Extremes and sums of regularly varying observations

Bojan Basrak, University of Zagreb

PhD course Copenhagen, May 2013

based on the joint work with

Danijel Krizmanić, University of Rijeka

Johan Segers, Université catholique de Louvain

Stationary regularly varying sequences

• A stationary time series $(X_n)_n$ is said to be regularly varying if random vectors

$$(X_0,\ldots,X_k) \quad k \ge 0$$

are regularly varying for each k.

A random vector ${\bf X}$ is regularly varying with tail index α if

- $\,\triangleright\,\, \|{\bf X}\|$ is regularly varying, ie $P(\|{\bf X}\|>u)=u^{-\alpha}L(u)\,$,
- \triangleright and for $x \rightarrow \infty$

$$\frac{\mathbf{X}}{\|\mathbf{X}\|} \left\| \|\mathbf{X}\| > x \xrightarrow{d} \Theta \right\|$$

Or alternatively for $x\!\rightarrow\infty$

$$\left(\frac{\|\mathbf{X}\|}{x}, \frac{\mathbf{X}}{\|\mathbf{X}\|}\right) \Big| \|\mathbf{X}\| > x \stackrel{d}{\to} (R, \Theta)$$

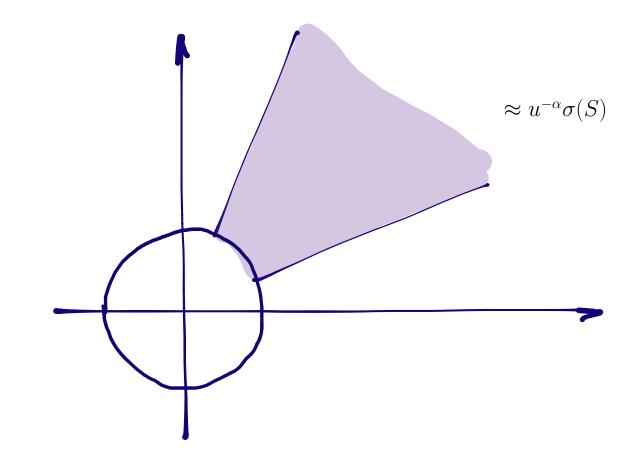
with R Pareto(α) and independent of $\Theta \sim \sigma$ on \mathbb{S}^{k-1} , thus

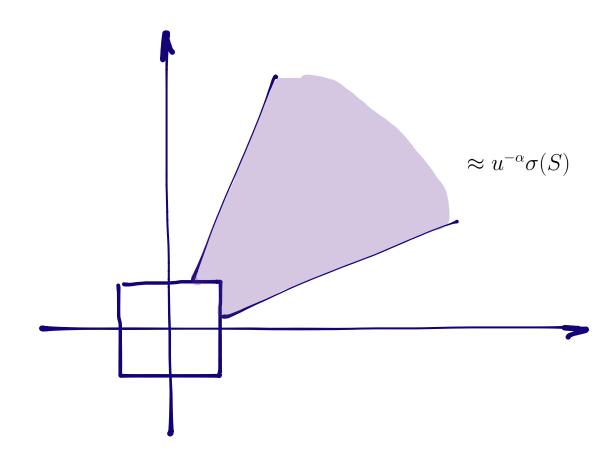
$$\frac{\mathbf{X}}{x} \Big| \, \|\mathbf{X}\| > x \xrightarrow{d} R \cdot \Theta$$

We write $\mathbf{X} \sim \mathsf{RV}(\alpha, \sigma)$.

In dimension one

$$\Theta \sim \left(\begin{array}{cc} -1 & 1 \\ q & p \end{array} \right) \, .$$





Regular variation is further equivalent to

$$\frac{P(\mathbf{X}/x \in \cdot)}{P(\|\mathbf{X}\| > x)} \stackrel{v}{\to} \mu'(\cdot),$$

as $x \to \infty$ on $\overline{\mathbb{R}}^k \setminus \{0\}$.

Note: definition is independent on the choice of norm on \mathbb{R}^k and the normalizing event can be altered, so for instance using $\|\mathbf{X}\| = \max\{|X_1|, \ldots, |X_k|\}$, this is equivalent to

$$\frac{P(\mathbf{X}/x \in \cdot)}{P(|X_0| > x)} \xrightarrow{v} C\mu'(\cdot) =: \mu(\cdot),$$

as $x \to \infty$ on $\mathbb{\bar{R}}^k \setminus \{0\}$.

Therefore for a stationary regularly varying sequence (X_t) as $x \to \infty$

$$\left(\frac{|X_0|}{x}, \frac{(X_0, \dots, X_k)}{|X_0|}\right) | |X_0| > x \stackrel{d}{\to} (R, (\theta_0, \dots, \theta_k))$$

with $R \sim \text{Pareto}(\alpha)$ and independent of $(\theta_0, \ldots, \theta_k)$ which is not necessarily \mathbb{S}^k -valued any more.

Thus, for each $\boldsymbol{k}>\boldsymbol{0}$

$$\frac{(X_0, \dots, X_k)}{x} \Big| |X_0| > x \stackrel{d}{\to} R(\theta_0, \dots, \theta_k)$$

=: (Y_0, \dots, Y_k)

Clearly

$$|\theta_0| = 1 \quad \text{and} \quad |Y_0| = R$$

By construction, distributions of $(\theta_0, \ldots, \theta_k)$ and (Y_0, \ldots, Y_k) satisfy Kolmogorov's consistency critera and therefore there exists a **tail process**

 $(Y_t)_{t\in\mathbb{Z}}$

such that

$$\left(\frac{X_t}{x}\right)_{t\in\mathbb{Z}} \left| |X_0| > x \stackrel{d}{\to} (Y_t)_{t\in\mathbb{Z}} \right|$$

and a spectral tail process

$$(\theta_t)_{t\in\mathbb{Z}}$$

independent of $|Y_0|$ such that

$$(Y_t)_t \stackrel{d}{=} |Y_0|(\theta_t)_t$$

Note there exists a sequence (a_n) such that

$$nP(|X_0| > a_n u) \to u^{-\alpha}$$

for u > 0 and

$$\left(\frac{X_t}{a_n}\right)_{t\in\mathbb{Z}} \left| |X_0| > a_n \xrightarrow{d} (Y_t)_{t\in\mathbb{Z}}.\right.$$

Examples (for simplicity, all nonnegative i.e. $\theta_0 = 1$)

a)
$$X_t = X \sim \mathsf{RV}(\alpha), \quad \theta_t = 1$$
, for all t .
b) $X_t \text{ iid } \mathsf{RV}(\alpha), \quad \theta_t = 0$, for $t \neq 0$.
c) $X_t = Z_t \lor Z_{t-1}, Z_t \text{ iid } \mathsf{RV}(\alpha), \quad \theta_t = 0$, for $|t| \ge 2$
 $(\theta_{-1}, \theta_0, \theta_1) \sim \begin{cases} (1, 1, 0) & \text{with prob. } 1/2 \\ (0, 1, 1) & \text{with prob. } 1/2 \end{cases}$

d)
$$X_t = Z_t + \frac{1}{2}Z_{t-1}$$
, $Z_t \text{ iid } \mathsf{RV}(\alpha)$, $\theta_t = 0$, for $|t| \ge 2$
 $(\theta_{-1}, \theta_0, \theta_1) \sim \begin{cases} (0, 1, \frac{1}{2}) & \text{with prob.} & p = 1/(1 + (1/2)^{\alpha}) \\ (2, 1, 0) & \text{with prob.} & 1 - p \end{cases}$

e) $X_t = A_t X_{t-1} + B_t$, with (A_t, B_t) iid satisfying Kesten's (1973) conditions, $X_t \sim \mathsf{RV}(\alpha)$ and for t = 0, 1, 2, ...

$$\theta_t = A_t A_{t-1} \cdots A_1.$$

There is a subtle and somewhat startling connection between the past and the future of the tail process, so for instance

$$P(\theta_{-t} \neq 0) = E |\theta_t|^{\alpha}.$$

Point processes

Point process is a random Radon point measure, i.e. mapping

$$N: \Omega \to M_p$$

where M_p denotes a set of point measures on some fixed state space $\mathbb{E}.$ For $m\in M_p$

$$m = \sum_{i} \delta_{x_i}.$$

Hence

$$\int f dm = \sum_{i} f(x_i) =: f(m)$$

However, M_p needs topology and even more desperately, a σ -algebra. Vague topology is introduced by

$$m_n \xrightarrow{v} m$$

if

$$f(m_n) \to f(m).$$

for all f cont. with compact supp.

Poisson point process (PRM) N with intensity measure μ satisfies

 $\, \vartriangleright \ N(A) \sim {\rm Poisson}(\mu(A)) \ {\rm for \ all} \ A \, ,$

 $\rhd N(A_1), N(A_2), \ldots, N(A_k)$ are independent for all disjoint A_1, A_2, \ldots, A_k

Note

$$N_n \xrightarrow{d} N$$

again means

$$Ef(N_n) \xrightarrow{d} Ef(N)$$

for any bounded f continuous in vague topology.

Distribution of the point process

$$N = \sum_i \delta_{P_i}$$

is uniquely determined by Laplace functionals of the form

$$E^{-f(N)} = Ee^{-\sum_i f(P_i)},$$

for $f \in C_K^+$

Laplace functionals of $N \sim \mathsf{PRM}(\mu)$ take form

$$E^{-f(N)} = \exp\left[-\int_{E} (1 - e^{f(x)}) d\mu(x)\right],$$

for $f \in C_K^+$

For our stationary and regularly varying sequence (X_i) consider

$$N_n = \sum_{i=1}^n \delta_{(i/n, X_i/a_n)},$$

on the space

$$\mathbb{E} = [0,1] \times \overline{\mathbb{R}} \setminus \{0\}.$$

To check

$$N_n \xrightarrow{d} N = \sum_i \delta_{(T_i, P_i)}$$

one can use Laplace functionals and show

$$Ee^{-f(N_n)} \xrightarrow{d} Ee^{-f(N)}$$

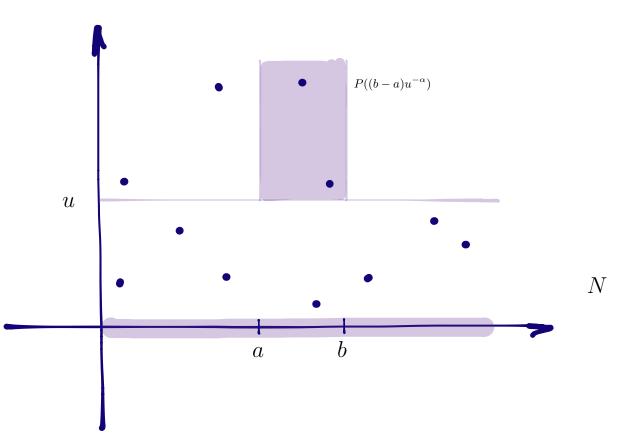
ie

$$E \exp\left\{-\sum_{i} f\left(\frac{i}{n}, \frac{X_{i}}{a_{n}}\right)\right\} \xrightarrow{d} E \exp\left\{-\sum_{i} f\left(T_{i}, P_{i}\right)\right\}$$

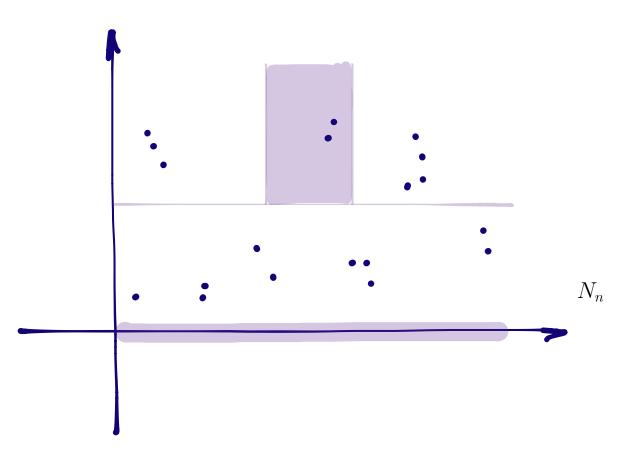
for all f nonnegative continuous with relatively compact support ie $f \in C_K^+$.

Theorem For iid
$$\mathbf{X}_t$$
, $\mathbf{X}_0 \sim \mathsf{RV}(\alpha, \sigma)$ is equivalent to

$$\sum_{1}^{n} \delta_{\frac{i}{n}, \frac{\mathbf{X}_i}{a_n}} \stackrel{d}{\to} N,$$
where N is PRM(Leb× μ).



Extremes of dependent sequences cluster



Main idea: try to break the series into "nearly independent blocks" of size

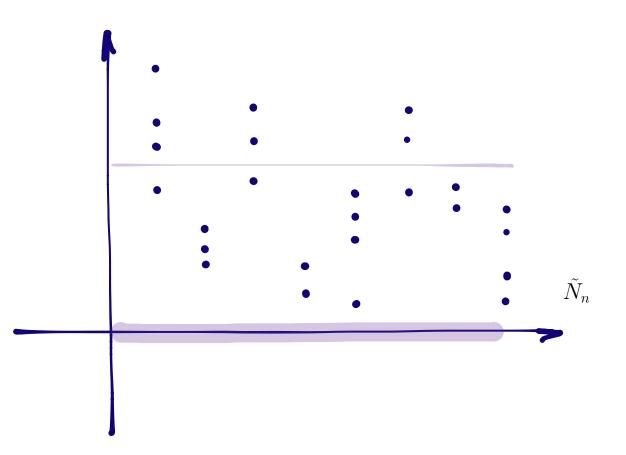
$$r_n, \quad r_n \to \infty, \quad \frac{n}{r_n} \to \infty,$$

so that for $k_n = \lfloor n/r_n \rfloor$

$$N_n \stackrel{d}{\approx} N_1^{r_n} + \dots + N_k^{r_n} =: \tilde{N}_n$$

for independent

$$N_j^{r_n} \stackrel{d}{=} \sum_{i=1}^{r_n} \delta_{(jr_n/n, X_i/a_n)}$$



Weak dependence condition

or $\mathcal{A}'(a_n)$ condition

WDC Following Davis and Hsing (1995) we introduce the following condition (implied by strong mixing): for some r_n and all f as above

$$Ee^{-f(N_n)} + o(1) = Ee^{-f(\tilde{N}_n)} = Ee^{-[f(N_1^{r_n}) + \dots + f(N_k^{r_n})]} = \prod_{j=1}^{k_n} Ee^{-f(N_j^{r_n})}$$

Therefore it is sufficient to study clusters with a fixed time coordinate. Note $f \in C_K^+$ has a support on $|x| > \varepsilon$ for some $\varepsilon > 0$, thus

$$Ee^{-f(N^{r_n})} = Ee^{-\sum_{1}^{r_n} f(X_i/a_n)}$$

= $P(M_{r_n} \le a_n \varepsilon)$
+ $E\left(e^{-\sum_{1}^{r_n} f(X_i/a_n)} \middle| M_{r_n} > a_n \varepsilon\right) \cdot P(M_{r_n} > a_n \varepsilon)$

where $M_{r_n} = \max\{|X_1|, \ldots, |X_{r_n}|\}.$

Understanding asymptotics of extremes boils down to understanding behavior of the two terms on the rhs.

Or at least

$$\triangleright \quad E\left(\sum_{1}^{r_n} \mathbb{I}_{|X_i|>a_n} \middle| M_{r_n}>a_n\right)$$

$$\triangleright P\left(\sum_{1}^{r_n} \mathbb{I}_{|X_i|>a_n} \ge k \mid M_{r_n} > a_n\right)$$

First, we need to restrict dependence within the cluster

Finite mean cluster size condition

or anti-clustering condition

FCC The high level exceedances are not clustering for "too long":

$$\lim_{m \to \infty} \limsup_{n \to \infty} P\left(\bigvee_{m \le |i| \le r_n} |X_i| > a_n u \middle| |X_0| > a_n u\right) = 0, \quad u > 0.$$
(1)

Clusters via tail process

Under FCC the tail process satisfies

$$|Y_m| \stackrel{P}{\to} 0, \quad \text{as } |m| \to \infty.$$

Just note

$$P(|Y_m| \ge \varepsilon) = \lim_{n \to \infty} P(|X_m|/a_n > \varepsilon | |X_0| > a_n)$$

and take $\lim_{m\to\infty}$

Moreover,

 $k_n P(M_{r_n} > a_n) \to \theta > 0.$

where θ is ...

Extremal index

of the sequence $|X_t|$

Really $\frac{1}{k_n P(M_{r_n} > a_n)} \sim \frac{n P(|X_0| > a_n)}{k_n P(M_{r_n} > a_n)} \sim \frac{k_n E\left(\sum_{1}^{r_n} \mathbb{I}_{|X_i| > a_n}\right)}{k_n P(M_{r_n} > a_n)}$ $= E\left(\sum_{1}^{r_n} \mathbb{I}_{|X_i| > a_n} \middle| M_{r_n} > a_n\right) \rightarrow \frac{1}{\theta}$ Alternatively (O'Brien)

$$\theta = \lim_{n \to \infty} P(|X_1|, \dots, |X_{r_n}| \le a_n | |X_0| > a_n)$$

=
$$\lim_{n \to \infty} P(|X_{-r_n}|, \dots, |X_{-1}| \le a_n | |X_0| > a_n)$$

which gives

$$\theta = P(\bigvee_{i \ge 1} |Y_i| \le 1) = P(\bigvee_{i \le -1} |Y_i| \le 1)$$

Examples

a) $X_t \text{ iid } \mathsf{RV}(\alpha)$, $\theta = 1$. b) $X_t = Z_t \lor Z_{t-1}$, $\theta = 1/2$. c) $X_t = A_t X_{t-1} + B_t$, as above $\theta = P(\sup_{t \ge 1} A_t \cdots A_1 | Y_0 | \le 1)$ $= E\left(1 - \sup_{t \ge 1} [A_t \cdots A_1]^{\alpha}\right)_+$

cf de Haan et al (1989)

Observe that $\boldsymbol{\theta}$ also has the following property

$$P\left(\frac{M_n}{a_n} \le x\right) \to e^{-\theta x^{-\alpha}}$$

although

$$nP(|X_0| > a_n x) \to x^{-\alpha}$$

Formally

$$k_n P(M_{r_n} > a_n x) \to \theta x^{-\alpha}$$

follows from WDC, FCC and stationarity, since

$$k_n \sum_{j=1}^{r_n} P(|X_j| > a_n x, |X_1|, \dots, |X_{j-1}| \le a_n x)$$

$$= k_n \sum_{j=m+1}^{r_n} P(|X_j| > a_n x, |X_{j-1}|, \dots, |X_{j-m}| \le a_n x) + o(1)$$

$$= k_n (r_n - m) P(|X_0| > a_n x, |X_1|, \dots, |X_m| \le a_n x) + o(1)$$

$$= n P(|X_0| > a_n x, M_m \le a_n x) + o(1)$$

$$= P(M_m \le a_n x \mid |X_0| > a_n x) \cdot n P(|X_0| > a_n x) + o(1)$$

$$\to \theta x^{-\alpha}.$$

Note

$$\begin{split} &P\left(\sum_{1}^{r_{n}} \mathbb{I}_{|X_{i}|>a_{n}} \geq k \middle| M_{r_{n}} > a_{n}\right) \\ &= \frac{\sum_{i=1}^{r_{n}-m} P\left(|X_{i}|>a_{n} \text{ and } \sum_{j=i}^{i+m} \mathbb{I}_{|X_{j}|>a_{n}} = k\right)}{P(M_{r_{n}}>a_{n})} + o(1) \\ &= \frac{r_{n} P(|X_{0}|>a_{n}) P\left(\sum_{0}^{m} \mathbb{I}_{|X_{j}|>a_{n}} = k \middle| |X_{0}|>a_{n}\right)}{P(M_{r_{n}}>a_{n})} \frac{k_{n}}{k_{n}} + o(1) \\ &\to \frac{1}{\theta} P(\sum_{1}^{\infty} \mathbb{I}_{|Y_{j}|>1} = k) \\ &= \frac{1}{\theta} \left(P(\sum_{0}^{\infty} \mathbb{I}_{|Y_{j}|>1} \geq k) - P(\sum_{0}^{\infty} \mathbb{I}_{|Y_{j}|>1} \geq k + 1) \right) \end{split}$$

Similarly, if
$$f(x) = 0$$
 for $|x| \le 1$
 $E\left(e^{-\sum_{1}^{r_{n}} f(X_{i}/a_{n})} \middle| M_{r_{n}} > a_{n}\right)$
 $\rightarrow \frac{1}{\theta}\left(Ee^{-\sum_{0}^{\infty} f(Y_{i})} - Ee^{-\sum_{1}^{\infty} f(Y_{i})}\mathbb{I}_{\sup_{j\ge 1}|Y_{j}|\ge 1}\right)$

In general

$$E\left(e^{-\sum_{1}^{r_{n}}f(X_{i}/a_{n})}\middle|M_{r_{n}} > a_{n}\right)$$

$$\rightarrow E\left(e^{-\sum_{-\infty}^{\infty}f(Y_{i})}\middle|\sup_{j<0}|Y_{j}| \le 1\right) = E\left(e^{-\sum_{-\infty}^{\infty}f(Z_{i})}\right)$$

Formally, this means there is a point process

$$\sum \delta_{Z_i} \stackrel{d}{=} \left(\sum \delta_{Y_i}\right) \left|\sup_{j<0} |Y_j| \le 1$$

such that

$$\sum_{i=1}^{r_n} \delta_{X_i/a_n} | M_{r_n} > a_n \xrightarrow{d} \sum_{i=1}^{\infty} \delta_{Z_i}$$

Main result

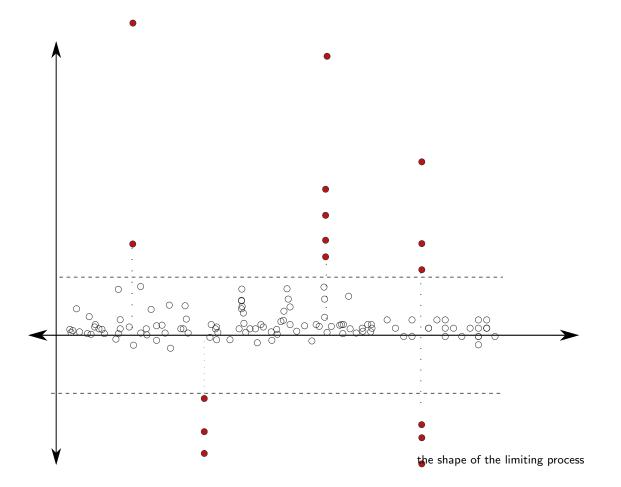
krizmanić, segers, b. (2012)

Theorem Under WDC and FCC, for every u > 0 and as $n \to \infty$,

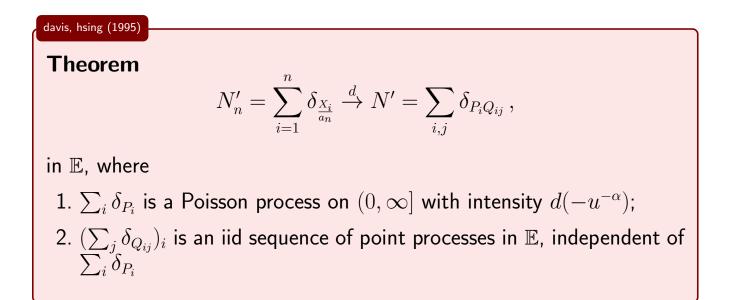
$$N_n \stackrel{d}{\to} N = \sum_{i,j} \delta_{(T_i^{(u)}, uZ_{ij})} \big|_{\mathbb{E}_u},$$

in $\mathbb{E}_u = [0,1] \times \{x : |x| > u\}$, where

- 1. $\sum_i \delta_{T_i^{(u)}}$ is a homogeneous Poisson process on [0,1] with intensity $\theta u^{-\alpha};$
- 2. $(\sum_j \delta_{Z_{ij}})_i$ is an iid sequence of point processes in \mathbb{E} , independent of $\sum_i \delta_{T_i^{(u)}}$



If you are willing to forget time coordinate



Functional limit theorems

Recall

▶ A stationary time series $(X_n)_n$ is said to be regularly varying if random vectors

$$(X_0,\ldots,X_k) \quad k \ge 0$$

are regularly varying for each k.

There exists a tail process

 $(Y_t)_{t\in\mathbb{Z}}$

such that

$$\left(\frac{X_t}{x}\right)_{t\in\mathbb{Z}} \left| |X_0| > x \stackrel{d}{\to} (Y_t)_{t\in\mathbb{Z}} \right|$$

and a spectral tail process

$$(\theta_t)_{t\in\mathbb{Z}}$$

independent of $\left|Y_{0}\right|$ such that

 $(Y_t)_t \stackrel{d}{=} |Y_0|(\theta_t)_t$

For our stationary and regularly varying sequence (X_i) consider

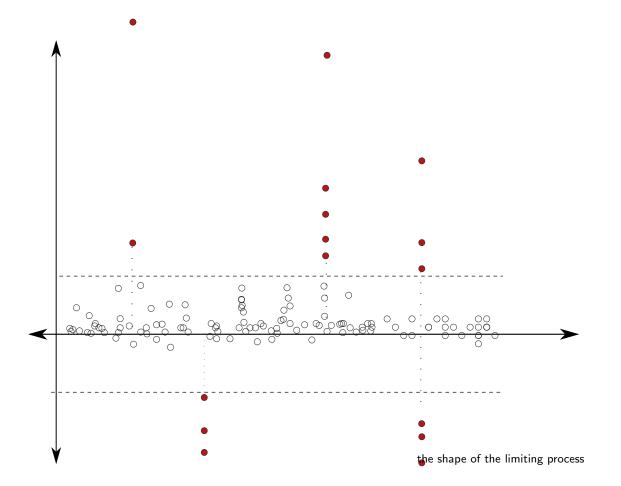
$$N_n = \sum_{i=1}^n \delta_{(i/n, X_i/a_n)},$$

Then under weak dependence conditions

$$N_n \xrightarrow{d} N$$

Where

- ▶ $N \sim \mathsf{PRM}(Leb \times \mu)$ in iid case
- \blacktriangleright N has clusters governed by the tail process in general



For a (stationary) sequence X_1, X_2, \ldots , partial sums

$$S_n = X_1 + \dots + X_n, \quad n \in \mathbb{N}$$

form a random walk.

For iid steps with $\mu = EX_1$ and $\sigma^2 = \text{var}X_1 < \infty$ it satisfies central limit theorem, i.e. with $W \sim N(0, \sigma^2)$

$$\frac{1}{\sqrt{n}}\left(S_n - n\mu\right) \stackrel{d}{\to} W$$

There are other possible limits for (S_n) , these are so-called **stable distributions**.

Recall, Y is stable if for iid $Y_1, Y_2, \ldots \stackrel{d}{=} Y$ and any n there exist a_n, b_n such that

$$Y_1 + \dots + Y_n \stackrel{d}{=} a_n Y + b_n.$$

Then $a_n = n^{1/\alpha}$, with $\alpha \in (0, 2]$ so we call Y α -stable.

Brownian motion $(W_t)_t$ is a random process satisfying

▶
$$W_0 = 0$$
 a.s.

▶ path $t \mapsto W_t$ is a.s. continuous

• increments $W_t - W_s$, s < t on disjoint intervals are independent and satisfy

$$W_t - W_s \sim N(0, t - s)$$

It is also an example of Lévy process, which

- ► start at zero
- ► have càdlàg paths
- ▶ and stationary independent increments.

Brownian bridge is given by

$$B_t = W_t - tW_1, \quad t \in [0, 1].$$

Scaling limits for random walks and e.d.f. of iid sequence X_1,X_2,\ldots with $b_n=n\mu$ are

$$\frac{1}{\sqrt{n}} \left(S_{\lfloor nt \rfloor} - b_n t \right) \stackrel{d}{\to} \left(W_t \right)$$

or

$$\sqrt{n}\left(\hat{F}_n - F\right) \stackrel{d}{\to} B$$

(3)

Recall, in a space ${\cal S}$

$$V_n \xrightarrow{d} V$$

stands for

$$Ef(V_n) \to Ef(V)$$

for all f bounded, continuous on S.

Recall, on metric space $\mathcal{S},\ f:\mathcal{S}\rightarrow\mathbb{R}$ is continuous if

$$s_n \rightarrow s$$
,

implies

$$f(s_n) \to f(s)$$
.

Intuitively, stronger metric \implies there are fewer convergent sequences \implies there are more continuous functions \implies stronger notion of convergence in distribution.

Naturally, in our case $\mathcal{S}=D[0,1]$, but we need to pick topology

very carefully.

Uniform topology (used by Donsker) causes all kinds of trouble.

Two ways around this

Shorohod gave

 \triangleright several very intuitive metrics on D[0,1]

 \triangleright among them, everybody's favourite is J_1 .

Dudley suggested

 \triangleright don't use σ -algebra generated by open sets

 \triangleright or even check $Ef(V_n) \to Ef(V)$ for some smaller, but sufficiently rich class of functions.

We study the process

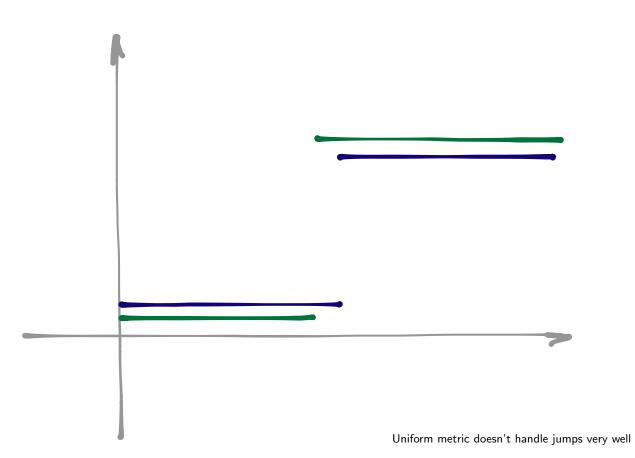
$$S_{\lfloor nt \rfloor} = \sum_{i=1}^{\lfloor nt \rfloor} X_i, \quad t \in [0,1].$$

It can be viewed as a random element in the space of cadlag functions D[0,1], which needs to be equipped with topology.

For two càdlàg functions f and g on [0,1] set

$$d_{J_1}(f,g) = \inf_{\lambda} \max\left\{ \|f \circ \lambda - g\|_{\infty}, \|\lambda - \mathsf{id}\|_{\infty} \right\}$$

where the infimum is taken over increasing and continuous mappings $\lambda:[0,1]\to[0,1].$



Functional limit theorem

in J_1 metric

skorohod

Theorem

For (X_i) iid RV(α) with $\alpha \in (0, 2)$ and an α -stable Lévy process V_{α} $\frac{S_{\lfloor nt \rfloor} - \lfloor nt \rfloor b_n}{a_n} \xrightarrow{d} V_{\alpha}(t) \qquad (n \to \infty),$

in D[0,1] endowed with the J_1 topology.

A few words about the proof

For point measures

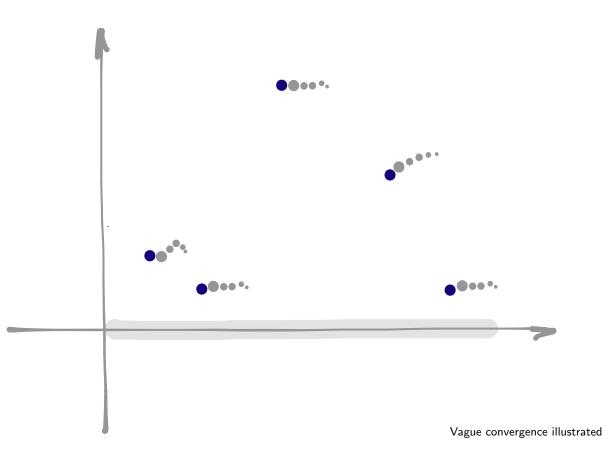
$$m_n \xrightarrow{v} m \in M_p$$

means that on each compact K with $m(\partial K)=0,$ there is $n_0,$ such that for $n\geq n_0$

$$m_n \big|_K = \sum_{i=1}^k \delta_{x_i^n}$$
 and $m \big|_K = \sum_{i=1}^k \delta_{x_i}$

and

$$(x_1^n,\ldots,x_k^n) \to (x_1,\ldots,x_k)$$



▶ Introduce the sum functional $m \to \Psi_m$ mapping M_p to D[0,1]

$$\Psi_m(t) = \sum_{t_i \leq t} x_i, \quad \text{ where } m = \sum_{i=1}^{\infty} \delta_{t_i, x_i}$$

Clearly

$$\Psi_{N_n}(t) = S_{\lfloor nt \rfloor} = \sum_{i=1}^{\lfloor nt \rfloor} X_i, \quad t \ge 0.$$

• Apply contin. map. thm. to show that on $K = [0, 1] \times (-\varepsilon, \varepsilon)^c$

$$m_n \xrightarrow{v} m \implies \Psi_{m_n|_K} \to \Psi_{m|_K}$$

in appropriate metric, whenever $m \in M' \subset M_p$.

In this case M' is a set of point measures

$$m = \sum_{i=1}^{\infty} \delta_{t_i, x_i}$$

such that

$$m(\{t\} \times (-\varepsilon, \varepsilon)^c) \le 1$$

and

$$m([0,1],\times\{-\varepsilon,\varepsilon\})=0$$

▶ But the limiting point process is PRM, thus

$$P(N \in M') = 1$$

• Apply standard approximation argument to let $\varepsilon \to 0$.

What about dependent steps?

The sums were considered by many: e.g. Denker & Jakubowski (1989), Davis & Hsing (1995), Davis & Mikosch (1998), Bartkiewicz et al. (2009)

Partial results exist on the functional level too

If dependence is very week, that is if $\theta = 1$ and extremes do not cluster at all, the convergence result still holds. – Leadbetter and Rootzén (1988); Tyran-Kamińska (2009).

For moving average processes, e.g.

$$X_n = c_0 Z_n + c_1 Z_{n-1} + \dots + c_m Z_{n-m}$$

things can go wrong, and J_1 topology does not work – Avram & Taqqu (1992).

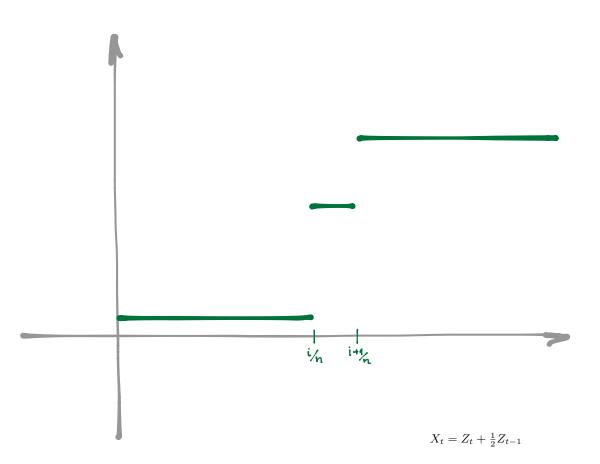
They can still save it under additional assumption that all the coefficients c_i have the same sign using M_1 topology.

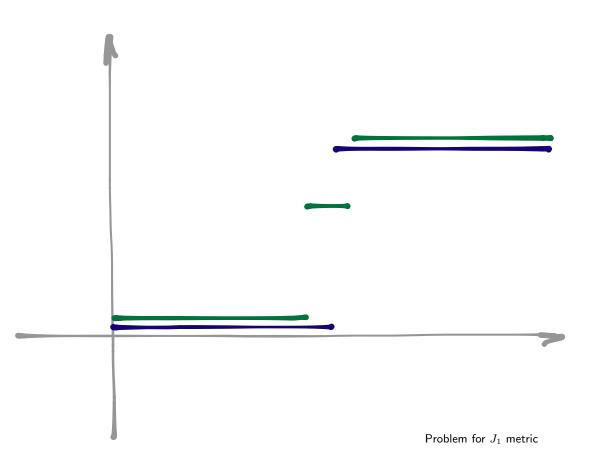
Examples

a) $X_t = Z_t \vee Z_{t-1}$, $Z_t \text{ iid } \mathsf{RV}(\alpha)$,

b) $X_t = Z_t + \frac{1}{2}Z_{t-1}$, Z_t iid RV(α),

c) $X_t = A_t X_{t-1} + B_t$, with (A_t, B_t) iid nonnegative satisfying Kesten's conditions.





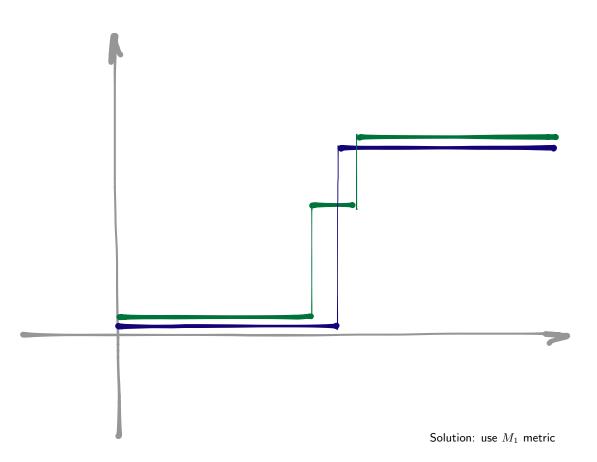
Solution: use M_1 metric, distance between functions f and g is measured by comparing completed graphs Γ_f and Γ_g

$$\Gamma_f = \{(t, x) : x = f(t) \text{ or } x \in [f(t-), f(t)]\}$$

and

$$d_{M_1}(f,g) = \inf_{\lambda_f,\lambda_g} \max \|\lambda_f - \lambda_g\|_{\infty}$$

where infimum is taken over continuous and increasing parametrizations of λ_f, λ_g .



Assumptions

some old, one new

Assume (X_n) is a stationary regularly varying sequence with $\alpha < 2$ satisfying WDC and FFC

suppose further

▶ its tail process has no two values of the opposite signs a.s.

Functional limit theorem

in M_1 metric

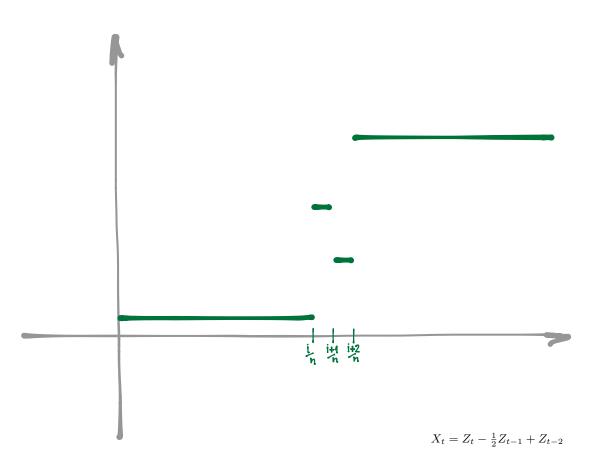
krizmanić, segers, b. (2012)

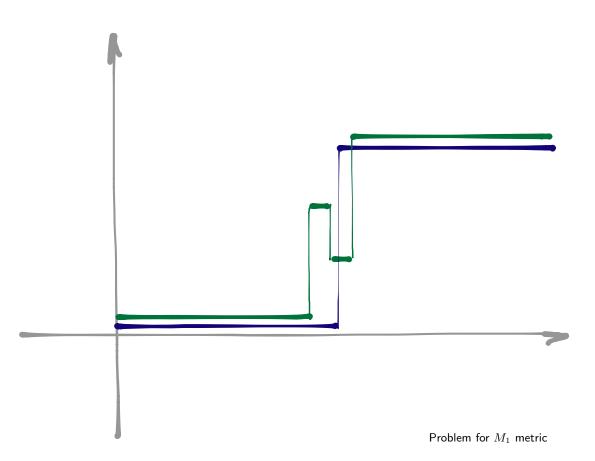
Theorem

Under the assumptions, there is an α -stable Lévy process V_{α} such that

$$\frac{S_{\lfloor nt \rfloor} - \lfloor nt \rfloor b_n}{a_n} \xrightarrow{d} V_{\alpha}(t) \qquad (n \to \infty),$$

in D[0,1] endowed with the M_1 topology.





Assumptions

Assume (X_n) is a stationary regularly varying MA sequence with $\alpha < 2$ satisfying

$$X_{n} = c_{0}Z_{n} + c_{1}Z_{n-1} + \dots + c_{m}Z_{n-m}$$

such that for all \boldsymbol{j}

$$0 \le \sum_{i=1}^{j} c_i \le \sum_{i=1}^{m} c_i$$

Functional limit theorem

in M_2 metric

krizmanić, b. (2013)

Theorem

Under the assumptions, there is an α -stable Lévy process V_{α} such that

$$\frac{S_{\lfloor nt \rfloor} - \lfloor nt \rfloor b_n}{a_n} \xrightarrow{d} V_{\alpha}(t) \qquad (n \to \infty),$$

in D[0,1] endowed with the M_2 topology.

To remember

A stationary regularly varying sequence (X_t)

- \triangleright has a tail process (Y_t)
- \triangleright the clusters of extremes can be described by (Y_t)
- \triangleright point processes N_n have a limit characterized by (Y_t)
- ▷ random walks with steps (X_t) have an α -stable limit for $\alpha \in (0, 2)$ but in strange topologies on D[0, 1].

Related

an incomplete list

- Extremogram (Davis, Mikosch)
- Cluster functionals (Yun, Segers)
- ▷ Large deviations (Mikosch, Wintenberger)
- Markov chains, duality and time change formula (Rootzén, Segers, Janssen)
- ▷ Other failure sets and Banach spaces (Hult, Lindskog, Segers, Meinguet)