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Motivating Example: Daily Air Pollution, Leeds UK
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Data exhibit asymptotic independence (Heffernan and Tawn,
2004).
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Outline

• Hidden Regular Variation

• Sum Characterization of HRV

• Estimation via MCEM

• Application: air pollution data
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When Multivariate Regular Variation Fails

Multivariate Regular Variation:

tP
[
R

b(t)
> r,W ∈ B

]
v−→ r−αH(B).

In some cases, the angular measure H degenerates on some
regions of N, masking sub-asymptotic dependence features.

Example: asymptotic independence in d = 2:

lim
z→z+

P(Z1 > z|Z2 > z) = 0.

• H consists of point masses at {0} and {1} (using ‖ · ‖1)

• e.g. bivariate Gaussian with correlation ρ < 1

Normalization by b(t) kills off sub-asymptotic dependence
structure.
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Hidden Regular Variation
(Resnick, 2002)

A regular varying random vector Z exhibits hidden regular
variation on a subcone C0 ⊂ C if ν(C0) = 0 and there exists
{b0(t)}, b0(t)→∞ with b0(t)/b(t)→ 0 s.t.

tP
[

Z

b0(t)
∈ ·

]
v−→ ν0(·)

as t→∞ in M+(C0).

• Scaling: ν0(tA) = t−α0ν0(A) for measurable A ∈ C0, α0 ≥ α
• ν0 is Radon but not necessarily finite.

Equivalently,

tP
[
R

b0(t)
> r,W ∈ B

]
v−→ r−α0H0(B)

for B a Borel set of N0 = C0 ∩N (e.g. N0 = (0,1)).

H0 is called the hidden angular measure.
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Example: bivariate Gaussian

Consider Z with Fréchet margins and Gaussian dependence,
ρ ∈ [0,1). Recall ν places mass only on the axes of C.

Define η = (1+ρ)/2, the coefficient of tail dependence (Led-
ford and Tawn, 1997).

• Z exhibits hidden regular variation of order α0 = 1/η

• The density of the hidden measure ν0 can be written

ν0(dr × dw) =
1

η
r−(1+1/η)dr ×

1

4η
{w(1− w)}−1/2η−1dw︸ ︷︷ ︸

H0(dw)

H0 is infinite on (0,1).
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Tail Equivalence
(Maulik and Resnick, 2004)

Two random vectors X and Y are tail equivalent on the cone
C∗ if

tP
[

X

b∗(t)
∈ ·

]
v−→ ν(·) and tP

[
Y

b∗(t)
∈ ·

]
v−→ cν(·)

as t→∞ in M+(C∗) for c > 0.

‘Extremes of X and Y samples taken in C∗ will have the same
asymptotic properties.’
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Mixture Characterization of HRV
(Maulik and Resnick, 2004)

Suppose Z is regular varying on C with hidden regular variation
on C0:

tP
[

Z

b(t)
∈ ·

]
v−→ ν(·) in M+(C) and

tP
[

Z

b0(t)
∈ ·

]
v−→ ν0(·) in M+(C0)

with ν(C0) = 0 and b0(t)/b(t)→ 0 as t→∞.

• Let Y be RV (α) with support only on C \ C0.

• Let V = R0θ0, R0 ∼ FR0(t) = 1/b→(t) and θ0 ∼ H0, finite.

• Then Z is tail equivalent to a mixture of Y and V on both
C and C0.

Works because Y’s support doesn’t mess with the HRV.
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Construction of Y + V

Define Y = RW, with P(R > r) ∼ 1/b←(r) and W drawn from
limiting angular measure H. Notice that Y has support only
on C \ C0.

Let V ∈ [0,∞)d be regular varying on C0 with limit measure
ν0:

tP
[

V

b0(t)
∈ ·

]
v−→ ν0(·) in M+(C0).

Further assume that on C,

P(‖V‖ > r) ∼ cr−α∗

as r →∞, with c > 0 and

α∗ > α ∨ (α0 − α).

Assume R, W, V are independent.
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Tail Equivalence Result

Then

tP
[
Y + V

b(t)
∈ ·

]
v−→ ν(·) in M+(C)

(Jessen and Mikosch, 2006).

Furthermore, tail equivalence (Maulik and Resnick, 2004)
also holds on C0:

Theorem. With Y and V as defined above,

tP
[
Y + V

b0(t)
∈ ·

]
v−→ ν0(·) in M+(C0).

View Z as a sum of ‘first-order’ Y and ‘second-order’ V.

The sum Y + V is tail equivalent to Z on both C and C0.

11



Simulation when ν0 is finite.
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No point falls exactly on an axis.
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Infinite Measure Example: Bivariate Gaussian

Z has Fréchet margins and Gaussian dependence (ρ < 1).
Recall: H0 is infinite on N0 = (0,1).

Poses difficulty near the axes of C.

Proposed construction of V:

• Restrict to Cε0 = C0 ∩Nε
0, where Nε

0 = [ε,1− ε] for
ε ∈ (0,1/2).

• Simulate W0 from probability density H0(dw)/H0(Nε
0)

• Let R0 follow a Pareto distribution with α = 1/η

• V = [R0W0, R0(1−W0)]T

Y + V is tail equivalent to Z on C and Cε0.
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Sum representation of bivariate Gaussian

Example with ρ = 0.5 (n = 2500):
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For any set completely contained in Cε0 we achieve the correct
limit measure ν0.

Choice of ε involves a trade-off between:
• Size of the subcone on which tail equivalence holds

• Threshold at which Y + V is a useful approximation

• Biases due to choice of ε calculated.
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Inference via the EM Algorithm

Observe realizations from Z, tail equivalent to Y+V. Assume
parametric forms and perform ML inference via EM.

If we assume Z = Y + V,

log f(z; θ) =
∫

log f(z,y,v; θ)f(y,v|z; θ(k))dydv

−
∫

log f(y,v|z; θ)f(y,v|z; θ(k))dydv

:= Q(θ|θ(k))−H(θ|θ(k)).

Here: Z and Y + V are only tail equivalent; θ governs tail
behavior of Y and V. Requires a modification of the EM
setup.
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EM for Extremes

Consider distributions with densities gY(y; θ) and gV(v; θ)
which are tail equivalent to the true distributions; i.e.,

gY(y; θ) ∼= fY(y; θ) for ‖y‖ > r∗Y
gV(v; θ) ∼= fV(v; θ) for ‖v‖ > r∗V,

Complete likelihood is based on limiting Poisson point pro-
cesses for Y and V.

• E step: expectation is taken with respect to g(y,v|z; θ).

• M step: maximization is taken over only ‘large’ y and v.

We show
H(θ(k)|θ(k))−H(θ|θ(k)) ≥ 0

using Jensen’s inequality.
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MCEM

Natural framework for MCEM.

At the E step of the (k + 1)th iteration, simulate from

gY(y; θ(k))gV(z− y; θ(k)) ∝ g(y,v|z; θ(k))

for all z and use the simulated realizations to compute

Q̂m(θ|θ(k)) =
1

m

m∑
j=1

`(θ; z,yj,vj).

employing Poisson point process likelihoods for large realiza-
tions of Y and V.

Key idea: likelihood only depends on θ for ‘large’ y and v!

Uncertainty estimates obtained via Louis’ method.
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Example w/ Infinite Hidden Measure

Simulate n = 10000 realizations from a bivariate Gaussian
distribution with correlation ρ, transform marginals to unit
Fréchet.

Tail equivalent on C and Cε0 to Y + V, where V has angular
measure

H0(dw) =
1

4η
{w(1− w)}−1/2η−1dw.

Aim: estimate η = (1 + ρ)/2 from the ε-restricted model.

• Must select both ε and r∗V

• Trade-off in finite sample estimation problems
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Infinite Hidden Measure Results

Shown for η = 0.75 (ρ = 0.5)
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Air Pollution Data
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• Strong evidence for asymptotic independence

• Aim: estimate risk set probabilities
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Competing Approaches

Examine three modeling approaches:

1. Assume asymptotic dependence; i.e. that ν(·) places mass
on the entire cone C. Fit a bivariate logistic angular de-
pendence model to largest 10% of observations (in terms
of L1 norm). Estimate β̂ = 0.713.

2. Assume asymptotic independence and ignore any possible
hidden regular variation.

3. Assume asymptotic independence and hidden regular vari-
ation. Fit the ε-restricted infinite hidden measure model
via MCEM. Select r∗V = 7.5 and ε = 0.3. Estimate η̂ =
0.748.
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Results - risk set estimates

Model P̂(Z ∈ A1) Expected # p-val
1 (asy. dep.) 0.0297 59.04 0.480

2 (asy. indep.) 0.0120 23.86 8.17× 10−5

3 (Y + V) 0.0261 51.89 0.210
Empirical 0.0292 58 −
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Results - risk set estimates

Model P̂(Z ∈ A2) Expected # p-val
1 (asy. dep.) 0.0044 8.74 0.132

2 (asy. indep.) 0.0002 0.40 0.009
3 (Y + V) 0.0018 3.58 0.274
Empirical 0.0025 5 −

23



Results - risk set estimates

Model P̂(Z ∈ A3) Expected # p-val
1 (asy. dep.) 0.0010 1.99 0.130

2 (asy. indep.) 0 0 1
3 (Y + V) 0.0002 0.40 0.704
Empirical 0 0 −
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Summary

This work introduces a sum representation for regular varying
random vectors possessing hidden regular variation.

• Useful representation for finite samples

• Asymptotically justified by tail equivalence result

• Difficulty arises when H0 is infinite - restrict to a compact
cone to simulate V

• Likelihood estimation via modified MCEM algorithm

• Captures tail dependence in the presence of asymptotic
independence

• Improved estimation of tail risk set probabilites
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