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1. Introduction: density power divergence

e Basu, Harris, Hjort and Jones (1998): density power divergence between
density functions f and g

Rl - A+ 2) ) f ) + 2 (y)] dy,  a >0,
Aalf,9) = { Jolog L £ (y)dy, a=0.

e Assume that the density function g depends on a parameter vector 6

Let Y7,...,Y,, be a independent and identically distributed (i.i.d.) random
variables according to density function f.

The minimum density power divergence (MDPD) estimator is the value
of 6 minimizing the empirical density power divergence. For a > 0:

Aa(e) — /RgHa(y)dy — (1 + é) ;Zn:g“(Yi),
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and for a = 0:

~ 1 <
No(0) := == logg(Y),
=1

n “

Note: for & = 0 the method corresponds to fitting the density function g with
the maximum likelihood method.

e The parameter o controls the trade-off between efficiency and robustness
of the MDPD estimator:

the estimator becomes more efficient but less robust against outliers as o gets
closer to zero,

whereas for increasing o the robustness increases and the efficiency decreases.
e \We want to use the MDPD method to obtain a robust nonparametric and

asymptotically unbiased estimation method for Pareto-type distributions
when there are random covariates.
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1. Introduction: Pareto-type distribution

e A distribution function F' is said to be of Pareto-type if for some v > 0

1— Fly) =y 74y), y>0, (1)

with £ a slowly varying function at infinity :

40
(Ay) »lasy — o0, VA>O0.
£(y)

e ~: extreme-value index First order tail parameter

e Example: strict Pareto, F', Burr, |t

, log-gamma, . ..

e Estimation of « has received a lot of attention. Classical estimators are

non-robust and typically show an asymptotic bias. See Beirlant et al.
(2004) and de Haan and Ferreira (2006)
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e Robust estimation:

Judrez and Schucany (2004), Kim and Lee (2008), Vandewalle and Beirlant
(2007), Pend and Welsh (2001), Hubert et al. (2012), . ..

Dierckx et al. (2013): fit the extended Pareto distribution with the MDPD
technique

— Robust and asymptotically unbiased
— Asymptotic properties are available
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e Extension to regression case: assume that together with Y we observe a
random covariate X

F(y;x): conditional distribution function of the response variable Y given
X =z,

b(z): density function of X € RP.
F(y;x) is assumed to be of Pareto-type, i.e. there exists a positive function

v(z) such that F(y;z) := 1 — F(y;x) is of the form

Fly;z) =y "Wy ), y >0, (2)

~v(z) describes the tail heaviness of F'(y;x) and has to be adequately estimated
from the data.

We use here a nonparametric approach based on local estimation.
Local estimation: Daouia et al. (2011)
Local asymptotically unbiased estimation: Goegebeur et al. (2013)

But: these procedures are not robust!
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2. Estimation procedure

The theoretical study of estimators for vy(x) generally requires a second order
condition.

Condition (R). Let y(z) > 0 and p(r) < O be constants. The conditional
distribution function F(y;x) is such that y'/" @ F(y;2) — C(z) € (0,00) as
y — oo and the function (.;x) defined via

F(y; o) = Ca)y™ 7D (1 4 y(x) " o(y; 2)),
is ultimately nonzero, of constant sign and |0| € RV, /~(x), I-€.

o(ty; x)
o(t; x)

— yP@/(®) 95t s 00, Vy > 0.

Taking this second order structure into account during the estimation phase allows
to obtain bias-corrected estimators.
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Consider the extended Pareto distribution (Beirlant et al., 2004, Beirlant et
al., 2009), with distribution function given by

1—[z2(1+8—=82/N" V7, 2>1,
Gz ={ ) o €

and density function

LS = 2T 8L - (L4 p/7)2 )] 2> 1,
z <1,

where v > 0, p < 0, and § > max{—1,~v/p}.
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For distribution functions satisfying (R), one can approximate the conditional
distribution function of Z := Y /u, given that Y > u, where u denotes a threshold
value, by the extended Pareto distribution:

Fluz;z) . ,
Pl G(z;v(z), 6(u; x), p(x))

for large wu.

Formally, as shown in Beirlant et al. (2009), one has that

F(uz; x)
sup |—
>1 | F(u;x)

— G(z;9(x),0(u; x), p(x))| = o(d(u; x)), if u— oc.

Estimation of ~(x): Let (X;,Y;), ¢ = 1,...,n, be independent realizations of
the random vector (X,Y) € R? x R, o, where X has a distribution with joint
density function b, and F(y; x) satisfies (R).
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Fit g locally to the relative excesses Z; := Y;/u,, ¢ = 1,...,n, by MDPD,
adjusted to locally weighted estimation, i.e. we minimize

o0 1 N
— > Kp,(z — X)) {/ g (25,6, p)dz — (1 + ;) 9" (Zi; 7, 6, p)} 1{Y; > u,},
. 1
In case a > 0 and
—~ 1
Ao(fy? 5; p) = _; Z I{hn(a3 - XZ) lng(Zz'; Y 57 p)l{}/; > un}a
=1

in case @ = 0,

where

Ky, () := K(z/hy)/hP, K is a joint density function on RP,

h,, is a positive non-random sequence of bandwidths with h,, — 0 if n — oo,

Uy, Is a local non-random threshold sequence satisfying u,, — oo if n — oc.
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The MDPD estimator for (v(x),d(u,;x)) satisfies the estimating equations

0 = _ZKhn r— X;)1{Y; > un}/ (25,0, p) 89(2];;; d 'O)dz
1 0 Zi; ,5,
S Ko = X0 8. Iy sy,
n = 0y
0 = —ZKh r— X;)1{Y; > un}/ (25,0, p) (99(2;875, ° p)dz

1 0 Zw 757

Note:
Only v(x) and §(uy;x) are estimated by the MDPD method.

The rate parameter p(x) will either be fixed or estimated externally in a
consistent way.
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3. Asymptotic properties

For all x1,zo € RP, the Euclidean distance between x; and x5 is denoted by
d(xy,2).

Assumption (B) There exists ¢, > 0 such that |b(x1) — b(z2)| < cpd(x1,22) for
all x1, xo € RP.

Assumption () K is a bounded density function on RP, with support ) included
in the unit hypersphere in RP.
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We also need to control the oscillation of F'(y;x) when considered as a function
of its second argument.
X = :1:] :

Assumption (M) The function m(u,,, s, t; x) satisfies that, for u,, — oo, h,, — 0,
and some S <0 andT > 0,

Consider the conditional expectation

() (2 107

m(un, s, t;z) :=E

with s <0, ¢t > 0.

m(Un, S, t; ¢ — hyp2)

m(Un, S, t; 1)

D (U, hnj ) 1= sup sup
(s,£)€[S,0]x[0,T] €€

—1‘—>Oifn—>oo.
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e Case 1: py(x) known

Theorem 1. (Existence and consistency) Let (X1,Y7),...,(X,,Y,) be a
sample of independent copies of the random vector (X,Y) where Y| X = x
satisfies (R), X ~ b, and assume (B), (K) and (M) hold. For all z € RP where
b(z) > 0, we have that if h,, — 0, u, — oo with nhP? F(u,;xz) — oo, then
with probability tending to 1 there exists sequences of solutions (4, (z), on(x))
of the estimating equations (4) and (5), with p fixed at po(x), such that

(%($),5n(£€)) AN (v0(x),0), as n — oo.
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Theorem 2. (Asymptotic normality) Let (X1,Y7),...,(X,,Y,) be a

sample of independent copies of the random vector (X,Y) where Y|X = x
satisfies (R), X ~ b, and assume (B), (K) and (M) hold.

Consider (4, (x),0,(x)), a consistent sequence of estimators for (vo(z),0)
satisfying (4) and (5), with p fixed at po(x).

For all x € RP where b(x) > 0, we have that if h, — 0, u, — oo with
nhP F(upn; ) — 00, /nhh F(un; £)0(un; ) — X € R, \/nhh F(uy; )h, — 0,
and \/nhh F(up; 2)®(un, hp; ) — 0, then

\/ nhh F(un; x)b(x) 5:@;6)__525535)

~> N2 (0, C™*(po(2))B(po(2)) = (po())B (po(2))C~ (po(2)))-

— Bias-corrected!
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e Case 2: p fixed at some value p(z) <0

Proposition 1. Let (X1,Y1),...,(X,,Ys) be a sample of independent copies
of the random vector (X,Y) where Y|X = x satisfies (R) and assume the
parameter p is fixed at p(x) in (4) and (5). Suppose also that X ~ b, and
assume (B), (M) and (K) hold. For all x € RP where b(x) > 0, we have
that if h, — 0, u, — oo with nh? F(u,;x) — oo, when n — oo, then with
probability tending to 1 there exists sequences of solutions (4n(z),0n(x)) of
the estimating equations (4) and (5) such that (4, (), on(z)) 5 (Yo(x), 0).

If additionally \/nhhF (un;x)6(tn;x) — X € R, \/nhhF (un;x)h, — 0, and
/BB E (U 2)®(wp, hp; ) — 0, then

. [ i) 20le) ] o Na(= AT () B(3(x))D,

C™(p(x))B(p(x))=(p(z))B (p(z))C~ (p(x))),
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e Case 3: po(z) estimated externally in a consistent way.

Theorem 3. The result of Theorem 1 and 2 continues to hold if p is replaced
by an external consistent estimator p,(x) in (4) and (5).

E.g. use the consistent estimator for p(x) from Goegebeur et al. (2013).
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4. Simulation results

Estimators

e Non-robust local estimator

1 > Kp,(r—X;)(InY; —In un)Tll{Yfé > Up }
t+1 >0 Kp,(x— X;)(InY; — Inw,), 1{Y; > u,}

A2zt K, K) =

with ¢t = 0.

Bias-corrected version
A (x, B) = BA (2,0, K, K) + (1 — B3P (2,1, K, K)

with 8 = —1 and 8 = 1/p(x). See Goegebeur et al. (2013) for details
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e Robust local MDPD estimators
Estimator with § = 0 in G (not bias-corrected)
Bias-corrected: MDPD with v and d estimated jointly

p(x) fixed at -1 and p(x) estimated

All kernels are taken to be the bi-quadratic kernel function

15

K(z)=—01-2*)*1{z € [-1,1]}, =z<cR.

16
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For practical implementation we have two tuning parameters that have to be
determined, namely

e the bandwidth parameter h,,

e the threshold u,
Tuning parameter selection methods:

e Oracle strategy: min MSE

e Heuristic, data driven method
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4. Simulation results: uncontaminated case

We simulate N = 100 samples of size n = 1000, with X ~ U(0,1) and Y|X ==z
is generated from the following Burr distribution

1/p()
| — Fly;z) = (1 n y—p(fv)/v(fv))  y>0.
where

v(z) = 0.5 (0.1 + sin(wz)) (1.1 — 0.5 exp(—64(x — 0.5)%)) and p(z) = —1.
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MSE of the different estimators

Non Robust/Robust Estimator Oracle strategy  Data driven method

non robust biased 0.006 0.019

non robust bias-corrected p(z) = —1 0.003 0.006

non robust bias-corrected p(z) = p(x) 0.007 0.007
robust a = 0.1 biased 0.006 0.025
robust a = 0.1 bias-corrected p(x) = —1 0.007 0.011
robust a = 0.1 bias-corrected p(xz) = p(x) 0.006 0.007
robust o = 0.5 biased 0.008 0.055
robust a = 0.5 bias-corrected p(x) = —1 0.007 0.017
robust o = 0.5 bias-corrected p(x) = p(x) 0.007 0.019
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4. Simulation results: Contaminated case 1

Burr distribution
1 — F(y;2) = (1 4+ y—p(a:)/’v(as))l/p(x) .oy >0,
where
v(z) = 0.5 (0.1 + sin(wz)) (1.1 — 0.5 exp(—64(x — 0.5)%)) and p(z) = —1.
Contaminated distribution

Fo(y;x) = (1 — e)F(y; ) + eF (y; )

. —0.5
where F(y;x) =1 — (i) Y > T,

e

We set € = 0.01, z.= 1.2 times the 99.99% quantile of F'(y;x)
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MSE of the different estimators

Non Robust/Robust Estimator Oracle strategy  Data driven method

non robust biased 0.053 0.069

non robust bias-corrected p(z) = —1 0.291 0.977

non robust bias-corrected p(z) = p(x) 0.447 0.470
robust a = 0.1 biased 0.020 0.039
robust a = 0.1 bias-corrected p(x) = —1 0.011 0.025
robust a = 0.1 bias-corrected p(xz) = p(x) 0.014 0.023
robust o = 0.5 biased 0.012 0.060
robust a = 0.5 bias-corrected p(x) = —1 0.007 0.009
robust o = 0.5 bias-corrected p(x) = p(x) 0.009 0.012
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