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Overview

I Gaussian process and its related functions: supreme, general
convex functions, more complicated structured functions.

I Asymptotic analysis

I Rare-event simulations
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Gaussian Random Field

I Probability space (Ω,F ,P)

I f : T ×Ω→ R, f (t, ω), short form: f (t).

I (t1, ..., tn) ⊂ T , (f (t1), ..., f (tn)) is a multivariate Gaussian
random vector.

I T ⊂ Rd , e.g., T = [0, 1]d .
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Interesting quantities

I The tail probabilities of functions of Γ(f (·))
I The supremum norm

Γ(f ) = sup
t∈T

f (t)

I General convex functions, for instance,

Γ(f ) =
∫
t∈T

ef (t)dt

I Differential equations with random coefficients
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The analysis

I Bounds and asymptotic bounds

I Asymptotic approximations

I Tail probability

lim
b→∞

P(Γ(f ) > b)

α(b)
= 1, lim

b→∞

logP(Γ(f ) > b)

log α(b)
= 1

I Local results: approximations of the density functions, gΓ(x)

I Simulation of the tail probability

I Approximation of the conditional distribution
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A brief summary of the results

Approx. Sim. Cond. Dist.

supT f (t) A lot A lot limited∫
T ef (t)dt limited limited very limited

SPDE very limited very limited ???
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Asymptotic approximations of P(supT f (t) > b)
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Asymptotic Analysis of Γ(f ) = supT f (t)

I Logarithmic approximation

lim
u→∞
− logP(supT f (t) > u)

u2
=

1

2 supT σ2(t)
.

I Sharp asymptotics under regularity conditions

P(sup
T

f (t) > u) = (1 + o(1))× C (T )× uβ × P(Z > u)

I Cramer and Leadbetter (1967), Pickands (1969), Adler
(1981), Sun (1993), Piterbarg (1995), Azais and Wschebor
(2005).
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The intuition

I B1, ...,Bn are independent events, where P(Bi ) = α ≈ 0

I Then,
P(∪ni=1Bi > 0) = 1− (1− α)n ≈ nα.
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Random differential equations
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Material Failure – one dimensional example

Physical meaning

I u(x): the shape of the material

I Ou(x): strain

I p(x): pressure

I a(x): material-specific coefficients

1

1
The picture is published at http://www.guillemot-kayaks.com
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Material Failure

I The partial differential equation: x ∈ T

O · {a(x)Ou(x)} = −p(x)

I The ordinary differential equation: x ∈ [0, 1]

{a(x)u′(x)}′ = −p(x)
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Material Failure – one dimensional example

I Composite material characterized by the tensor a(x)

I Spatial variation: a(x) = ef (x), where f (x) is a Gaussian
process.
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Material Failure

I Question: whether and where the material breaks.
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The failure probability

I The failure probability

P

(
sup
x∈T
|∇u(x)| > b

)
I The displacement u(x) depends on the process a(x).

15 / 24



The failure probability

I The failure probability

P

(
sup
x∈T
|∇u(x)| > b

)
I The displacement u(x) depends on the process a(x).

15 / 24



Material Failure – Dirichlet condition

I Dirichlet condition: u(0) = u(1) = 0

I The solution:

u(x) =
∫ x
0 F (y)a−1(y)dy −

∫ 1
0 F (y )a−1(dy )dy∫ 1

0 a−1(dy )

∫ x
0 a−1(y)dy ,

where F (x) =
∫ x
0 p(y)dy .
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Material Failure – Dirichlet condition

I The strain

u′(x) = a−1(x)

(
F (x)−

∫ 1
0 F (y)a−1(y)dy∫ 1

0 a−1(y)dy

)
= a−1(x)[F (x)− Ef (F (Y ))]

where a−1(x) = ef (x).
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The external force

I Delta external force: p(x) = δx∗(x), F (x) = I (x ≥ x∗).

I Continuous external force p(x): x∗ = arg supx∈T |p(x)|.
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Theorem: approximation of the Delta function (L. and
Zhou 2011)

I Homogeneous, mean zero, and C 3(T )

I The covariance C (t) = 1− 1
2 t

2 +O(|t|4).

I The external F (x) = I (x ≥ x∗), p(x) = δx∗(x).
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Theorem: approximation of the Delta function (L. and
Zhou 2013)

I Use Z to denote a standard normal random variable. Define
H(x) = − x2

2 + logP(Z ≤ x), and κ = supH(x).

I Let r = log b− κ.

Then, we have the approximation

P
(

sup
x∈[0,1]

|u′(x)| > b
)
∼ D × P(Z > r).
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Key components of the conditional distribution

I Questions about the conditional distribution
I Where does the break occur or arg sup u′(x) =?
I Where does f (x) attain it maximum?
I At what level?
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Theorem: approximation for continuous force (L. and Zhou
2013)

I The external force p(x) is a continuously differentiable
function.

I x∗ = arg supx p(x).

Then, we have the approximation

P( sup
x∈[0,1]

|u′(x)| > b)

∼ P(|u′(0)| > b) + P(|u′(1)| > b) + P( sup
|x−x∗|<ε

|u′(x)| > 0).
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Exact asymptotic approximation for continuous body force

I Let p(x∗)r−1er−
1
2 = b. Then,

P( sup
|x−x∗|<ε

|u′(x)| > 0) ∼ κ∗ × r−1/2 exp{−r2/2}.

I Let H0r0
−1/2er0 = b. Then,

P(|u′(0)| > b) = κ0 × r0
−1e−r0

2/2

I Let H1r1
−1/2er1 = b. Then,

P(|u′(1)| > b) = κ1 × r1
−1e−r1

2/2
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Conclusion

I Extremes of Gaussian processes

I Differential equations

I Understanding the tail events
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