Hidden Regular Variation in Joint Tail Modeling with Likelihood Inference via the MCEM Algorithm

Dan Cooley Grant Weller

Department of Statistics Colorado State University

Funding: NSF-DMS-0905315 Weather and Climate Impacts Assessment Program (NCAR) 2011-2012 SAMSI UQ program

Motivating Example: Daily Air Pollution, Leeds UK

Data exhibit asymptotic independence (Heffernan and Tawn, 2004).

Outline

- Hidden Regular Variation
- Sum Characterization of HRV
- Estimation via MCEM
- Application: air pollution data

When Multivariate Regular Variation Fails

Multivariate Regular Variation:

$$t\mathbb{P}\left[\frac{R}{b(t)} > r, \mathbf{W} \in B\right] \xrightarrow{v} r^{-\alpha}H(B).$$

In some cases, the angular measure H degenerates on some regions of \mathcal{N} , masking sub-asymptotic dependence features.

Example: asymptotic independence in d = 2:

$$\lim_{z\to z_+}\mathbb{P}(Z_1>z|Z_2>z)=0.$$

- *H* consists of point masses at $\{0\}$ and $\{1\}$ (using $\|\cdot\|_1$)
- \bullet e.g. bivariate Gaussian with correlation $\rho < 1$

Normalization by b(t) kills off sub-asymptotic dependence structure.

Hidden Regular Variation

(Resnick, 2002)

A regular varying random vector \mathbf{Z} exhibits hidden regular variation on a subcone $\mathfrak{C}_0 \subset \mathfrak{C}$ if $\nu(\mathfrak{C}_0) = 0$ and there exists $\{b_0(t)\}, b_0(t) \to \infty$ with $b_0(t)/b(t) \to 0$ s.t.

$$t\mathbb{P}\left[\frac{\mathbf{Z}}{b_0(t)}\in\cdot\right]\xrightarrow{v}\nu_0(\cdot)$$

as $t \to \infty$ in $M_+(\mathfrak{C}_0)$.

- Scaling: $\nu_0(tA) = t^{-\alpha_0}\nu_0(A)$ for measurable $A \in \mathfrak{C}_0, \ \alpha_0 \ge \alpha$
- ν_0 is Radon but *not necessarily finite.*

Equivalently,

$$t\mathbb{P}\left[\frac{R}{b_0(t)} > r, \mathbf{W} \in B\right] \xrightarrow{v} r^{-\alpha_0}H_0(B)$$

for B a Borel set of $\mathcal{N}_0 = \mathfrak{C}_0 \cap \mathcal{N}$ (e.g. $\mathcal{N}_0 = (0, 1)$).

 H_0 is called the *hidden angular measure*.

Example: bivariate Gaussian

Consider Z with Fréchet margins and Gaussian dependence, $\rho \in [0, 1)$. Recall ν places mass only on the axes of \mathfrak{C} .

Define $\eta = (1 + \rho)/2$, the *coefficient of tail dependence* (Ledford and Tawn, 1997).

- Z exhibits hidden regular variation of order $\alpha_0 = 1/\eta$
- \bullet The density of the hidden measure ν_0 can be written

$$\nu_0(dr \times dw) = \frac{1}{\eta} r^{-(1+1/\eta)} dr \times \underbrace{\frac{1}{4\eta} \{w(1-w)\}^{-1/2\eta-1} dw}_{H_0(dw)}$$

 H_0 is infinite on (0, 1).

Tail Equivalence

(Maulik and Resnick, 2004)

Two random vectors ${\bf X}$ and ${\bf Y}$ are tail equivalent on the cone \mathfrak{C}^* if

$$t\mathbb{P}\left[\frac{\mathbf{X}}{b^*(t)}\in\cdot\right] \xrightarrow{v} \nu(\cdot) \quad \text{and} \quad t\mathbb{P}\left[\frac{\mathbf{Y}}{b^*(t)}\in\cdot\right] \xrightarrow{v} c\nu(\cdot)$$

as $t \to \infty$ in $M_+(\mathfrak{C}^*)$ for c > 0.

'Extremes of ${\bf X}$ and ${\bf Y}$ samples taken in \mathfrak{C}^* will have the same asymptotic properties.'

Mixture Characterization of HRV

(Maulik and Resnick, 2004)

Suppose Z is regular varying on \mathfrak{C} with hidden regular variation on \mathfrak{C}_0 :

$$t\mathbb{P}\left[\frac{\mathbf{Z}}{b(t)} \in \cdot\right] \xrightarrow{v} \nu(\cdot) \quad \text{in } M_{+}(\mathfrak{C}) \quad \text{and}$$
$$t\mathbb{P}\left[\frac{\mathbf{Z}}{b_{0}(t)} \in \cdot\right] \xrightarrow{v} \nu_{0}(\cdot) \quad \text{in } M_{+}(\mathfrak{C}_{0})$$

with $\nu(\mathfrak{C}_0) = 0$ and $b_0(t)/b(t) \to 0$ as $t \to \infty$.

- Let Y be $RV(\alpha)$ with support only on $\mathfrak{C} \setminus \mathfrak{C}_0$.
- Let $\mathbf{V} = R_0 \theta_0$, $R_0 \sim F_{R_0}(t) = 1/b^{\rightarrow}(t)$ and $\theta_0 \sim H_0$, finite.
- \bullet Then ${\bf Z}$ is tail equivalent to a mixture of ${\bf Y}$ and ${\bf V}$ on both \mathfrak{C} and $\mathfrak{C}_0.$

Works because Y's support doesn't mess with the HRV.

Construction of $\mathbf{Y} + \mathbf{V}$

Define $\mathbf{Y} = R\mathbf{W}$, with $\mathbb{P}(R > r) \sim 1/b^{\leftarrow}(r)$ and \mathbf{W} drawn from limiting angular measure H. Notice that \mathbf{Y} has support only on $\mathfrak{C} \setminus \mathfrak{C}_0$.

Let $\mathbf{V} \in [0,\infty)^d$ be regular varying on \mathfrak{C}_0 with limit measure ν_0 :

$$t\mathbb{P}\left[\frac{\mathbf{V}}{b_0(t)}\in\cdot\right]\xrightarrow{v}\nu_0(\cdot)$$
 in $M_+(\mathfrak{C}_0).$

Further assume that on \mathfrak{C} ,

$$\mathbb{P}(\|\mathbf{V}\| > r) \sim cr^{-\alpha^*}$$

as $r \to \infty$, with c > 0 and

$$\alpha^* > \alpha \lor (\alpha_0 - \alpha).$$

Assume R, W, V are independent.

Tail Equivalence Result

Then

$$t\mathbb{P}\left[\frac{\mathbf{Y}+\mathbf{V}}{b(t)}\in\cdot\right] \xrightarrow{v} \nu(\cdot) \text{ in } M_{+}(\mathfrak{C})$$

(Jessen and Mikosch, 2006).

Furthermore, tail equivalence (Maulik and Resnick, 2004) also holds on \mathfrak{C}_0 :

Theorem. With Y and V as defined above,

$$t\mathbb{P}\left[\frac{\mathbf{Y}+\mathbf{V}}{b_0(t)}\in\cdot\right] \xrightarrow{v} \nu_0(\cdot) \text{ in } M_+(\mathfrak{C}_0).$$

View Z as a sum of 'first-order' Y and 'second-order' V. The sum Y + V is *tail equivalent* to Z on *both* \mathfrak{C} *and* \mathfrak{C}_0 . Simulation when ν_0 is finite.

No point falls exactly on an axis.

Infinite Measure Example: Bivariate Gaussian

Z has Fréchet margins and Gaussian dependence ($\rho < 1$). Recall: H_0 is *infinite* on $\mathcal{N}_0 = (0, 1)$.

Poses difficulty near the axes of \mathfrak{C} .

Proposed construction of V:

- Restrict to $\mathfrak{C}_0^{\epsilon} = \mathfrak{C}_0 \cap \mathfrak{N}_0^{\epsilon}$, where $\mathfrak{N}_0^{\epsilon} = [\epsilon, 1 \epsilon]$ for $\epsilon \in (0, 1/2)$.
- Simulate W_0 from probability density $H_0(dw)/H_0(\mathbb{N}_0^{\epsilon})$
- Let R_0 follow a Pareto distribution with $lpha=1/\eta$
- **V** = $[R_0 W_0, R_0 (1 W_0)]^T$

 $\mathbf{Y} + \mathbf{V}$ is tail equivalent to \mathbf{Z} on \mathfrak{C} and $\mathfrak{C}_0^{\epsilon}$.

Sum representation of bivariate Gaussian

Example with $\rho = 0.5$ (n = 2500):

For any set completely contained in $\mathfrak{C}_0^{\epsilon}$ we achieve the correct limit measure ν_0 .

Choice of ϵ involves a trade-off between:

- Size of the subcone on which tail equivalence holds
- \bullet Threshold at which $\mathbf{Y}+\mathbf{V}$ is a useful approximation
- Biases due to choice of ϵ calculated.

Inference via the EM Algorithm

Observe realizations from Z, tail equivalent to Y+V. Assume parametric forms and perform ML inference via EM.

If we assume Z = Y + V,

$$\log f(\mathbf{z}; \boldsymbol{\theta}) = \int \log f(\mathbf{z}, \mathbf{y}, \mathbf{v}; \boldsymbol{\theta}) f(\mathbf{y}, \mathbf{v} | \mathbf{z}; \boldsymbol{\theta}^{(k)}) d\mathbf{y} d\mathbf{v}$$
$$- \int \log f(\mathbf{y}, \mathbf{v} | \mathbf{z}; \boldsymbol{\theta}) f(\mathbf{y}, \mathbf{v} | \mathbf{z}; \boldsymbol{\theta}^{(k)}) d\mathbf{y} d\mathbf{v}$$
$$:= Q(\boldsymbol{\theta} | \boldsymbol{\theta}^{(k)}) - H(\boldsymbol{\theta} | \boldsymbol{\theta}^{(k)}).$$

Here: Z and Y + V are only *tail equivalent*; θ governs tail behavior of Y and V. Requires a modification of the EM setup.

EM for Extremes

Consider distributions with densities $g_Y(y; \theta)$ and $g_V(v; \theta)$ which are tail equivalent to the true distributions; i.e.,

$$g_{\mathbf{Y}}(\mathbf{y}; \boldsymbol{\theta}) \cong f_{\mathbf{Y}}(\mathbf{y}; \boldsymbol{\theta}) \quad \text{for} \quad \|\mathbf{y}\| > r_{\mathbf{Y}}^*$$
$$g_{\mathbf{V}}(\mathbf{v}; \boldsymbol{\theta}) \cong f_{\mathbf{V}}(\mathbf{v}; \boldsymbol{\theta}) \quad \text{for} \quad \|\mathbf{v}\| > r_{\mathbf{V}}^*,$$

Complete likelihood is based on limiting Poisson point processes for ${\bf Y}$ and ${\bf V}.$

- E step: expectation is taken with respect to $g(\mathbf{y}, \mathbf{v} | \mathbf{z}; \boldsymbol{\theta})$.
- \bullet M step: maximization is taken over only 'large' y and v.

We show

$$H(\boldsymbol{\theta}^{(k)}|\boldsymbol{\theta}^{(k)}) - H(\boldsymbol{\theta}|\boldsymbol{\theta}^{(k)}) \geq 0$$

using Jensen's inequality.

MCEM

Natural framework for MCEM.

At the E step of the $(k + 1)^{th}$ iteration, simulate from

$$g_{\mathrm{Y}}(\mathrm{y}; oldsymbol{ heta}^{(k)}) g_{\mathrm{V}}(\mathrm{z}-\mathrm{y}; oldsymbol{ heta}^{(k)}) \propto g(\mathrm{y}, \mathrm{v}|\mathrm{z}; oldsymbol{ heta}^{(k)})$$

for all \mathbf{z} and use the simulated realizations to compute

$$\widehat{Q}_m(\boldsymbol{\theta}|\boldsymbol{\theta}^{(k)}) = \frac{1}{m} \sum_{j=1}^m \ell(\boldsymbol{\theta}; \mathbf{z}, \mathbf{y}_j, \mathbf{v}_j).$$

employing Poisson point process likelihoods for *large* realizations of ${\bf Y}$ and ${\bf V}.$

Key idea: likelihood only depends on θ for 'large' y and v!

Uncertainty estimates obtained via Louis' method.

Example w/ Infinite Hidden Measure

Simulate n = 10000 realizations from a bivariate Gaussian distribution with correlation ρ , transform marginals to unit Fréchet.

Tail equivalent on \mathfrak{C} and $\mathfrak{C}^{\varepsilon}_0$ to Y+V, where V has angular measure

$$H_0(dw) = \frac{1}{4\eta} \{ w(1-w) \}^{-1/2\eta - 1} dw.$$

Aim: estimate $\eta = (1 + \rho)/2$ from the ϵ -restricted model.

- ullet Must select both ϵ and $r_{\rm V}^*$
- Trade-off in finite sample estimation problems

Infinite Hidden Measure Results

Shown for $\eta = 0.75 \ (\rho = 0.5)$

<u>-۲</u>

Air Pollution Data

- Strong evidence for asymptotic independence
- Aim: estimate risk set probabilities

S02

Examine three modeling approaches:

- 1. Assume asymptotic dependence; i.e. that $\nu(\cdot)$ places mass on the entire cone \mathfrak{C} . Fit a bivariate logistic angular dependence model to largest 10% of observations (in terms of L_1 norm). Estimate $\hat{\beta} = 0.713$.
- 2. Assume asymptotic independence and ignore any possible hidden regular variation.
- 3. Assume asymptotic independence and hidden regular variation. Fit the ϵ -restricted infinite hidden measure model via MCEM. Select $r_{\rm V}^*=$ 7.5 and $\epsilon=$ 0.3. Estimate $\hat{\eta}=$ 0.748.

Results - risk set estimates

S02 00 00

Daily max pollution at Leeds, UK

NO2

Model	$\widehat{\mathbb{P}}(\mathbf{Z} \in A_1)$	Expected #	<i>p</i> -val
1 (asy. dep.)	0.0297	59.04	0.480
2 (asy. indep.)	0.0120	23.86	$8.17 imes10^{-5}$
3 (Y + V)	0.0261	51.89	0.210
Empirical	0.0292	58	—

Results - risk set estimates

°` S02 ප්ඤ

Daily max pollution at Leeds, UK

NO2

Model	$\widehat{\mathbb{P}}(\mathbf{Z} \in A_2)$	Expected #	$p ext{-val}$
1 (asy. dep.)	0.0044	8.74	0.132
2 (asy. indep.)	0.0002	0.40	0.009
3 (Y + V)	0.0018	3.58	0.274
Empirical	0.0025	5	_

Results - risk set estimates

Daily max pollution at Leeds, UK

NO2

Model	$\widehat{\mathbb{P}}(\mathbf{Z} \in A_3)$	Expected #	$p ext{-val}$
1 (asy. dep.)	0.0010	1.99	0.130
2 (asy. indep.)	0	0	1
3 (Y + V)	0.0002	0.40	0.704
Empirical	0	0	_

Summary

This work introduces a sum representation for regular varying random vectors possessing hidden regular variation.

- Useful representation for finite samples
- Asymptotically justified by tail equivalence result
- \bullet Difficulty arises when ${\it H}_0$ is infinite restrict to a compact cone to simulate ${\bf V}$
- Likelihood estimation via modified MCEM algorithm
- Captures tail dependence in the presence of asymptotic independence
- Improved estimation of tail risk set probabilites

References

- Heffernan, J. E. and Tawn, J. A. (2004). A conditional approach for multivariate extreme values. *Journal of the Royal Statistical Society, Series B*, 66:497–546.
- Jessen, A. and Mikosch, T. (2006). *Regularly varying functions*. University of Copenhagen, laboratory of Actuarial Mathematics.
- Ledford, A. and Tawn, J. (1997). Modelling dependence within joint tail regions. *Journal* of the Royal Statistical Society, Series B, B:475–499.
- Maulik, K. and Resnick, S. (2004). Characterizations and examples of hidden regular variation. *Extremes*, 7(1):31–67.
- Resnick, S. (2002). Hidden regular variation, second order regular variation and asymptotic independence. *Extremes*, 5(4):303–336.
- Weller, G. and Cooley, D. (2013). A sum decomposition for hidden regular variation in joint tail modeling with likelihood inference via the mcem algorithm. *Submitted*.