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1. HEAVY TAILS IN REAL-LIFE DATA

1.1. Finance.
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Ficure 1. Plot of 9558 S¢P500 daily log-returns from January 2, 1953, to December 31, 1990. The
year marks indicate the beginning of the calendar year.
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Ficure 2. Left: Density plot of the S€&/P500 data. The limits on the x-axis indicate the range of the
data. QQ-plot of the S€&P500 data against the normal distribution.
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1.2. Insurance.
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Ficure 3. Danish fire insurance data.



1.3. Telecommunications.
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Ficure 4. Time series of transmission durations (BU data).
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Ficure 5. Mice and elephants plots (S. Marron).



2. EXTREMAL DEPENDENCE/INDEPENDENCE IN REAL-LIFE DATA

2.1. Independence in insurance data.
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Ficure 6. Scatterplot of US fire insurance losses - independence.
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2.2. Extremal independence in telecommunication data.

Teletraffic file sizes
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Ficure 7. Scatterplot of file sizes of teletraffic data - extremal independence



2.3. Extremal dependence in financial data.
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Ficure 8. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.
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3. EXTREME VALUE THEORY FOR IID SEQUENCES LEADBETTER ET AL. (1983),

RESNICK (1987), EMBRECHTS ET AL. (1997), DE HAAN AND FERREIRA (2006)

3.1. Max-stable distributions.

e A random variable X and its distribution F' are max-stable if
for every n > 2 there exist ¢, > 0, d,, € R, such that for iid
copies (X;) of X,

c.'(M, —d,) =c,"( max X; —d,) 2X.

1=1,...,m



e Any max-stable distribution belongs to the location/scale
family of one of the three standard max-stable distributions

(also called extreme value distributions):

—

Py(x) =e® , x>0, a>0 Fréchet

v, (x) e " <0, a>0 Weibull

xTr

A(x) = e, x€R, Gumbel.

e The max-stable distributions are the only possible
non-degenerate weak limits for standardized maxima of an iid
sequence (Fisher-Tippett Theorem 1928, Gnedenko (1943)).

e The 3 max-stable types can be written as one parametric

family (generalized extreme value distribution (GEV)).

11
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3.2. Maximum domains of attraction (MDA).

e The distribution F' of X is in the maximum domain of
attraction of the max-stable distribution G € {®,, ¥,, A}
(F € MDA(G)) if there exist constants a,, > 0, b,, € R such that

lim P(a (M, —b,) <z) — G(z), =¢€R.

n—oo

e ' € MDA (®,): Regular variation of the right tail
Fx)=1—F(x)=P(X >x)=z “L(z), = >0,
for a slowly varying function L.

Then moments of order a« + 4, 4 > 0, are infinite.
e ' € MDA(W,): F has finite right endpoint xp.
e ' € MDA (A): Moderately heavy — light tails.



e Examples:
MDA (®,): Student with o degrees of freedom,
Cauchy (a = 1),
infinite variance a-stable distributions,
Pareto F(x) = 7%, = > 1,
log-gamma distribution.

MDA (W¥,): uniform, g-distribution.

MDA (W¥,): log-normal distribution,
Weibull F(z) =e @,z >0, 7 > 0,
gamma distribution,

normal distribution.

13
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3.3. The Pickands-Balkema-de Haan Theorem and the Generalized
Pareto Distribution (GPD).

e FF € MDA(G) for a max-stable distribution G if and only if
there exists a(u) > 0 such that

: X —u
llmP( >:13|X>u)

ulxp a(u)
(14 a ') = > 0, G=9%o,,
:<(1—a‘1m)a o<z < a, G:\Ilaa
. e_m xZr > 07 G — A
= G¢(x) .
® G¢ defines the Generalized Pareto Distribution (GPD) with
1/aa @,
E=< —1/a Y,,

0 A.
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4. THE EXTREMAL INDEX — A MEASURE OF THE EXTREMAL CLUSTER SIZE

e Let (X;):cz be a strictly stationary real-valued time series.
e Its autocovariance and autocorrelation functions do in general

not contain information about extremal dependence.

The extremal index.

e The extremal index Ox is a standard measure of extremal
dependence in a sequence:’ for M,, = max;_;.._ ., X; and some
9 9

sequence u, T g
P(M, < u,) = [P(X; < u,)]".

e Ox € [0,1] has the interpretation as reciprocal of the expected

cluster size above high thresholds.

2See Leadbetter, Lindgren, Rootzén (1983); cf. Embrechts et al. (1997), Section 8.1
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Ficure 9. A sequence of iid random variables Y; (Top) with distribution function v F', where F' is
standard exponential. Bottom: the sequence of pairwise maxima max(Y;, Y;y1) with distribution
F'. By construction, extremes appear in clusters of size 2. The extremal index is 8 = 1/2.



Examples.

e A Gaussian stationary sequence (X;) with autocorrelation
function px(h) = o(1/logh), h — oc:
Ox = 1. No extremal clustering.

e AR(1) model Xy = ¢ Xy 1+ Z, ¢ € (—1,1), (Z;) iid student
with o degrees of freedom:
Ox =1 — [o]|~

e Models for log-returns X; = log P; — log P;_ :

Xy =o0¢Zy, (4:)iid, o0¢>0
e The simple stochastic volatility model: (log o) linear

Gaussian, independent of iid student (Z;):

0 x = 1 Davis, Mikosch (2001ab,2009ab) INo extremal clustering.
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Ficure 10. Top: Stochastic volatility process X; = o Z; for iid student (Z;) with 4 degrees of free-
dom, Gaussian ARMA(1,1) process log oy = 0.5log o1 + 0.31:—1 + 1. Bottom: GARCH(1, 1)
process X; = (0.0001 + 0.1X?2 |, + 0.902 ,)%%Z, for iid standard normal (Z;).



e The GARCH(1,1) model:® X; = 0:Z;,
ol =ag+ (a1 Z] ,+B1)o; ,, (Z)iid N(0,1).

There exists a > 0 such that E(a;Z% + 3;)*/? = 1 and’

2 77 P (maxp>1 [I7_ (o1 Z7 + 1) <y~') y~ 2 'dy =6, € (0,1).

3Bollerslev (1986)
4de Haan, Resnick, Rootzén, de Vries (1989)
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e The GARCH(1,1) model: X; = 0,74,
ol =ag+ (a1 Z] ,+B1)o; ,, (Z)iid N(0,1).

There exists a > 0 such that E(a;Z? + 3,)*/? = 1 and

2P (maxpsy [T (a1 Z7 + B1) <y™') y 2 'dy =6, € (0,1).

e Expressions for the extremal index of a stationary process are

often complicated.
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e The GARCH(1,1) model: X; = 0,4,
ol =ag+ (a1 Z] ,+B1)o; ,, (Z)iid N(0,1).
There exists a > 0 such that E(a;Z? + 3,)*/? = 1 and

& [P (maxys: [} (1 27+ B1) <y™') y~ 2 'dy =6, € (0,1).

e Expressions for the extremal index of a stationary process are

often complicated.

e Monte Carlo simulation is not straightforward.
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e The GARCH(1,1) model: X; = 0,4,
ol =ag+ (a1 Z] ,+B1)o; ,, (Z)iid N(0,1).
There exists a > 0 such that E(a;Z? + 3,)*/? = 1 and

& [P (maxys: [} (1 27+ B1) <y™') y~ 2 'dy =6, € (0,1).

e Expressions for the extremal index of a stationary process are

often complicated.
e Monte Carlo simulation is not straightforward.

e Estimation of the extremal index and extremal cluster size

distribution is non-trivial; see C. Y. Robert (2009)



5. TIME SERIES MODELS WITH HEAVY TAILS
5.1. Regularly varying distributions.
e Recall that FF € MDA (®,) for some a > 0 if and only if
F(zx)=P(X >z) =z °L(z), x>0,
for some slowly varying function L.
e We call a random variable X € R and its distribution F

regularly varying with index a > 0 if there exist constants

p,q > 0 such that p+ g =1 and
F(—z) ~qz *L(z) and F(x)~pz *L(z), x — oco.

Ifeg. p=0: F(x) = o(z™*L(x)), x — oo.
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e Equivalently, | X| is regularly varying with index a > 0 and

P(X < —xz) q P(X > x)

> all €Tr — OO.
P(X|>z) P(X[>z)

e Examples. Pareto, student, Cauchy, a-stable, a € (0, 2), Burr,

log-gamma, Fréchet.



e Two fundamental operations.’

Convolution. Feller (1971) Let X; > 0 be regularly varying with

a > 0. Assume X, regularly varying with index a and

independent of X; OR P(|X2| > ) = o(P(X; > x)). Then

X1 + X5 is regularly varying with index a and
PXi+Xo>x)~P(X;>x)+P(Xe>x), T— 00.

Products. Breiman (1965) o > 0, X > 0 independent and

Eo°t% < oo for some § > 0, X regularly varying with index a.

Then as * — oo,

P(cX >x) ~ Ec*P(X > x).

5Cf. Resnick (2007)

25



26

e Examples.
Stochastic volatility model. X; = 0:Z;, t € Z, o4 log-normal,
(Z;) iid regularly varying with index «, (o) and (Z;)
independent. Then as * — oo,
P(X;>x) ~ EoyP(Zy > x),

P(X; < —xz) ~ EoyP(Zy < —x).

Moving average. X; = 6004 + 60141+ -+ 0,21, t € Z,

m > 1, Z; > 0 iid regularly varying with index a.

P(X; > x) ~ P(Zy>x) ) 10:i|*(Ig;50 + Io,<0), T — 00.
1=0
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How can one model extremal spatio-temporal dependence and
heavy tails?

® One needs to model both the size and the direction of extremes.
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Asymptotic extremal independence.

Teletraffic file sizes
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Ficure 11. Scatterplot of file sizes of teletraffic data.




Asymptotic extremal dependence.

0.005
|

p
2 g| o 0 ’
é o (0] OO OO 8 (0] (0]
) o o] 0
2
n
(o}
Q -
o
| 0
0
0
00
T T T T T
-0.010 -0.005 0.000 0.005 0.010
USD-FFR

Ficure 12. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF'.
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5.2. Multivariate regular variation Resnick (1987,2007).

e A random vector X € R? and its distribution are regularly

varying with index a > 0: there exists a random vector

® € S 1 = {x e R¢: |z| = 1} such that for ¢ > 0:

P (IX]| >tz ,X/|X| € *) w
P(|X| > =)

>t *POBe:.), x— 0.

The distribution of ®: spectral measure of X.

e Equivalently,
P(z7'X € )

P(|X| > CE) ? ”(')7

for a non-null Radon measure p on the Borel o-field of

RS = R\{0} with p(tA) = t=>u(A), t > 0.



e Equivalently: as * — oo,
P(|X]| > tx)
P(|X| > x)

X w
P<@e-| |X|>:13> “ p@Oc-).

>t"%, t>0, and

e A toy example. R, 0 independent, 8 distributed on [0, 27),
P(R>r)=7r"%,r > 1, Pareto.
X = R (cos@,sin ) = O,
Then

IX| =R and © = (cos@,sinf).
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Ficure 13. 11D vectors X; from the toy model with tail index e« = 5. Left: 6 is uniform on [0, 27).
Right: 6 has a discrete uniform distribution on the points 27z /50.




e Examples

— X has iid student(«) distributed components. P(© € -) is

concentrated on the intersection of unit ball and axes.

— X has a multivariate student(a) distribution. P(© € ) is

supported on the whole unit ball.

— X is obtained from a (zaussian vector by transforming the
marginals to student(«). Then P(® € :) is concentrated on

the intersection of unit ball and axes.

33
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6. REGULARLY VARYING STATIONARY SEQUENCES

e A real-valued stationary sequence (X;) is regularly varying
with index a > 0 if its finite-dimensional distributions are
regularly varying with index «a.

e Equivalently, for every k£ > 1,
Pz '(Xy,...,Xp) €

P(|Xo| > =)
The measures up determine the extremal dependence structure

> () -

of the finite-dimensional distributions.

e Notice: Normalization P(|Xy| > ) does not depend on k.
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EXAMPLES OF REGULARLY VARYING STATIONARY SEQUENCES

Linear processes.

e Examples of linear processes are ARMA processes with iid

noise (Z;), e.g. the AR(p) and MA (q) processes

X Zi + o1 Xe 1+ 0+ epXip,

Xy = 21 +6014i 1+ -+ +042Z;_4.
e A linear process

Xe=) $iZij, tE€L,
J

is regularly varying with index a > 0 if the iid sequence (Z;) is

regularly varying with index a.
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e Under mild conditions on (;),°

P(X > x)
P(|Z]| > z)

~ 3 110 Iyys0 + q Iy <0)= 1913, = — 0o
J

6See Resnick (1987); cf. Embrechts et al. (1997), Appendix



Solutions to stochastic recurrence equation.

e For an iid sequence ((A¢, Bt))tez, A > 0, the stochastic

recurrence equation
Xie=AXy 1+ B, tez,

has a unique stationary solution
t—1
X: = B; + Z Ag--- A By, tez,

1=—0C

provided Elog A < 0, E|log |B|| < oo.
e The sequence (X,) is regularly varying with index a which is
the unique solution to FA®" = 1, k > 0, (given this solution

exists) Kesten (1973), Goldie (1991) and

P(Xo>x)~crx™®, PXo<—x)~c_x™®, x— 0.

37
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e The GARCH(1, 1) process’ satisfies a stochastic recurrence
equation: for an iid standard normal sequence (Z;), positive

parameters og, o1, 31,
o) = ag+ (auZ; , + Bi)o;_, .
The process X; = 0;Z; is regularly varying with index «
satisfying E(a; Z? + (3,)%/? = 1.
Other examples of regularly varying sequences.

e a-stable stationary processes are regularly varying with index
(87 provided a & (O, 2) Samorodnitsky and Taqqu (1994)
e Max-stable stationary processes with Fréchet marginals are

regularly varying.

"Bollerslev (1986)
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