Heavy tail phenomena and dependence of extremes

Thomas Mikosch University of Copenhagen www.math.ku.dk/~mikosch/

¹PhD Course an Extremes in Space and Time, 27-30, May, 2013

1.1. Finance.

FIGURE 1. Plot of **9558** S&P500 daily log-returns from January 2, 1953, to December 31, 1990. The year marks indicate the beginning of the calendar year.

FIGURE 2. Left: Density plot of the S & P500 data. The limits on the *x*-axis indicate the range of the data. QQ-plot of the S & P500 data against the normal distribution.

1.2. Insurance.

FIGURE 3. Danish fire insurance data.

4

1.3. Telecommunications.

FIGURE 4. Time series of transmission durations (BU data).

FIGURE 5. Mice and elephants plots (S. Marron).

0.2

0 L 0

2. Extremal dependence/independence in real-life data

2.1. Independence in insurance data.

FIGURE 6. Scatterplot of US fire insurance losses - independence.

2.2. Extremal independence in telecommunication data.

FIGURE 7. Scatterplot of file sizes of teletraffic data - extremal independence

2.3. Extremal dependence in financial data.

FIGURE 8. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.

3. EXTREME VALUE THEORY FOR IID SEQUENCES LEADBETTER ET AL. (1983),

RESNICK (1987), EMBRECHTS ET AL. (1997), DE HAAN AND FERREIRA (2006)

- 3.1. Max-stable distributions.
 - A random variable X and its distribution F are max-stable if for every $n \ge 2$ there exist $c_n > 0$, $d_n \in \mathbb{R}$, such that for iid copies (X_i) of X,

$$c_n^{-1}(M_n-d_n)=c_n^{-1}(\max_{i=1,...,n}X_i-d_n)\stackrel{d}{=} X\,.$$

• Any max-stable distribution belongs to the location/scale family of one of the three standard max-stable distributions (also called extreme value distributions):

$$egin{array}{ll} \Phi_lpha(x)\,=\,{
m e}^{-x^{-lpha}}\,, & x>0, & lpha>0 & {
m Fr\'echet} \ \Psi_lpha(x)\,=\,{
m e}^{-|x|^lpha}\,, & x<0, & lpha>0 & {
m Weibull} \ \Lambda(x)\,=\,{
m e}^{-{
m e}^{-x}}\,, & x\in{\mathbb R}, & {
m Gumbel}\,. \end{array}$$

- The max-stable distributions are the only possible non-degenerate weak limits for standardized maxima of an iid sequence (Fisher-Tippett Theorem 1928, Gnedenko (1943)).
- The 3 max-stable types can be written as one parametric family (generalized extreme value distribution (GEV)).

- 3.2. Maximum domains of attraction (MDA).
 - The distribution F of X is in the maximum domain of attraction of the max-stable distribution $G \in \{\Phi_{\alpha}, \Psi_{\alpha}, \Lambda\}$ $(F \in \text{MDA}(G))$ if there exist constants $a_n > 0, b_n \in \mathbb{R}$ such that

$$\lim_{n o\infty} P(a_n^{-1}(M_n-b_n)\leq x) o G(x)\,,\quad x\in\mathbb{R}\,.$$

• $F \in MDA(\Phi_{\alpha})$: Regular variation of the right tail

$$\overline{F}(x)=1-F(x)=P(X>x)=x^{-lpha}L(x)\,,\quad x>0\,,$$

for a slowly varying function L.

Then moments of order $\alpha + \delta$, $\delta > 0$, are infinite.

- $F \in MDA(\Psi_{\alpha})$: F has finite right endpoint x_F .
- $F \in MDA(\Lambda)$: Moderately heavy \rightarrow light tails.

• Examples:

 $MDA(\Phi_{\alpha})$: Student with α degrees of freedom,

Cauchy $(\alpha = 1)$,

infinite variance α -stable distributions,

Pareto
$$\overline{F}(x) = x^{-\alpha}, \, x > 1,$$

log-gamma distribution.

 $MDA(\Psi_{\alpha})$: uniform, β -distribution.

 $MDA(\Psi_{\alpha})$: log-normal distribution,

Weibull $\overline{F}(x) = e^{-x^{\tau}}, x > 0, \tau > 0$,

gamma distribution,

normal distribution.

- 3.3. The Pickands-Balkema-de Haan Theorem and the Generalized Pareto Distribution (GPD).
 - $F \in MDA(G)$ for a max-stable distribution G if and only if

there exists a(u) > 0 such that

• G_{ξ} defines the Generalized Pareto Distribution (GPD) with

$$\xi = egin{cases} 1/lpha & \Phi_lpha\,,\ -1/lpha & \Psi_lpha\,,\ 0 & \Lambda\,. \end{cases}$$

- 4. The extremal index a measure of the extremal cluster size
 - Let $(X_t)_{t\in\mathbb{Z}}$ be a strictly stationary real-valued time series.
 - Its autocovariance and autocorrelation functions do in general not contain information about extremal dependence.

The extremal index.

• The *extremal index* $heta_X$ is a standard measure of extremal dependence in a sequence:² for $M_n = \max_{t=1,...,n} X_t$ and some sequence $u_n \uparrow x_F$

 $P(M_n \leq u_n) pprox [P(X_1 \leq u_n)]^{n \, heta_X}$.

• $\theta_X \in [0, 1]$ has the interpretation as reciprocal of the expected cluster size above high thresholds.

 $^{^{2}}$ See Leadbetter, Lindgren, Rootzén (1983); cf. Embrechts et al. (1997), Section 8.1

FIGURE 9. A sequence of iid random variables Y_i (Top) with distribution function \sqrt{F} , where F is standard exponential. Bottom: the sequence of pairwise maxima $\max(Y_i, Y_{i+1})$ with distribution F. By construction, extremes appear in clusters of size 2. The extremal index is $\theta = 1/2$.

Examples.

• A Gaussian stationary sequence (X_t) with autocorrelation function $ho_X(h) = o(1/\log h), \ h \to \infty$:

 $\theta_X = 1$. No extremal clustering.

• AR(1) model $X_t = \phi X_{t-1} + Z_t, \phi \in (-1, 1), (Z_t)$ iid student with α degrees of freedom:

 $heta_X = 1 - |\phi|^{lpha}.$

• Models for log-returns $X_t = \log P_t - \log P_{t-1}$:

 $X_t = \sigma_t Z_t, \quad (Z_t) ext{ iid}, \quad \sigma_t > 0$

• The simple stochastic volatility model: $(\log \sigma_t)$ linear Gaussian, independent of iid student (Z_t) :

 $\theta_X = 1$ Davis, Mikosch (2001ab, 2009ab) No extremal clustering.

FIGURE 10. Top: Stochastic volatility process $X_t = \sigma_t Z_t$ for iid student (Z_t) with 4 degrees of freedom, Gaussian ARMA(1,1) process $\log \sigma_t = 0.5 \log \sigma_{t-1} + 0.3 \eta_{t-1} + \eta_t$. Bottom: GARCH(1,1) process $X_t = (0.0001 + 0.1X_{t-1}^2 + 0.9\sigma_{t-1}^2)^{0.5}Z_t$ for iid standard normal (Z_t) .

• The GARCH(1,1) model:³ $X_t = \sigma_t Z_t$,

 $\sigma_t^2 = lpha_0 + \left(lpha_1\, Z_{t-1}^2 + eta_1
ight) \sigma_{t-1}^2 \,, \quad (Z_t) \,\, ext{id} \,\, N(0,1).$

There exists $\alpha > 0$ such that $E(\alpha_1 Z_1^2 + \beta_1)^{\alpha/2} = 1$ and⁴

 $rac{lpha}{2} \int_{1}^{\infty} P\left(\max_{n \geq 1} \prod_{t=1}^{n} (lpha_1 \, Z_t^2 + eta_1) \leq y^{-1}
ight) \, y^{-rac{lpha}{2} - 1} \, dy = heta_\sigma \in (0,1) \, .$

 $³_{\text{Bollerslev}}$ (1986)

⁴de Haan, Resnick, Rootzén, de Vries (1989)

• The GARCH(1,1) model: $X_t = \sigma_t Z_t$,

$$\sigma_t^2 = lpha_0 + \left(lpha_1 \, Z_{t-1}^2 + eta_1
ight) \, \sigma_{t-1}^2 \,, \quad (Z_t) \,\, ext{iid} \,\, N(0,1).$$

There exists $\alpha > 0$ such that $E(\alpha_1 Z_1^2 + \beta_1)^{\alpha/2} = 1$ and

$$\frac{\alpha}{2} \int_{1}^{\infty} P\left(\max_{n \ge 1} \prod_{t=1}^{n} (\alpha_1 \, Z_t^2 + \beta_1) \le y^{-1} \right) \, y^{-\frac{\alpha}{2} - 1} \, dy = heta_{\sigma} \in (0, 1) \, .$$

• Expressions for the extremal index of a stationary process are often complicated.

• The GARCH(1,1) model: $X_t = \sigma_t Z_t$,

$$\sigma_t^2 = lpha_0 + \left(lpha_1 \, Z_{t-1}^2 + eta_1
ight) \, \sigma_{t-1}^2 \,, \quad (Z_t) \,\, ext{iid} \,\, N(0,1).$$

There exists $\alpha > 0$ such that $E(\alpha_1 Z_1^2 + \beta_1)^{\alpha/2} = 1$ and

$$\frac{\alpha}{2} \int_{1}^{\infty} P\left(\max_{n \ge 1} \prod_{t=1}^{n} (\alpha_1 \, Z_t^2 + \beta_1) \le y^{-1} \right) \, y^{-\frac{\alpha}{2} - 1} \, dy = heta_{\sigma} \in (0, 1) \, .$$

- Expressions for the extremal index of a stationary process are often complicated.
- Monte Carlo simulation is not straightforward.

• The GARCH(1,1) model: $X_t = \sigma_t Z_t$,

$$\sigma_t^2 = lpha_0 + \left(lpha_1 \, Z_{t-1}^2 + eta_1
ight) \, \sigma_{t-1}^2 \,, \quad (Z_t) \,\, ext{iid} \,\, N(0,1).$$

There exists $\alpha > 0$ such that $E(\alpha_1 Z_1^2 + \beta_1)^{\alpha/2} = 1$ and

$$\frac{\alpha}{2} \int_{1}^{\infty} P\left(\max_{n \ge 1} \prod_{t=1}^{n} (\alpha_1 \, Z_t^2 + \beta_1) \le y^{-1} \right) \, y^{-\frac{\alpha}{2} - 1} \, dy = heta_{\sigma} \in (0, 1) \, .$$

- Expressions for the extremal index of a stationary process are often complicated.
- Monte Carlo simulation is not straightforward.
- Estimation of the extremal index and extremal cluster size distribution is non-trivial; see C. Y. Robert (2009)

5.1. Regularly varying distributions.

• Recall that $F \in MDA(\Phi_{\alpha})$ for some $\alpha > 0$ if and only if

$$\overline{F}(x)=P(X>x)=x^{-lpha}L(x)\,,\quad x>0\,,$$

for some slowly varying function L.

• We call a random variable $X \in \mathbb{R}$ and its distribution Fregularly varying with index $\alpha > 0$ if there exist constants $p,q \ge 0$ such that p + q = 1 and $F(-x) \sim q \, x^{-\alpha} L(x)$ and $\overline{F}(x) \sim p \, x^{-\alpha} L(x), \quad x \to \infty$. If e.g. p = 0: $\overline{F}(x) = o(x^{-\alpha} L(x)), x \to \infty$. • Equivalently, |X| is regularly varying with index $\alpha > 0$ and

$$rac{P(X\leq -x)}{P(|X|>x)} o q \quad ext{and} \quad rac{P(X>x)}{P(|X|>x)} o p\,, \quad x o\infty\,.$$

• Examples. Pareto, student, Cauchy, α -stable, $\alpha \in (0, 2)$, Burr, log-gamma, Fréchet.

• Two fundamental operations.⁵

Convolution. Feller (1971) Let $X_1 > 0$ be regularly varying with $\alpha > 0$. Assume X_2 regularly varying with index α and independent of X_1 OR $P(|X_2| > x) = o(P(X_1 > x))$. Then $X_1 + X_2$ is regularly varying with index α and $P(X_1+X_2>x)\sim P(X_1>x)+P(X_2>x)\,,\quad x o\infty\,.$ Products. Breiman (1965) $\sigma > 0, X > 0$ independent and $E\sigma^{\alpha+\delta} < \infty$ for some $\delta > 0$, X regularly varying with index α . Then as $x \to \infty$,

 $P(\sigma X > x) \sim E\sigma^{\alpha} P(X > x)$.

 $^{^{5}}$ Cf. Resnick (2007)

• Examples.

Stochastic volatility model. $X_t = \sigma_t Z_t$, $t \in \mathbb{Z}$, σ_t log-normal, (Z_t) iid regularly varying with index α , (σ_t) and (Z_t) independent. Then as $x \to \infty$,

$$egin{aligned} P(X_t > x) &\sim E \sigma_0^lpha P(Z_0 > x) \,, \ P(X_t \leq -x) &\sim E \sigma_0^lpha P(Z_0 \leq -x) \,. \end{aligned}$$

Moving average. $X_t = \theta_0 Z_t + \theta_1 Z_{t-1} + \cdots + \theta_m Z_{t-m}, t \in \mathbb{Z},$ $m \geq 1, Z_t > 0$ iid regularly varying with index α .

$$P(X_t>x)\,\sim\,P(Z_0>x)\sum_{i=0}^m| heta_i|^lphaig(I_{ heta_i>0}+I_{ heta_i<0}ig)\,,\quad x o\infty\,.$$

How can one model extremal spatio-temporal dependence and heavy tails?

• One needs to model both the size and the direction of extremes.

Asymptotic extremal independence.

FIGURE 11. Scatterplot of file sizes of teletraffic data.

Asymptotic extremal dependence.

FIGURE 12. Scatterplot of 5 minute foreign exchange rate log-returns, USD-DEM against USD-FRF.

5.2. Multivariate regular variation Resnick (1987,2007).

• A random vector $X \in \mathbb{R}^d$ and its distribution are regularly varying with index $\alpha > 0$: there exists a random vector $\Theta \in \mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}$ such that for t > 0:

$$rac{P\left(|\mathrm{X}|>tx\,,\mathrm{X}/|\mathrm{X}|\in \cdot
ight)}{P(|\mathrm{X}|>x)} \stackrel{w}{
ightarrow} t^{-lpha}\,P(\Theta\in \cdot)\,,\quad x
ightarrow\infty\,.$$

The distribution of Θ : spectral measure of X.

• Equivalently,

$$rac{P\left(x^{-1}\mathrm{X}\in\,\cdot
ight)}{P(|\mathrm{X}|>x)}\, \stackrel{v}{
ightarrow}\, \mu(\cdot)\,,$$

for a non-null Radon measure μ on the Borel σ -field of $\overline{\mathbb{R}}_0^d = \overline{\mathbb{R}}^d \setminus \{0\}$ with $\mu(tA) = t^{-\alpha}\mu(A), t > 0.$ • Equivalently: as $x \to \infty$,

$$egin{aligned} &rac{P(|\mathbf{X}|>tx)}{P(|\mathbf{X}|>x)}
ightarrow t^{-lpha},\quad t>0\,,\quad ext{and}\ &P\Big(rac{\mathbf{X}}{|\mathbf{X}|}\in\cdot\mid \ |\mathbf{X}|>x\Big) \ \stackrel{w}{
ightarrow} P(\Theta\in\cdot)\,. \end{aligned}$$

• A toy example. R, θ independent, θ distributed on $[0, 2\pi)$, $P(R > r) = r^{-\alpha}, r > 1$, Pareto. $X = R(\cos \theta, \sin \theta) = \Theta$,

Then

$$|\mathrm{X}| = R \quad ext{and} \quad \Theta = (\cos heta, \sin heta) \,.$$

FIGURE 13. IID vectors \mathbf{X}_i from the toy model with tail index $\alpha = 5$. Left: $\boldsymbol{\theta}$ is uniform on $[0, 2\pi)$. Right: $\boldsymbol{\theta}$ has a discrete uniform distribution on the points $2\pi i/50$.

- Examples
 - -X has iid student(α) distributed components. $P(\Theta \in \cdot)$ is concentrated on the intersection of unit ball and axes.
 - -X has a multivariate student(α) distribution. $P(\Theta \in \cdot)$ is supported on the whole unit ball.
 - -X is obtained from a Gaussian vector by transforming the marginals to student(α). Then $P(\Theta \in \cdot)$ is concentrated on the intersection of unit ball and axes.

6. Regularly varying stationary sequences

• A real-valued stationary sequence (X_t) is regularly varying with index $\alpha > 0$ if its finite-dimensional distributions are regularly varying with index α .

$$ullet$$
 Equivalently, for every $k\geq 1,$ $rac{P(x^{-1}(X_1,\ldots,X_k)\in \cdot)}{P(|X_0|>x)} \stackrel{v}{
ightarrow} \mu_k(\cdot)\,.$

The measures μ_k determine the extremal dependence structure of the finite-dimensional distributions.

• Notice: Normalization $P(|X_0| > x)$ does not depend on k.

EXAMPLES OF REGULARLY VARYING STATIONARY SEQUENCES Linear processes.

• Examples of linear processes are ARMA processes with iid noise (Z_t) , e.g. the AR(p) and MA(q) processes

$$egin{aligned} X_t &= Z_t + arphi_1 X_{t-1} + \dots + arphi_p X_{t-p}\,, \ X_t &= Z_t + heta_1 Z_{t-1} + \dots + heta_q Z_{t-q}\,. \end{aligned}$$

• A linear process

$$X_t = \sum_j \psi_j Z_{t-j}, \quad t \in \mathbb{Z},$$

is regularly varying with index $\alpha > 0$ if the iid sequence (Z_t) is regularly varying with index α . • Under mild conditions on $(\psi_j),^6$

$$rac{P(X>x)}{P(|Z|>x)}\sim \sum_j |\psi_j|^lpha(p\,I_{\psi_j>0}+q\,I_{\psi_j<0})=\|oldsymbol{\psi}\|^lpha_lpha,\quad x o\infty\,.$$

 $^{^{6}}$ See Resnick (1987); cf. Embrechts et al. (1997), Appendix

Solutions to stochastic recurrence equation.

• For an iid sequence $((A_t, B_t))_{t \in \mathbb{Z}}$, A > 0, the stochastic recurrence equation

$$X_t = A_t X_{t-1} + B_t\,, \quad t\in\mathbb{Z}\,,$$

has a unique stationary solution

$$X_t = B_t + \sum_{i=-\infty}^{t-1} A_t \cdots A_{i+1} B_i\,, \quad t \in \mathbb{Z},$$

provided $E \log A < 0$, $E |\log |B|| < \infty$.

• The sequence (X_t) is regularly varying with index α which is the unique solution to $EA^{\kappa} = 1$, $\kappa > 0$, (given this solution exists) Kesten (1973), Goldie (1991) and

$$P(X_0>x)\sim c_+\,x^{-lpha}\,,\quad P(X_0\leq -x)\sim c_-\,x^{-lpha}\,,\quad x o\infty\,.$$

• The GARCH(1, 1) process⁷ satisfies a stochastic recurrence equation: for an iid standard normal sequence (Z_t) , positive parameters $\alpha_0, \alpha_1, \beta_1$,

$$\sigma_t^2 = lpha_0 + (lpha_1 Z_{t-1}^2 + eta_1) \sigma_{t-1}^2$$
 .

The process $X_t = \sigma_t Z_t$ is regularly varying with index α satisfying $E(\alpha_1 Z^2 + \beta_1)^{\alpha/2} = 1$.

Other examples of regularly varying sequences.

- α -stable stationary processes are regularly varying with index α provided $\alpha \in (0, 2)$. Samorodnitsky and Taqqu (1994)
- Max-stable stationary processes with Fréchet marginals are regularly varying.

 $⁷_{\text{Bollerslev}}$ (1986)

References

- [1] BINGHAM, N.H., GOLDIE, C.M. AND TEUGELS, J.L. (1987) Regular Variation. Cambridge University Press, Cambridge.
- [2] BOLLERSLEV, T. (1986) Generalized autoregressive conditional heteroskedasticity. J. Econometrics 31, 307–327.
- [3] BREIMAN, L. (1965) On some limit theorems similar to the arc-sin law. Theory Probab. Appl. 10, 323–331.
- [4] BROCKWELL, P.J. AND DAVIS, R.A. (1991) Time Series: Theory and Methods, 2nd edition. Springer, New York.
- [5] BROCKWELL, P.J. AND DAVIS, R.A. (1996) Introduction to Time Series and Forecasting. Springer, New York.
- [6] DAVIS, R.A. AND MIKOSCH, T. (2001a) Point process convergence of stochastic volatility processes with application to sample autocorrelations. J. Appl. Probab. Special Volume **38A**, A Festschrift for David Vere-Jones, 93–104.
- [7] DAVIS, R.A. AND MIKOSCH, T. (2001b) The sample autocorrelations of financial time series models. In: Fitzgerald, W.J., Smith, R.L., Walden, A.T. and Young, P.C. (Eds.) Nonlinear and Nonstationary Signal Processing, pp. 247–274. Cambridge University Press, Cambridge (U.K.).
- [8] DAVIS, R.A. AND MIKOSCH, T. (2009a) Fundamental properties of stochastic volatility models. In: ANDERSEN, T.G., DAVIS, R.A., KREISS, J.-P. AND MIKOSCH, T. Handbook of Financial Time Series. Springer, Berlin.
- [9] DAVIS, R.A. AND MIKOSCH, T. (2009b) Extremes of stochastic volatility models. In: ANDERSEN, T.G., DAVIS, R.A., KREISS, J.-P. AND MIKOSCH, T. (2007) Handbook of Financial Time Series. Springer, Berlin.
- [10] EMBRECHTS, P., KLÜPPELBERG, C. AND MIKOSCH, T. (1997) Modelling Extremal Events for Insurance and Finance. Springer, Berlin.
- [11] FELLER, W. (1971) An Introduction to Probability Theory and Its Applications. Vol. II. Second edition. Wiley, New York.
- [12] GOLDIE, C.M. (1991) Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1, 126–166.
- [13] HAAN, L. DE, FEREIRA, A. (2006) Extreme Value Theory: An Introduction. Springer, Berlin, New York.
- [14] HAAN, L. DE, RESNICK, S.I., ROOTZÉN, H. AND VRIES, C. DE (1989) Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes. *Stoch. Proc. Appl.* **32**, 213–224.
- [15] KESTEN, H. (1973) Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248.
- [16] LEADBETTER, M.R., LINDGREN, G. AND ROOTZÉN, H. (1983) Extremes and Related Properties of Random Sequences and Processes. Springer, Berlin.
- [17] RESNICK, S.I. (1987) Extreme Values, Regular Variation, and Point Processes. Springer, New York.
- [18] RESNICK, S.I. (2007) Heavy Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York.
- [19] ROBERT, C.Y. (2009) Inference for the limiting cluster size distribution of extreme values. Ann. Statist. 37, 271–310.
- [20] SAMORODNITSKY, G. AND TAQQU, M.S. (1994) Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman and Hall, London.