there are not covers

composed by two collapsible subset, and gcat(X0) = 2. We can conclude that 2 =

gcat(X0) > gcat(X) = 1. (Note that 2 = gcat(X0) > cat(X0) = 1 and Ub, Ul ∪ Uk
is a cover of categorical subsets for X0).

2.3 The simplicial L-S category

We will define now the L-S category for finite simplicial complexes, namely the
simplicial L-S category. With this aim we will define a categorical cover for simpli-
cial complexes using the concept of contiguity, defined in section 0.3. We will work
in the category fSC, therefore we will consider just finite simplicial complexes.
The results in this section can be found in Chapter 3 in [14] with the exception of
Remark 2.3.2, the proof of Corollary 2.3.4 and the proof of Lemma 2.3.5 that is
due to the author.
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Definition 2.3.1. Let K be a simplicial complex. A subcomplex U ⊆ K is said

to be categorical if there exists a vertex v in K such that the inclusion i : U ↪→ K

and the constant map cv : U → K are in the same contiguity class, i ∼ cv.

Remark 2.3.2. A categorical subcomplex may not be connected. Consider the

following simplicial complex and the subcomplex U given by the simplices [0, 1] and

[2, 3]. The inclusion iU is contiguous to the map h1 defined by h1(0) = 0, h1(1) = 0,

Figure 2.3.1: A categorical subcomplex, [0, 1] ∪ [2, 3], that is not connected.

h1(2) = 2 and h1(3) = 2. h1 is contiguous to h2 defined by h2(0) = 0, h2(1) = 2,

h2(2) = 2 and h2(3) = 0 and finally h2 is contiguous to the constant map c0.

Therefore we have a fence of maps iU = h0 ∼c h1 ∼c h2 ∼c h3 = c0, so iU ∼ c0

and U is a categorical subcomplex.

Definition 2.3.3. Let K be a simplicial complex. The simplicial L-S category,

scat(K) is the least integer m ≥ 0 such that K can be covered by m+1 categorical

subcomplexes.

Corollary 2.3.4. Let K be a simplicial complex. scat(K) = 0 if and only if it has

the same strong homotopy type of a point.

Proof. If scat(K) = 0 then K is covered by one open categorical subcomplex, so K

is categorical and iK = idK ∼ cv for some vertex v in K. Therefore, idK ∼ cv = ivcv

and cviv = idv, where iv : v ↪→ K is the inclusion map. So K ∼ v, that is K has

the same strong homotopy type of a point. On the other hand if K has the same

strong homotopy type of a point ivcv ∼ idK and cviv ∼ idv, so ivcv = cv ∼ idK

that is iK ∼ cv that implies that K is categorical.
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We showed in the previous section that the L-S category is an homotopy invari-
ant. We will show that also in the case of simplicial complexes the simplicial L-S
category is a strong homotopy invariant. We first prove a lemma that will be used
in order to prove this result.

Lemma 2.3.5. (Lemma 3.5 [14]) Let K, L, N be three simplicial complexes and

f , g : K → L be two contiguous maps, f ∼c g. Let i : N → K (resp. r : L → N)

be another simplicial map. Then fi ∼c gi (resp. rf ∼c rg).

Proof. If f ∼c g then for all σ in K f(σ) ∪ g(σ) is a simplex in L. Let σ be

a simplex in N then i(σ) = σ is a simplex in K because i is a simplicial map.

Therefore fi(σ) ∪ gi(σ) = f(σ) ∪ g(σ) is a simplex in L. We can conclude that

fi ∼c gi. The proof in the case of r : L→ N is analogous.

Proposition 2.3.6. (Proposition 3.7 [14]) Let K, L be two simplicial complexes

and f : K → L, g : L→ K simplicial maps such that gf ∼ idK. Then scat(K) ≤
scat(L).

Proof. Let U ⊆ L be a categorical subcomplex, so iU ∼ cv for some vertex v of L.

Therefore we have a sequence of contiguous functions φi : U → L

iU = φ0 ∼c φ1 ∼c ... ∼c φn = cv

Consider the subcomplex f−1(U) ⊆ K, we want to show that it is a categorical

subcomplex. Since gf ∼ idK there is a sequence of maps ψi : K → K

idK = ψ0 ∼c ψ1 ∼c ... ∼c ψn = gf

We define f ′ = f |f−1(U) : f−1(U) → U and j : f−1(U) ↪→ K the inclusion map.

Then

j = idKj = ψ0j ∼c ψ1j ∼c ... ∼c ψnj = gfj

by lemma 2.3.5. Since fj = iUf
′ we obtain

gfj = giUf
′ = gφ0f

′ ∼c gφ1f
′ ∼c ... ∼c gφnf ′ = gcvf

′

But gcvf
′ : f−1(U) → g(U) is the constant map cg(v) so we obtain that j ∼ cg(v),

that implies that f−1(U) ⊆ K is categorical. Finally, if k = scat(L) and {U0, ..., Uk}
is a categorical cover of L then {f−1(U0), ..., f−1(Uk)} is a categorical cover of K,

therefore we can conclude that scat(K) ≤ k.



60CHAPTER 2. THE SIMPLICIAL LUSTERNIK-SCHNIRELMANN CATEGORY

Theorem 2.3.7. (Theorem 3.4 [14]) Let K ∼ L be two strong equivalent simplicial

complexes. Then scat(K) = scat(L).

Proof. Suppose that K ∼ L, so there are two simplicial maps f : K → L,

g : L → K such that gf ∼ idK and fg ∼ idL. By Proposition 2.3.6, gf ∼ idK

implies that scat(K) ≤ scat(L) and fg ∼ idL implies that scat(K) ≥ scat(L),

therefore scat(K) = scat(L).

We proved in section 1.5 that every simplicial complex K has a core K0 that
is obtained by removing dominated points from K. Moreover, we showed that
K ∼ K0 therefore we have the following result.

Corollary 2.3.8. Let K0 be the core of the simplicial complex K.

Then scat(K) = scat(K0).

Proof. It follows directly from Theorem 2.3.7.

2.4 The simplicial geometric category

We want to define the concept of geometric category for finite simplicial complexes
using the notion of strong collapsibility that we introduced in Definition 1.5.15.
The following results are a reformulation of Chapter 4 in [14]. Proposition 2.4.5
and Remark 2.4.6 are due to the author.
We recall the fact that a simplicial complex is strong collapsible if it is strong
equivalent to a point.

Remark 2.4.1. A simplicial complex K is strong collapsible if and only if the

identity map is in the contiguity class of some constant map cv : K → K, v ∈ K,

idK ∼ cv. This is a direct consequence of Proposition 1.5.4.

Definition 2.4.2. The simplicial geometric category, gscat(K) of a simplicial com-

plex K is the least integer m ≥ 0 such that K can be covered by m + 1 strongly

collapsible subcomplexes. That is, there exists a cover {U0, ..., Um} of K such that

Ui ∼ v, v ∈ Ui for all 0 ≤ i ≤ m.

Remark 2.4.3. A strongly collapsible subcomplex must be connected.
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Proposition 2.4.4. (Proposition 4.2 [14]) Let K be a simplicial complex. Then

scat(K) ≤ gscat(K).

Proof. We need to show that a strongly collapsible subcomplex is categorical. Let

U ⊆ K be a strongly collapsible subcomplex, then idU ∼ cv for some v ∈ U . Then

by lemma 2.3.5 we have that iU = iU idU ∼ iUcv = cv, where iU : U ↪→ K is

the inclusion map. So U is a categorical subset, therefore a cover of K of strongly

collapsible subcomplexes is a categorical cover. Therefore scat(K) ≤ gscat(K).

Proposition 2.4.5. Let K be a simplicial complex and M(K) the number of

its maximal simplices, that are the maximal simplices in the order given by the

inclusion relation. Then we have that scat(K) ≤ gscat(K) < M(K).

Proof. Let σ be a maximal simplex, it is a strong collapsible subcomplex of K

because all its points are dominated in σ. Consider the set {σi}0≤i≤n, where σi

is a maximal simplex for all 0 ≤ i ≤ n. It is a cover of K because all simplices

are maximal and it is a cover of strongly collapsible subcomplexes because the

simplices are strongly collapsible. Combining with Proposition 2.4.4 we obtain the

result.

Remark 2.4.6. The star of a vertex in K, st(v) is a strongly collapsible subcomplex

of K because all vertices in st(v) are dominated by v. Therefore {st(v)}v∈K0 pro-

vides a cover of categorical subsets and so we have that scat(K) ≤ gscat(K) < ]v,

where ]v is the number of vertices of K.

The simplicial L-S category and the simplicial geometric category are invariant
under simplicial isomorphisms. Moreover, we proved that the simplicial L-S cate-
gory is strong homotopy invariant. On the other hand, the geometric category for
simplicial complexes, as well as the geometric category for topological spaces, is
not a (strong) homotopy invariant. The next theorem shows that strong collapses
increase the geometric category.

Theorem 2.4.7. (Theorem 4.3 [14]) Let K and L be two simplicial complexes

such that L is a strong collapse of K then gscat(K) ≤ gscat(L).

Proof. We assume without loss of generality that L is an elementary strong col-

lapse, so L = K r v, v is a dominated vertex in K. We have that i : L ↪→ K
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in the inclusion and r : K → L the retraction defined in lemma 1.5.4 such that

ri = idL and ir ∼ idK . Suppose that V is a strong collapsible subcomplex of L, so

idV ∼ cw, where cw : V → V is the constant map. Therefore there is a sequence of

maps φi : V → V , 0 ≤ i ≤ n, such that

idV = φ0 ∼ ... ∼ φn = cw

We denote by r′ = r−1(V )→ V the restriction of r to r−1(V ) and i′ : V → r−1(V )

the inclusion, that is well defined because ri = idV . By lemma 2.3.5 φi ∼c φi+1

implies that i′φir
′ ∼c i′φi+1r

′ and i′φnr
′ = i′cwr

′ = ci(w) that is a constant map

and i′φ0r
′ = i′idV r

′ = i′r′. Moreover, we have that i′r′ ∼c idr−1(V ) because if σ is

a simplex in r−1(V ) ⊆ K then σ ∪ (ir)(σ) is a simplex in K contained in r−1(V )

because ri = idV . But ir(σ) = i′r′(σ) then σ ∪ (i′r′)(σ) is a simplex in r−1(V ).

Therefore we have that idr−1(V ) ∼ cw, so r−1(V ) is strongly collapsible. Now, if

m = gscat(L) and {Vi}0≤i≤m a cover of strongly collapsible subcomplexes of L.

Then {r−1(Vi)}0≤i≤m is a cover of K of strongly collapsible subcomplexes. Then

we have that gscat(K) ≤ gscat(L).

Remark 2.4.8. No example of simplicial complex where the inequality of the pre-

vious theorem is strict has been found. However we have an example of finite space

X such that gcat(X) < gcat(X r x) where x is a beat point. This, as the authors

of [14] write, lead to think that the inequality is not an equality.

We proved in Theorem 1.5.13, that the core K0 of a simplicial complex K is
obtained by removing dominated points and it is unique up to isomorphisms.
Therefore we have the following result.

Corollary 2.4.9. (Corollary 4.4 [14]) Let K0 be the core of a simplicial complex

K. The geometric category gscat(K0) is the maximum value of gscat(L) where L

is strongly equivalent to K,

gscat(K0) = max{gscat(L) : L ∼ K}

2.5 Relations between categories

In this section we want to compare the Lusternik-Schnirelmann category for finite
posets (finite T0-spaces) with the simplicial L-S category, and the geometric cate-
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gory for finite posets with the simplicial geometric category. In particular, we want
to study the behaviour of the value of the categories when we apply the functors
K or χ. This section is a reformulation of Chapter 6 in [14] in the language of
category theory. Proposition 2.5.1, Proposition 2.5.2, Remark 2.5.11 and Example
2.5.14 are due to the author.

Proposition 2.5.1. The order complex functor K sends categorical subsets to cat-

egorical subcomplexes and the face poset functor χ sends categorical subcomplexes

to categorical subsets.

Proof. Suppose that X is a finite partially ordered set, and U ⊆ X is a categorical

subset, so iU ' cx for some x ∈ X. Then we have the induced functions

K(iU) : K(U) ↪→ K(X) and K(cx) : K(U)→ K(X) such that K(iU) ∼ K(cx).

K(iU)(x′) = iU(x′) and K(cx)(x
′) = x for all x′ in the vertex set of K(X), therefore

K(iU) = iK(U) and K(cx) = cx, that implies that iK(U) ∼ cx, so K(U) is a categorical

subcomplex. Suppose now that K is a finite simplicial complex and U ⊆ K a

categorical subcomplex. Then we have iU ∼ cv for some vertex v in K. We have the

maps induced by the functor χ, χ(iU) : χ(U) ↪→ χ(X) and χ(cx) : K(U) → χ(X)

such that χ(iU) ' χ(cv), χ(iU)(σ) = iU(σ) and χ(cv)(σ) = v for all simplices σ

in χ(U) so χ(iU) = iχ(U) and χ(cv) = cv. iχ(U) ' cv, so χ(U) is a categorical

subset.

Proposition 2.5.2. The order complex functor K sends subsets contractible in

themselves to strongly collapsible subcomplexes and the face poset functor χ sends

strongly collapsible subcomplexes to subsets contractible in themselves.

Proof. Suppose that X is a finite partially ordered set, and U ⊆ X is a subset

contractible in itself, so idU ' cx for some x ∈ U . Then we have the induced

maps K(idU) ∼ K(cx). Now, K(idU) = idK(U) and K(cx)(x
′) = x for all x′ ∈ U ,

therefore K(cx) = cx, that implies that idK(U) ∼ cx, so K(U) is a strong collapsible

subcomplex. Suppose now that K is a finite simplicial complex and U ⊆ K a

strong collapsible subcomplex. Then we have idU ∼ cv for some vertex v of U . We

have the maps induced by the functor χ, χ(idU) ' χ(cv), where χ(idU) = idK(U)

and χ(cv)(σ) = v for all σ in χ(U) so χ(cv) = cv. idχ(U) ' cv, so χ(U) is a subset

collapsible in itself.
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Theorem 2.5.3. (Proposition 6.1 and 6.2 in [14]) Let X be a finite partially

ordered set. Then scat(K(X)) ≤ cat(X) and gscat(K(X)) ≤ gcat(X).

Proof. Let U0, ..., Un be a categorical open cover of X, therefore X = ∪0≤i≤nUi.

Then we have the induced sets K(U0), ...,K(Un) such that K(X) = ∪0≤i≤nK(Ui).

By Proposition 2.5.1 this is a categorical cover. Therefore scat(K(X)) ≤ cat(X). In

the second case if we suppose that U0, ..., Un is a cover of X of subset contractible in

itself then we have that K(U0), ...,K(Un) is a cover of K(X) of strongly collapsible

subcomplexes by Corollary 1.6.18.

Example 2.5.4. This example had been suggested to the author by J. Barmak.

The Example 2.2.3 provides a finite poset Xop such that scat(K(Xop)) < cat(Xop).

In fact, we saw that cat(Xop) = 2 and we can show that scat(K(Xop) < 2.

K(Xop) is the following simplicial complex

•1 •2 •3

•4 •5

Figure 2.5.1: An order complex K(Xop) such that scat(K(Xop)) < cat(Xop).

[1, 4]∪ [2, 4]∪ [3, 4], [1, 5]∪ [2, 5]∪ [3, 5] is a categorical cover and K(Xop) is not

strongly collapsible therefore scat(K(Xop)) = 1.

Example 2.5.5. (Example 6.3 [14]) Consider the finite poset X showed in Exam-

ple 2.1.9 and let K(X) be the order complex associated to X.

In this case the inequality of the previous theorem is strict,

gscat(K(X)) < gcat(X). In fact as we showed in Example 2.1.9 gcat(X) = 2 while

gscat(K(X)) = 1 because K(X) is not strong collapsible and it is covered by two

strong collapsible subcomplexes. The next picture shows the order complex K(X).
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Figure 2.5.2: An order complex K(X) such that gscat(K(X)) < gcat(X), [14] page 16.

The following subcomplexes provide a cover of K(X).

Figure 2.5.3: The cover of strong collapsible subcomplexes of K(X), [14] page 16.

An analogous result holds for the functor χ.

Theorem 2.5.6. (Proposition 6.4 and 6.5 [14]) Let K be a finite simplicial com-

plex. Then cat(χ(K)) ≤ scat(K) and gcat(χ(K)) ≤ gscat(K).

Proof. Let U0, ..., Un be a categorical cover of K, therefore K = ∪0≤i≤nUi. Then we

have the induced sets χ(U0), ..., χ(Un) such that χ(K) = ∪0≤i≤nχ(Ui). By Proposi-

tion 2.5.1 this is a categorical cover. Therefore cat(χ(K)) ≤ scat(K). In the second

case if we suppose that U0, ..., Un is a cover of X of strongly collapsible subcom-

plexes then we have that χ(U0), ..., χ(Un) is a cover of χ(K) of subset contractible

in itself by Corollary 1.6.18.

Remark 2.5.7. There is no examples where the two inequalities are strict.

Corollary 2.5.8. Let X be a finite partially ordered set. Then cat(X) = 0 if and

only if scat(K(X)) = 0

Proof. The result follows directly from Corollary 1.6.18.
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Corollary 2.5.9. Let K be a finite simplicial complex. Then scat(K) = 0 if and

only if cat(χ(K)) = 0.

Proof. The result follows directly from Corollary 1.6.18.

Corollary 2.5.10. (Corollary 6.7 [14]) Let K be a finite simplicial complex and

sd(K) its barycentric subdivision. Then scat(sd(K)) ≤ scat(K)

Proof. The barycentric subdivision sd(K) isK(χ(K)). By Theorem 2.5.3 and The-

orem 2.5.6 we have that cat(χ(K)) ≤ K and scat(K(χ(K))) ≤ cat(χ(K)), that

implies scat(K(χ(K))) = scat(sd(K)) ≤ scat(K).

Remark 2.5.11. If K is a simplicial complex such that scat(K) = 0 then

scat(sd(K)) = 0. Moreover, by Theorem 1.6.16 we have that if K is a simplicial

complex, K is not strongly collapsible if and only if sd(K) is not strongly collapsi-

ble. Therefore if scat(K) = 1 then the simplicial category of the subdivision doesn’t

decrease, therefore scat(sd(K)) = 1, otherwise sd(K) would be strongly collapsible

and this is a contradiction. Therefore in case of simplicial category equal to 0 or 1

the inequality of Corollary 2.5.10 is an equality.

Remark 2.5.12. Notice that the last result is not contradictory because it is pos-

sible that sd(K) and K have not the same strong homotopy type as showed in the

following example.

Example 2.5.13. Consider K to be the boundary of a 2-simplex and sd(K) its

barycentric subdivision.

Figure 2.5.4: A simplicial complex K that has not the same strong homotopy type of its

subdivision sd(K).
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They are both minimal complexes because they have no dominated points but

they are not isomorphic therefore by corollary 1.5.11 they don’t have the same

strong homotopy type.

Example 2.5.14. This example has been suggested to the author by J.Barmak. It

shows a simplicial complex that satisfies Corollary 2.5.10 with a strict inequality.

Let K be the complete graph K5 considered as a 1-dimensional simplicial complex.

Figure 2.5.5: The complete graph K5, an example of simplicial complex K such that

scat(sd(K)) < scat(K).

A cover of categorical subcomplexes is given, for example, by

{[0, 1] ∪ [0, 2] ∪ [0, 3] ∪ [0, 4], [1, 4] ∪ [1, 2] ∪ [2, 3], [1, 3] ∪ [3, 4] ∪ [4, 2]}, therefore

scat(K5) ≤ 2. Moreover, there is no cover of two categorical subsets. In fact, if we

suppose that we can cover K5 with two categorical subcomplexes then one of the

two subcomplexes has to contain at least 5 edges. That means that, denoting vi,

i = 0, ..., 4 the vertices of K5, if we choose the edges in order to have a categorical

subcomplex (that has no ”loops”) we have the following cases:

• if four 1-simplices contain the same vertex vi, then we have that the sub-

complex is made by the simplices [vi, vj], [vi, vk], [vi, vh], [vi, vm], [vp, vq] where

the vertex vj, vh, vk, vm are the other 4 vertices and vp, vq can be any two
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different vertices, let’s say vp = vm and vq = vh. Then we have a loop

[vi, vm], [vm, vh], [vh, vi] and so the subset is not categorical.

• if three 1-simplices contain the same vertex vi, then we have [vi, vj], [vi, vk],[vi, vh],

[vn, vm],[vp, vq] where vn or vm is different than vi, vj, vk, vh. Suppose that vn

is different than the other four vertices and vm = vj. Then vp and vq have

to be different from vi, if vp = vj, vk, vh or vn then we obtain a loop for all

value of vq, so the subset cannot be categorical.

• the subcomplexes with at most two 1-simplices containing the same vertex vi,

that are made by at most five 1-simplices, are constituted by simplices with

the following structure: [vi, vj], [vj, vk],[vk, vh],[vh, vm],[vm, vi] and they are not

categorical.

• we cannot have a subcomplex with at least five simplices such that every 1-

simplex contains one different vertex.

We can conclude that there is no categorical subcomplex with at least five vertices,

therefore there is no cover of K5 given by two categorical subcomplexes. Therefore

cat(K) = 2.

On the other hand the barycentric subdivision of K, sd(K) has a cover of two

categorical subcomplexes given, for example, by the two subcomplexes U0, marked

in red, and U1, marked in black, that are showed in the following picture.
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Figure 2.5.6: A cover of two categorical subsets of sd(K5).

Since sd(K5) is not strongly collapsible we can conclude that

1 = scat(sd(K5)) < scat(K5) = 2.
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Chapter 3

Additional results

3.1 A lower bound for the simplicial category

of the subdivision: the L-S category of the

geometric realization

In this section we want to give some results about the L-S category of the geometric
realization of a simplicial complex. In particular we will show that for every finite
simplicial complex K, cat(|K|) ≤ scat(sd(K)) ≤ scat(K). In addition, the value
of the L-S category of the geometric realisation of a simplicial complex provides
a lower bound for the value of the simplicial category of the iterated subdivision.
The first results about the geometric realisation lead to Proposition 3.1.6 that
shows that maps in the same contiguity class correspond to homotopic maps in the
geometric realisation. They are needed to define the geometric realisation functor
and they can be found in Appendix in [2]. On the other hand, the main theorems
Theorem 3.1.8, Theorem 3.1.10, Corollary 3.1.11 and Example 3.1.12 are due to
the author.
We will first recall some basic definitions regarding the geometric realisation, this
definitions refer to [11].

Definition 3.1.1. Let K be a simplicial complex and K0 its set of vertices. The

geometric realization of K, |K| is a topological space defined as the set of functions

α : K0 → [0, 1] such that if α ∈ |K| then the set supp(α) = {v ∈ K0 : α(v) 6= 0}

71
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is a simplex in K and for all α ∈ |K|,
∑

v∈K0 α(v) = 1.

|K| = {α : K0 → [0, 1] : supp(α) ∈ K,
∑
v∈K0

α(v) = 1}

Therefore |K| can be regarded as a subset of the vector space

R[K0] = {f : K0 → R : supp(f) finite}, with basis the functions v : K0 → R
defined for all v′ ∈ K0 by v(v′) = 1 if v = v′ and v(v′) = 0 otherwise. Now, given a

simplex in K, σ = {v0, ..., vn} where vi ∈ K0 we can define the realisation of σ as

|σ| = {
∑
v∈σ

αvv|αv ≥ 0,
∑
v∈σ

αv = 1}

where v is a vertex in K and v denote also an element of base for the vector space

R[K0], αv ∈ R. The realisation of K, |K| can be regarded as the union of the

realisation of the simplices σ in K

|K| = ∪|σ|

Therefore an element of the realisation is a function α ∈ |K| defined for all v′ ∈ K0

by α(v′) =
∑

v′∈K0 αvv(v′).

We can define on |K| two different topologies, one induced by the metric on |K|
given for all α, β ∈ |K| by

d(α, β) = (
∑
v∈K0

(αv − βv)2)
1
2

the other is the coherent topology given by the cover {|σ| : σ ∈ K}. In general

we will consider |K| equipped with the coherent topology, but in the specific case

of finite simplicial complex the two coincide. The topologies of |K| are described

more in detail in Appendix B.

Simplicial maps between simplicial complexes induce continuous maps between

realisations. In fact, given a simplicial map φ : K → L we have a linear map

between the vector spaces |φ| : R[K0] → R[L0] that takes cells |σ| of |K| to cells

|τ | of |L|, |φ|(|σ|) = |φ|(
∑

v∈σ αvv) =
∑

v∈σ αvφ(v) ⊆ |τ |. |φ| can be restricted to

map |φ| : |K| = ∪|σ| → |L| = ∪|τ |.
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Definition 3.1.2. The geometric realisation functor, | − | from the category of

finite simplicial complexes fSC to the category of topological spaces TOP is the

functor that associate to each simplicial complex K its geometric realization |K|, as

defined in Definition 3.1.1 and to each simplicial map φ : K → L the continuous

map |φ| : |K| → |L| defined for all α ∈ |K| by |φ|(α) = |φ|(
∑

v∈K0 αvv) =∑
v∈K0 αvφ(v).

Remark 3.1.3. The functor | − | is well defined. In fact, for all |σ| in |K|,
|idK |(

∑
v∈σ αvv) =

∑
v∈σ αv(idK(v)) =

∑
v∈σ αvv = id|K|(

∑
v∈σ αvv). Moreover,

|ψφ|(
∑

v∈σ αvv) =
∑

v∈σ αv(ψφ(v)) = |ψ|(
∑

v∈σ αv(φ(v))) = |ψ||φ|(
∑

v∈σ αvv).

We want to show that the functor |− | sends contiguous maps to homotopic maps.
In order to prove this result we will use the following two lemmas.

Lemma 3.1.4 (Lemma A1.1 [2]). Let K be a simplicial complex and F a compact

subset of |K|. Then there is a finite subcomplex L of K such that F ⊆ |L|.

Proof. Consider a point x in F∩ < σ > for all < σ >, where < σ > is the open

set contained in |σ| whose supports is exactly σ, see Appendix B, Definition B.1.2.

Let D be the set of these points and consider a subset A ⊆ D. The intersection of

A and a closed simplex |σ| is finite so it is closed, therefore A is closed in |K| by

the definition of the coherent topology. Therefore D is discrete and it is compact

because it is a closed subset of F , so it is finite. Then F intersects finitely many

open simplices < σ >. Let L be the subcomplex generated by the simplices σ such

that < σ > intersect F , L is a finite subcomplex L of K such that F ⊆ |L|.

Lemma 3.1.5 (Proposition A1.2 [2]). Let K and L be two simplicial complexes

and f ,g : |K| → |L| two continuous maps such that for all x ∈ |K| there is a σ in

L with f(x),g(x) in |σ|. Then f and g are homotopic.

Proof. We define the map H : |K| × I → |L|, I = [0, 1], by

H(x, t) = tg(x) + (1 − t)f(x). The map is well defined because f(x),g(x) lie in

|σ|. We want to show that H is continuous in |K| × I, it is enough to show that

it is continuous in |σ′| × I for every simplex σ′ of K because the topology on |K|
is the coherent topology. Now, f and g are continuous maps and |σ′| is compact
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therefore f(|σ′|) and g(|σ′|) are compact. By Lemma 3.1.4 f(|σ′|) is contained in

the realisation of a finite subcomplex L1 of L and g(|σ′|) in the realisation of a

finite subcomplex L2 of L. Therefore H(|σ′| × I) is contained in the realisation of

a finite subcomplex M of L, that is the subcomplex spanned by the vertices of L1

and L2. We want to show that H||σ′|×I : |σ′| × I → |M | is continuous. Since |σ′|
and |M | have the metric topology we have that

d(H(x, t), H(y, s)) ≤ d(H(x, t), H(x, s)) + d(H(x, s), H(y, s)) = (1)

= d(tg(x)+(1−t)f(x), sg(x)+(1−s)f(x))+d(sg(x)+(1−s)f(x), sg(y)+(1−s)f(y))

where the first inequality is provided by the triangular inequality, and

(1)≤ 2|t− s|+ d(f(x), f(y)) + d(g(x), g(y))

because for all x ∈ |K|, g(x) =
∑

v′∈L0 g(x)vv(v′) and g(x)v are smaller than 1

for all v in |L| and
∑
gv = 1 and the same holds for f(x). Since f and g are

continuous, we have that H is continuous.

Proposition 3.1.6 (Corollary A1.3 [2]). Let K and L be two simplicial complexes

and φ, ψ : K → L two simplicial map that lie in the same contiguity class then the

induced maps |φ|, |ψ| : |K| → |L| are homotopic. That is, the functor | − | sends

maps in the same contiguity class in homotopic maps.

Proof. If φ, ψ : K → L lie in the same contiguity class then for all simplex σ

in K we have that φ(σ) ∪ ψ(σ) is a simplex σ′ in L. We have the maps induced

by the functor | − | |φ|, |ψ| : |K| → |L|. Therefore for all x ∈ |K| there is a σ

such that x ∈ |σ| and we have that |φ|(σ) ∪ |ψ|(σ) lies in |σ′| = |φ(σ) ∪ ψ(σ)| so

|φ|(x), |ψ|(x) ∈ |σ′|. By Proposition 3.1.6 we have that |φ| and |ψ| are homotopic

maps.

Definition 3.1.7. The geometric realisation functor, | − | from the contiguity

category h(fSC) to the homotopy category h(TOP ) is the functor that associate

to each finite simplicial complex K its geometric realization |K|, as defined in

Definition 3.1.1 and to each contiguity class of simplicial maps [φ]∼ : K → L

the class homotopic continuous maps [φ] : |K| → |L| defined for all α ∈ |K| by

[φ](
∑

v∈K0 α(v)) =
∑

v∈K0 α([φ]∼(v)).

From now on we will work in the category of finite simplicial complexes fSC,
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therefore even though we will refer to simplicial complexes we will consider just
finite simplicial complexes.

Theorem 3.1.8. Let K be a simplicial complex. Then cat(|K|) ≤ scat(K).

Proof. Suppose that {Uj}0≤j≤n is a cover ofK of categorical subcomplexes, then we

have that for all 0 ≤ j ≤ n, iUj
∼ cv for a vertex v in K. Therefore, for all 0 ≤ j ≤

n, we have maps induced by the functor | − |,iUj
: |Uj| ↪→ |K| and cv : |Uj| → |v|,

|iUj
| ' |cv|. We have that |iUj

| = i|Uj | and |cv| = c|v| is a constant map because

for all α ∈ |Uj|, |cv|(
∑

v′∈K0 αv′v
′) =

∑
v′∈K0 αv′(cv(v

′)) =
∑

v′∈K0 αv′v = 1v = |v|
and |v| ∈ |K|, then i|Uj | ' c|v|. Therefore |Uj| are categorical subsets of |K| for

all 0 ≤ j ≤ n and {|Uj|}0≤j≤n is a cover of |K| because |K| = ∪|σ|, σ ∈ K and

{Uj}0≤j≤n is a cover of K. {|Uj|}0≤j≤n is a closed cover because the realisation of

a subcomplex of K is closed in |K| (Proposition B.1.1) but since |K| is a normal

ANR, by Proposition B.2.6 we can consider closed covers as well as open covers.

Therefore cat(|K|) ≤ n. More details about the L-S category defined with a closed

categorical cover can be found in Appendix B.

We want to prove that |sd(K)| and |K| are homeomorphic. We defined the barycen-
tric subdivision of a simplicial complex K as the simplicial complex sd(K) given
by sd(K) = K(χ(K)). Therefore sd(K) is the simplicial complex whose set of ver-
tices is the set of simplices of K and the simplices of sd(K) are given by the finite
chains of simplices of K ordered by the relation of inclusion.

Lemma 3.1.9. Let K be a simplicial complex. Then |sd(K)| and |K| are homeo-

morphic. Moreover, cat(|sd(K)|) = cat(|K|).

Proof. We can define the map s : |sd(K)| → |K| defined for all x ∈ |sd(K)|,
x =

∑
v∈sd(K)0 αvv =

∑
σ∈K ασσ by s(x) =

∑
σ∈K ασb(σ) where b(σ) =

∑
v∈σ

v
]v
∈

|K| gives the barycentre of the simplex σ in K. The function s is an homeomor-

phism: it is a linear map because it preserves convex combinations; it is injec-

tive because s(x) = s(y) implies that
∑

σ∈K ασb(σ) =
∑

σ∈K βσb(σ) that implies

ασ = βσ for all σ ∈ K therefore x = y; it is surjective because for all x′ ∈ |K|, x′ =∑
v∈K0 αvv we have an element of |sd(K)|, x =

∑
σ∈K ασσ =

∑
v∈K0 αvv where

ασ = 0 for σ not in K0. Then s(x) = x′ because b(v) = v. Therefore |sd(K)| and

|K| are homeomorphic topological spaces and clearly cat(|sd(K)|) = cat(|K|).
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Theorem 3.1.10. Let K be a simplicial complex. Then

cat(|K|) ≤ scat(sd(K)) ≤ scat(K)

.

Proof. We know by Corollary 2.5.10 that scat(sd(K)) ≤ scat(K). Moreover since

cat(|sd(K)|) = cat(|K|) by Lemma 3.1.9, we have by Theorem 3.1.8 that cat(|K|) =

cat(|sd(K)|) ≤ scat(sd(K)) ≤ scat(K).

Corollary 3.1.11. Let K be a simplicial complex. Then

cat(|K|) ≤ min{scat(sdn(K)) : n ∈ N}

.

Proof. Corollary 2.5.10 shows that scat(sd(K)) ≤ scat(K), if we apply the same

theorem to sd(K) we obtain scat(sd2(K)) ≤ scat(sd(K)) and so on for the other

iterated subdivisions sdn(K). Therefore we have that

scat(sdn(K)) ≤ ... ≤ scat(sd(K)) ≤ scat(K)

and by Theorem 3.1.8

cat(|K|) = cat(|sdn(K)|) ≤ scat(sdn(K)) ≤ ... ≤ scat(sd(K)) ≤ scat(K)

. Therefore cat(|K|) ≤ scat(sdn(K)) for n ∈ N.

Example 3.1.12. This example shows a simplicial complex for which the inequal-

ity of the previous corollary is strict. Consider the simplicial complex K showed in

the picture.
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Figure 3.1.1: A simplicial complex K such that cat(|K|) < min{scat(sdn) : n ∈ N}.

K is not strong collapsible in fact it doesn’t contain dominated vertices. More-

over, we have a cover of strong collapsible subcomplexes given by the subcomplexes

Figure 3.1.2: A cover of strong collapsible subcomplexes of K.

Therefore scat(K) = 1. By Proposition 1.6.16 we have that if K is non strong col-

lapsible then sd(K) is not strong collapsible and if we apply again the result we have

that sdn(K) is not strong collapsible. Therefore by Corollary 2.5.10 scat(sdn(K)) =

1. On the other hand |K| is contractible because it is homeomorphic to a disc there-

fore cat(|K|) = 0, that implies cat(|K|) < min{scat(sdn) : n ∈ N}.
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3.2 Computation of the simplicial L-S category:

the sphere Sn

In this section we compute the value of the simplicial L-S category of the sim-
plicial complex Sn = D([n + 1]+) r {[n + 1]+}, where D([n + 1]+) is the sim-
plicial complex whose simplices are all the subset of the standard n + 1-simplex
[n + 1]+ = [0, ..., n + 1]. We will first compute the simplicial category for n = 1, 2
and then the general case n ∈ N. The results in this section are due to the author.

We want to compute the value of scat(S1) of the sphere S1 = D([2])r [2], showed
in the picture.

Figure 3.2.1: S1

Consider the following two subcomplexes, we will denote U0 the first and U1 the
second:

Figure 3.2.2: A cover of S1 of two categorical subcomplexes.

Remark 3.2.1. The simplicial complex S1 is a minimal complex since it has no

dominated vertices.
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Proposition 3.2.2. The family of subcomplexes {U0, U1} is a cover of S1 of cat-

egorical subcomplexes.

Proof. {U0, U1} is clearly a cover of S1. U0 and U1 are strongly collapsible simplicial

complexes, in fact in U0 the point 2 is dominated by 1 therefore U0 ↘↘ {0, 1} and

{0, 1} ↘↘ {0}. U1 ↘↘ {0} because 1 is dominated by 0. Therefore {U0, U1} is a

cover of S1 of strongly collapsible subcomplexes therefore it is a cover of categorical

subcomplexes.

Corollary 3.2.3. scat(S1) = 1.

Proof. By the previous proposition we know that scat(S1) ≤ 1. Moreover 0 <

scat(S1) because S1 is a minimal simplicial complex and therefore it doesn’t

strongly collapse to a single vertex. We can conclude that scat(S1) = 1.

Remark 3.2.4. We can as well consider the face poset of S1, showed in the follow-

ing picture and compute its L-S category cat(χ(S1)). Now {U01∪U12;U02} is a cat-

•01 •02 •12

•0 •01 •2

Figure 3.2.3: χ(S1).

egorical cover of χ(S1) since it is composed by unions of basic open sets contractible

to a point. Therefore cat(χ(S1)) ≤ 1, moreover cat(χ(S1)) > 0 because χ(S1) is

not contractible. By Theorem 2.5.6 we have that 1 = cat(χ(S1)) ≤ scat(S1) ≤ 1.
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In the case of the sphere S2 = D([3]+ r [3]+), we can find a cover given by the
subcomplexes U0 = {[1, 2, 3]}, U1 = {[0, 1, 2][0, 2, 3][0, 1, 3]}, showed in the picture:

Figure 3.2.4: A cover of S2 of two categorical subcomplexes.

Proposition 3.2.5. scat(S2) = 1.

Proof. U0 and U1 is clearly a cover of S2. In U0 all vertices are dominated by

another, therefore [1, 2, 3] ↘↘ [1, 2] ↘↘ [1], so these subcomplex is strongly

collapsible. In U1 all vertices are dominated by the vertex 0, therefore U1 ↘↘
[0, 1, 3] ↘↘ [0, 1] ↘↘ [0], here we first delate the vertex 2, then the vertex 3

and then 1. The two subset are strongly collapsible therefore they are categorical,

moreover the simplicial complex S2 is minimal because it has no dominated point

therefore it is not strongly collapsible to one point. So, 0 < scat(S2) ≤ 1 that

implies scat(S2) = 1.

We can consider now the general case Sn = D([n+ 1]+)r {[n+ 1]+}. We can find
a cover of this simplicial complex by taking the union of its maximal simplices.
The maximal simplices are given by all the possible n-uple of the vertices in the
set of vertices of Sn that is {0, ..., n+ 1}. We define the cover by U0 = [1, ...n+ 1]
and U1 = ∪[0, i1, .., in+1] where ij ∈ {1, ..., n+ 1}, j ∈ {1, ..., n+ 1}.

Proposition 3.2.6. The cover of Sn given by U0 and U1 is a categorical cover.
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Proof. We will prove that U0 and U1 strong collapse to a point. With this aim, we

will show that every vertex of the two subcomplexes is dominated by an other point,

therefore we can perform a sequence of strong collapses by removing dominated

points. As described in Definition 1.5.2, a vertex v is dominated by another vertex

v′ if and only if all maximal simplices that contain v also contain v′. Consider

first U0 = [1, ..., n + 1], here all vertices are dominated by an other therefore we

can eliminate the vertices one by one making U0 strongly collapse to the vertex 1,

for instance. Now in the subcomplex U1 all vertices are dominated by the vertex

0 because all maximal simplices contain 0. Therefore if ij 6= 0 is a vertex of U1

j ∈ {1, ..., n+ 1}, we eliminate vj by defining vj = 0. Therefore we obtain an other

simplicial complex given by U1 = ∪[0, i1, ..., ij, ..., in+1], where ij means that ij does

not appear in the list of vertices. Again, all vertices ik 6= 0 k ∈ {1, ..., j, ..., n + 1}
are dominated by the vertex 0 therefore we can repeat the procedure operating a

series of strong collapses until U1 = [0]. We showed that U0 and U1 are strongly

collapsible subcomplexes therefore they are categorical subcomplexes.

Proposition 3.2.7. scat(Sn) = 1.

Proof. By the previous proposition we know that scat(Sn) ≤ 1. Moreover we know

that the geometric realisation of Sn, |Sn| is the n-sphere and it is not contractible,

therefore cat(|Sn|) > 0. Moreover by Example A.1.5 we know that cat(|Sn|) = 1

and by Theorem 3.1.8 that 1 = cat(|Sn|) ≤ scat(Sn) ≤ 1. We can conclude that

scat(Sn) = 1.

Remark 3.2.8. The two subcomplexes U0 and U1 that cover Sn are strong col-

lapsible. Therefore we have that cat(Sn) = gcat(Sn) = 1. Moreover by Corollary

3.1.11 we know that 1 = cat(|Sn|) = scat(sdm(Sn)) for all m ∈ N.

Remark 3.2.9. Proposition 3.2.6 provides an algorithm for reducing a simplicial

complex to its core. Let K be a simplicial complex and K0 = {v0, ..., vn} its set of

vertices. Consider now the maximal simplices (maximal element of the relation of

inclusion), that are m-uple of vertices of K [vi, ..., vj] for some m ≤ n (the maximal

simplices may contain a different number of vertices). Now, if given a vertex vj we

have that for every maximal m-uple that contains vj it contains also a vertex vi,
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then we define vi = vj and we reduce the m-uple to a m−1-uple. In other words we

consider the maximal m-uples which contain one vertex and if they all contain an

other vertex we eliminate the first of the two, this operation correspond to eliminate

dominated vertices. For example we can consider the simplicial complex K given

by the maximal simplices: [0, 3, 5], [0, 2, 3], [0, 1], [1, 2], [1, 4]. Now 3, for example,

is dominated by 0 because it appears in the maximal simplices [0, 3, 5], [0, 2, 3].

Therefore we set 3 = 0 and K ↘↘ K ′ where K ′ is given by [0, 5], [0, 2], [0, 1] [1, 2]

and [1, 4]. Now 5 is dominated by 0 because the only maximal element in which

5 appears is [0, 5] therefore we set 5 = 0, in the same way 4 is dominated by 1.

Therefore K ′ ↘↘ K ′′ where K ′′ is given by [0, 2], [0, 1] [1, 2]. K ′′ is a minimal

complex because there is no dominated vertex, in fact all the simplices where a

vertex appear contain different vertices. K ′′ is the core of K.

Figure 3.2.5: A sequence of strong collapses from a simplicial complex to its core.
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3.3 Computation of the simplicial L-S category:

the real projective plane RP 2

In this section we will compute the value of the simplicial L-S category of a tri-
angulation of the real projective plane RP 2. Whit this aim we will use the results
from Section 3.1. The triangulation can be found in [1] and the results are due to
the author.

Consider the real projective plane RP 2. We know from Example A.2.3 in Appendix
A that cat(RP 2) = 2. Moreover if we consider the following triangulation K of
RP 2

Figure 3.3.1: A triangulation of RP 2, [1] page 7.

By Theorem 3.1.8 we have that cat(RP 2) = scat(|K|) = 2 ≤ scat(K). Consider
now the following categorical cover of K.

Figure 3.3.2: A categorical cover of RP 2 of three subcomplexes, [1] page 7.
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Therefore we have that cat(RP 2) = cat(|K|) = scat(K) = 2. Since the three
subcomplexes are strong collapsible by Proposition 2.1.8 we have that gcat(K) = 2.
Moreover, by Corollary 3.1.11 we know that the simplicial category, in this case,
doesn’t change under subdivision, cat(RP 2) = scat(sdn(K)) = scat(K) = 2 for all
n > 0.

3.4 Computation of simplicial L-S category: the

Torus T 2

We compute the value of the simplicial category of the triangulation of the Torus
T 2 by using the L-S category of the geometric realisation as a lower bound. The
results in this section are due to the author.

Consider the following triangulation T 2 of the 2-dimensional Torus.

Figure 3.4.1: A triangulation for the 2-dimensional Torus T 2.

We can find a cover of T 2 of strongly collapsible subcomplexes given by U0 = st(B),
U1 = st(F ) and U2 = st(G). Note that if K is a simplicial complex and v one of its
vertices then the star of the vertex v, st(v) is a strongly collapsible subcomplex.
In fact, st(v) = {σ ∈ K : σ ∪ v ∈ K} therefore all maximal simplex in St(v)
contains v therefore if v′ is any other vertex in st(v) then every maximal simplex
in st(v) that contain v′ contain also v. That means that all vertex v′ is st(v)
is dominated by v, that implies st(v) ↘↘ v. By Theorem 2.4.4 we have that
scat(T 2) ≤ gscat(T 2) ≤ 2. Moreover we know from Example A.2.3 in Appendix A
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that cat(|T 2|) = 2. We can conclude by Theorem 3.1.8 that

2 = cat(|T 2|) ≤ scat(T 2) ≤ gscat(T 2) ≤ 2

Therefore scat(T 2) = 2. Moreover, by Corollary 3.1.11 we have that
scat(sdn(T 2)) = 2 for all n ∈ N.
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Appendix A

An upper bound and a lower

bound for the L-S category

In this Appendix we want to present two useful results of the general theory of
LS-category for topological spaces. We will show that there are lower and upper
bounds for estimating the value of the L-S category. In fact, given a topological
space X the cup-length of X gives a lower bound for the value of L-S category
and the dimension of the space provides the upper bound. We will first recall the
definition of cup product and cup-length in co-homology.

A.1 The cup length as lower bound for the L-S

category

The definitions about co-homology and cup-product refer to [12], [6],[10] and [8],
while Theorem A.1.4 and Definition A.1.3 can be found in [4]. We first remind the
construction of the co-homology groups.
A simplicial object on a category C is a contravariant functor between the cate-
gory ∆ of ordered set [n]+ = [0, ..., n] of ordered abstract simplices ∆n and order
preserving map, and the category C. A singular set of a topological space X is a
simplicial set (simplicial object in the category SET ) S(X) : ∆→ SET such that
for all [n]+ ∈ ∆

S(X)([n]+) = HomTOP (|∆n|, X)

87
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S(X) can be considered as a sequence of sets

S(X)0 = HomTOP (|∆0|, X), ..., S(X)n = HomTOP (|∆n|, X)

with specific face maps di : S(X)n → S(X)n−1 and degeneracy maps si : S(X)n →
S(X)n+1. Singular sets and morphisms between them can be considered part of the
category of ∆-sets, therefore given a topological space X we can associate trough
a functor the singular set S(X) and continuous function f : X → Y between
topological spaces are associated to induced functions f∗ : S(X) → S(Y ) defined
as the composition

f∗(σ : |∆n| → X) = fσ : |∆n| → Y

Then we can associate to the singular set S(X) its simplicial chain complex C∗(X)
composed by the n-chains Cn = Z[(S)(X)n] that are the formal finite sums

∑
i niσi,

ni ∈ Z, σi ∈ S(X)i and boundary maps δn : Cn(X) → Cn−1(X). Morphisms
between singular sets f∗ : S(X) → S(Y ) in the category of ∆-sets correspond in
the category of chain complexes C∗ to chain maps

f◦ : C∗(X)→ C∗(Y )

Finally we can consider the co-chain complex C∗(X) composed by the dual

Cn(X) = HomZ(Cn(X),Z)

and the boundary maps
δn : Cn(X)→ Cn+1(X)

Now we can define the n singular co-homology groups with coefficients in Z by

Hn(X) =
ker(δn+1)

Im(δn)

Now we can define the notions of cup product and cup length. We will denote the
value of a co-chain φ ∈ Cn(X) on a chain a ∈ Cn(X) by < φ, a >∈ Z.

Definition A.1.1. Let X be a topological space. Given two co-chain φ ∈ Cn(X)

and ψ ∈ Cm(X) the cup product of φ and ψ, φ∪ψ is the co-chain φ∪ψ ∈ Cn+m(X)

such that for all simplices σ : ∆n+m → X

< φ ∪ ψ, σ >= (−1)n+m < φ, σ|[v0, ..., vn] >< ψ, σ|[vn+1, ..., vn+m] >

where σ|[v0, ..., vn] = [v0, ..., vn, 0..., 0] and σ|[vn+1, ..., vn+m] = [0, ..., 0, vn+1, ..., vn+m]
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Therefore there is a product operation in the co-homologies classes
Hn(X) ⊗ Hm(X) → Hn+m(X) that gives to H∗(X) = (H0(X), H1(X)...) the
structure of a graded commutative ring.

Remark A.1.2. It is possible to define the cup product from the cross product in

co-homology. Given a ∈ Hp(X) and b ∈ Hq(X),

a ∪ b = ∆∗(a× b) ∈ Hp+q(X)

where ∆∗ is induced by ∆ : X → X × X is the diagonal map. The cross product

of a⊗ b ∈ Hp(X)⊗Hq(Y ) is defined as the image of a⊗ b trough the composition

Hp(X)⊗Hq(Y )→ Hp+q(S∗(X)⊗ S∗(Y ))→ Hp+q(X × Y )

The first map is the map ×alg : Hp(C) ⊗ Hq(D) → Hp+q((C∗ ⊗ D∗)∗), where C∗

and D∗ are two chain complexes and it is defined by

×alg([a]⊗ [b]) = [
∑
zi⊗wi →

∑
< a(zi) > · < b(wi) >] and · is the multiplication

in the ring R. The second map is induced by the Eilenberg-Zilber map

A : S∗(X × Y ) → S∗(X) ⊗ S∗(Y ). The dual of this map is a chain homotopy

equivalence A∗ : (S∗(X)⊗ S∗(Y ))∗ → S∗(X × Y ) that induces an isomorphism in

cohomology A∗ : H∗(S∗(X)⊗ S∗(Y ))→ H∗(X × Y ).

Therefore we can define the cup product for the homology of the pair

H∗(X,A;R)⊗H∗(X,B;R)→ H∗(X,A ∪B;R)

a ∪ b = ∆∗(a× b) where ∆∗ is induced by the diagonal map

∆ : (X,A ∪B)→ (X,A)× (X,B) = (X ×X,A×X ∪X ×B)

A result, that we will need in the next proof, that follows from the naturality of A

and the definition of cross product is the following. If f : X ′ → X and g : Y ′ → Y

are continuous maps between topological spaces and a ∈ H∗(X), b ∈ H∗(Y ) then

(f × g)∗(a× b) = f ∗(a)× g∗(b)

More details about this construction can be fond in [5].



90APPENDIX A. AN UPPER BOUNDANDA LOWER BOUND FOR THE L-S CATEGORY

Definition A.1.3. Let R be a commutative ring and X a topological space. The

cup length of X with coefficient in R is the largest integer k (or ∞) such that the

product in the co-homology ring H∗(X;R) is a1 ∪ ... ∪ ak 6= 0 where the terms

aj ∈ H i(X) have degrees i ≥ 1, we denote this integer by cupR(X).

Theorem A.1.4. (Proposition 1.5 [4]) Let X be a topological space. Then the

R-cup length of X is less or equal to the L-S category of X for all coefficients R,

cupR(X) ≤ cat(X).

Proof. Suppose that cat(X) = n and {U1, ..., Un+1} a categorical cover of X. Let

x1 ∪ ...∪ xn+1 be a cup product. Consider the long exact sequence in co-homology

for the pair (X,Ui), where ji : Ui ↪→ X and q : X → (X,Ui)

...→ Hm((X,Ui);R)
q∗→ Hm(X;R)

j∗→ Hm(Ui;R)→ ...

Ui is contractible in X, therefore Hm(Ui;R) = 0 and j∗ = 0. By exactness

...0→ Hm((X,Ui);R) ' Hm(X,R)
j∗→ 0→ ...

For each Ui, xi has a preimage x′i such that q∗(x′i) = xi.

Now, from the general description of the cup product, we have a map

H∗(X,A;R)⊗H∗(X,B;R)→ H∗(X,A ∪B;R) defined by a ∪ b = ∆∗(a× b) and

induced by

∆ : (X,A ∪B)→ (X,A)× (X,B) = (X ×X,A×X ∪X ×B)

is the diagonal map (Remark A.1.2). By the commutativity of the diagram

X
q−→ (X,A ∪B)

↓∆ ↓∆

X ×X q1×q2−→ (X,A)× (X,B)

we have that q∗∆∗ = ∆∗(q1×q2)∗ = ∆∗(q∗1×q∗2) where the last inequality is provided

by Remark A.1.2, therefore q∗(a ∪ b) = q∗1(a) ∪ q∗2(b). Consider now the product

x′1∪ ...∪x′n+1 defined in H∗(X,∪Ui;R), i = 1, ..., n+1. The map q : X → (X,∪Ui)
induces an homomorphism H∗(X,∪Ui;R)→ H∗(X;R) that implies

q∗(x′1 ∪ ... ∪ x′n+1) = q∗1(x′1) ∪ ... ∪ q∗n+1(x′n+1) = x1 ∪ ... ∪ xn+1
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Moreover H∗(X,∪Ui;R) = 0 since ∪Ui = X, i = 1, ..., n + 1, this implies that

x1 ∪ ... ∪ xn+1 = q∗(0) = 0 therefore cupR(X) ≤ n = cat(X).

Example A.1.5. • If X is a contractible topological space it has cat(X) = 0

and also H∗(X;R) = 0 for all R.

• The sphere Sn has cohomology groups H0(Sn) = Hn(Sn) = Z and 0 the oth-

ers, therefore 1 = cupZ(Sn). Moreover Sn can be covered by two contractible

hemisphere therefore 1 = cupZ(Sn) ≤ cat(Sn) ≤ 1, therefore cat(Sn) = 1.

• The real projective plane RP 2 has cohomology groups with coefficients in

Z/2Z given by H0(RP 2) = H1(RP 2) = H2(RP 2) = Z/2Z and 0 otherwise,

therefore cupZ(RP 2) = 2.

• The n-dimensional Torus T n has cup length over Q cupQ(T n) = n, therefore

cat(T n) ≥ 2.

A.2 The dimension as upper bound for the L-S

category

We will now show that the dimension of a topological space provides an upper
bound for the value of L-S category. We define as dimension of a paracompact
space X, dim(X) the covering dimension that is the least integer k so that any
open cover has a refinement of order k. The order of an open cover V is the least
integer k so that there exist k + 1 members of V with non-trivial intersection but
not k + 2. In the case of C-W complex the covering dimension correspond with
the dimension as a C-W complex. A refinement of a cover U of X is a cover U ′ of
X such that every set in U ′ is contained in some set in U . A space is said to be
paracompact if every open cover has a locally finite open refinement.
The following results can be found in Chapter 1 in [4]. In order to prove the main
theorem we will state the following lemma due to Milnor, it is possible to find the
proof in Appendix A in [4].

Lemma A.2.1. (Lemma A.4 [4]) Let U = {Ui} be an open covering of X of order

n with a partition of unity subordinate to the cover. Then there is an open covering

of X refining U , G = {Giβ} i = 1, ..., n + 1 such that Giβ ∩ Giβ′ = ∅ for β 6= β′.
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In particular there is such a refinement if X is a pracompact space with covering

dimension n and U = {Uα} is any open covering of X.

Theorem A.2.2. (Theorem 1.7 [4]) Let X be a path-connected locally contractible

paracompact space, then cat(X) ≤ dim(X).

Proof. Suppose that dim(X) = k and that U = {U1, ..., Un+1} is a categorical

cover of X. By the previous lemma there is an open covering {Gi}, i = 1, ..., k+ 1

of X refining U with the property that each Gi is the union of disjoint open sets

each of which lies in some Uj. Since Uj is contractible in X and the sets forming

Gi are disjoint then Gi are also contractible in X, because each component lies

in a Uj, therefore each component is contractible and X is path-connected. {Gi},
i = 1, ..., k + 1 is a categorical cover of X, therefore cat(X) ≤ k = dim(X).

Example A.2.3. • The projective space RP n has dimension

dim(RP n) = n. Combining this with the result in Exemple A.1.5 we have

that 2 = cupZ(RP 2) ≤ cat(RP 2) ≤ dim(RP 2) = 2. So we obtain that

cat(RP 2) = 2.

• The n-dimensional Torus T n has L-S category cat(T n) ≤ n and by Example

A.1.5 n ≤ cat(T n). This implies that cat(T n) = n.



Appendix B

The closed category

In this appendix we want to discuss the L-S category given by the minimal cate-
gorical cover of closed subsets, that we denote by catcl. In general the value of catcl

is different from the value of the L-S category defined with the open cover, but we
will show that in the specific case of the geometric realisation of a finite simplicial
complex the two values coincide. Therefore, we have that for every finite simplicial
complex K, cat(|K|) = catcl(|K|). With this aim, we will first discuss the topology
of the geometric realisation and in Section B.2 we will give the definition of closed
category and some results. Finally we will prove the main theorem about the closed
category of the realisation of a finite simplicial complex.

B.1 The topology of the geometric realisation

In this section we discuss the topology of the geometric realisation. We define
two different topologies on it and then prove that they coincide in the case of
the realisation of finite simplicial complex (even locally finite). The results in this
section refer to Chapter 2 [11], Appendix [2] and Chapter 5 in [15]. As we described
in Section 3.1, let K be a simplicial complex and K0 its set of vertices, we can
define the realisation of K as the subset

|K| = {f : K0 → R : f(K0) ⊆ [0, 1], supp(f) ∈ K,
∑
v∈K0

f(v)}

of the vector space R[K0] = {f : K0 → R : supp(f) finite} with basis the functions
v : K0 → R defined for all v′ ∈ K0 by v(v′) = 1 if v = v′ and v(v′) = 0 otherwise.
We can write an element α of the realisation as

α(v′) =
∑
v′∈K0

αvv(v′)
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for all v′ ∈ K0. Therefore the realisation of a simplex σ in K, σ = {v0, ..., vn}
where vi ∈ K0, is given by

|σ| = {
∑
v∈σ

αvv|αv ≥ 0,
∑
v∈σ

αv = 1}

where v denote a vertex in K and an element of base for the vector space R[K0],
αv ∈ R. The realisation of K, |K| can be regarded as the union of the realisations
of the simplices σ in K

|K| = ∪|σ|

We can define on |K| a topology given by the metric defined on R[K0] for all α,
β ∈ |K| by

d(α, β) = (
∑
v∈K0

(αv − βv)2)
1
2

we will denote |K|d the realisation of K equipped with the metric topology. For
all simplex σ in K the realisation |σ| is a compact subset of R[K0], moreover |σ|
is a compact and therefore closed subset of the Hausdorff space |K|d (all metric
spaces are Hausdorff).
In the text [15] we will refer to, the metric topology is called barycentric topology
and it is defined as the initial topology given by the barycentric coordinates. We
can define a map m : K0 → [0, 1]|K| such that for all vertex v in K m(v) = bv
where bv is the barycentric coordinate, that is a map from |K| to [0, 1] defined for
all φ ∈ |K| by bv(φ) = φ(v). The initial topology on |K| given by the family of
functions {bv}v∈K0 is the smallest topology τ for which each bv : (|K|, τ) → [0, 1]
is continuous, ([0, 1] is equipped by the Euclidean topology given by the Euclidean
metric on R). The barycentric topology is metrizable with the following metric

d(α, β) =
∑
v∈K0

|bv(α)− bv(β)|

that is equivalent to the one previously defined, therefore the two metrics induce
the same topology on |K|, namely |K|d.
We can also define a second topology on |K|, the so called coherent topology.
Consider |K| = ∪|σ|, then the topology coherent with the closed cover
{|σ| : σ ∈ K} of |K| is defined by

L ⊆ |K| is open (closed) in |K| ⇐⇒ L∩|σ| is open (closed) in the metric space |σ|, ∀σ ∈ K

|σ| ⊆ R[K0]. We denote by |K| the realisation of K equipped by the coherent
topology. The sets L that are open (closed) in the metric space |K|d are open
(closed) in |K| and therefore |K| is normal Hausdorff.
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Proposition B.1.1. Let L be a subcomplex of K, then the realisation |L| is a

closed subset of |K|.

Proof. |L| = ∪τ∈Lτ is a closed subset of |K| if |L| ∩ |σ| is closed in |σ| for all

σ ∈ K. Now, |σ| ∩ |τ | = |σ ∩ τ | (eventually empty if the intersection is empty)

therefore |L| ∩ |σ| = ∪τ∈L,τ⊆σ|τ | that is closed in |σ| because it is the finite union

of realisations of the faces of σ that are in L.

Moreover, since |K| has the coherent topology with respect to {|σ| : σ ∈ K}, it has
the final topology with respect to the inclusion maps i|σ| : |σ| → |K| for all σ ∈ K
(that is the finest topology that make the inclusion maps continuous). Therefore
a map f : |K| → Y is continuous if and only if fi|σ| : |σ| → Y is continuous for all
σ ∈ K. We can now define the open cells in the realisation of a simplicial complex.

Definition B.1.2. The open cell < σ > of the simplex σ in K is the subset of the

cell |σ| defined as

< σ >= {t ∈ |K| : ∀v ∈ K0, v ∈ σ ⇔ t(v) > 0}

In particular we have that |K| = ∪ < σ >, where the union is disjoint. Note that
the open cell < σ > is open in |σ| but in general is not open in |K|.

Proposition B.1.3. Consider the topologies τ , τd. Then τd ⊆ τ .

Proof. If a set is open in |K|d then it is also open is |K|, then the coherent topology

is finer then the metric topology.

Proposition B.1.4. (Theorem 2.5 [11]) Let K be a locally finite simplicial com-

plex, then |K| = |K|d. In particular the statement holds for finite simplicial com-

plexes.

Proof. If K is locally finite then {|σ| : σ ∈ K} is a locally finite closed cover of |K|d.
Then by the Glueing lemma we have that for any map f : |K|d → Y , f : |σ| → Y

is continuous for all σ ∈ K implies that f : |K|d → Y is continuous. The inclusion

maps i|σ| : |σ| → |K| are continuous for all simplices in K, therefore the identity

map id : |K|d → |K| is continuous, that is τ ⊆ τd. By Proposition B.1.3 follows

that τ = τd and so |K|d = |K|. In particular, a finite simplicial complex is locally

finite, therefore if K is a finite simplicial complex then |K|d = |K|.
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B.2 The closed category

The analogous concept of L-S category that uses closed covers has been used in
mathematics, especially in analysis. In general the closed category does not coincide
with the open L-S category. In this section we want to define the closed category
and show that in the particular case of the realisation of finite simplicial complexes
the closed and open category have the same value. In this section we denote catop

the L-S category defined with open sets and catcl the close category. The results
refer to Chapter 1 in [4] and Chapter 5,6 in [15]. The main theorem in this section,
Theorem B.2.6, is due to the author.

Definition B.2.1. Let X be a topological space, the closed category of X, catcl(X)

is the least integer k such that there is a cover of X, U0, ..., Uk of k+1 closed subsets

contractible to a point in X.

We recall the definition of ANR space and normal space.

Definition B.2.2 (Appendix A, [4]). A topological space X is normal if for each

closed set A ⊂ X and open neighbourhood U of A, there exists an open set V

with A ⊂ V ⊂ V ⊂ U .

Definition B.2.3 (Appendix A [4]). A metrizable space is an absolute neigh-

bourhood retract, ANR if for any metrizable space X and closed subset A any

continuous map f : A→ Y has an extension f ′ : U → Y for some neighbourhood

U of A ⊆ X.

Proposition B.2.4 (Proposition 1.10, [4]). If X is a normal ANR, then

catop(X) = catcl(X).

In general a topological space X has the homotopy type of a finite CW-complex
if and only if it has the homotopy type of a compact ANR. A proof and a detailed
description of this result can be found in [15] in particular from the proof in 6-20
in [15] we can deduce that if K is a finite simplicial complex then |K| is a normal
ANR, in order to prove this result we will state a lemma from [15].

Lemma B.2.5 (6-18 [15]). Let K be a simplicial complex then |K|d is an ANR.

Theorem B.2.6. Let K be a finite simplicial complex, then catop(|K|) = catcl(|K|).
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Proof. Let K be a finite simplicial complex. We showed that |K| is normal and

we know by Lemma B.2.5 that |K|d ia an ANR. Moreover, by Proposition B.1.3

|K| = |K|d. We can conclude that |K| is a normal ANR and by Proposition B.2.4

we have that catop(|K|) = catcl(|K|).
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