Large deviations for (pseudo-)regenerative Markov chains
 In collaboration with T. Mikosch

Olivier Wintenberger
wintenberger@ceremade.dauphine.fr

CEREMADE, University Paris Dauphine \& LFA-CREST.

CPH, May 30, 2013

Motivation: characterization of the limit of partial sums

Let $\left(X_{t}\right)_{t \geqslant 1}$ be a process with dependent extreme values.

Motivation

Characterization of the limit of $S_{n}=\sum_{t=1}^{n} X_{t}$ under tractable hypothesis?

Example (Errors of empirical statistics)

(1) Empirical mean $\bar{X}_{n}=\frac{1}{n} \sum_{t=1}^{n} X_{t}$ when $\mathbb{E}|X|<\infty$ but $\mathbb{E} X^{2}=\infty$, limit distribution of the error $\left(\bar{X}_{n}-\mathbb{E}(X)\right)$ correctly normalized?
(2) Empirical autocovariances: for any lag $h \geqslant 1$ we have

$$
\hat{\gamma}_{n}(h)=\frac{1}{n-h} \sum_{j=1}^{n-h}\left(X_{j}-\bar{X}_{n}\right)\left(X_{j+h}-\bar{X}_{n}\right) .
$$

Strictly stable r.v.

Definition

A r.v. Y is strictly α-stable distributed iff $\exists a>0, Y_{1}$ and Y_{2} independent, distributed as Y such that $Y_{1}+Y_{2}=a Y$ in distribution.
Then Y is strictly α-stable with $0<\alpha \leqslant 2$ and c.f. $\exp \left(-|x|^{\alpha} \chi_{\alpha}\left(x, b_{+}, b_{-}\right)\right)$,

$$
\chi_{\alpha}\left(x, b_{+}, b_{-}\right)=\frac{\Gamma(2-\alpha)}{1-\alpha}\left(\left(b_{+}+b_{-}\right) \cos (\pi \alpha / 2)-i \pm_{x}\left(b_{+}-b_{-}\right) \sin (\pi \alpha / 2)\right) .
$$

Strictly stable central limit theorem

Theorem (Feller, 1977)
If $\exists\left(a_{n}\right), a_{n}>0$ and Y strict. stable such that

$$
\begin{equation*}
a_{n}^{-1} S_{n} \rightarrow Y \tag{SSL}
\end{equation*}
$$

then X_{t} are iid $R V(\alpha)$ centered r.v. if $\alpha>1$. For $\alpha<2$ and $a_{n}=L(n) n^{1 / \alpha}$ s.t. $\lim _{n} n \mathbb{P}\left(|X|>a_{n}\right)=1$ then $b_{+}+b_{-}=1$.

Remark that if $0<\alpha<1$ then $\mathbb{E}|X|=\infty$.

Regularly varying sequences

Stationary RV (α) processes, Basrak \& Segers (2009)
$\left(X_{t}\right)$ is $\mathrm{RV}(\alpha)$ iff \exists its spectral tail process $\left(\Theta_{t}\right)$ defined for $k \geqslant 0, u \geqslant 1$ when $x \rightarrow \infty$

$$
\mathbb{P}\left(X_{0}>u x,\left|X_{0}\right|^{-1}\left(X_{0}, \ldots, X_{k}\right) \in \cdot| | X_{0} \mid>x\right) \xrightarrow{w} u^{-\alpha} \mathbb{P}\left(\left(\Theta_{0}, \ldots, \Theta_{k}\right) \in \cdot\right) .
$$

Example

If $\left(X_{t}\right)$ is iid, $\Theta_{t}=0$ for $t \geqslant 1$ and $b_{ \pm}=\mathbb{E}\left[\Theta_{0}{ }_{ \pm}^{\alpha}\right]$ for $\alpha \in(1,2)$.
Remark that $b_{+}+b_{-}=\mathbb{E}\left[\Theta_{0}{ }_{+}^{\alpha}\right]+\mathbb{E}\left[\Theta_{0}{ }_{-}^{\alpha}\right]=\mathbb{E}\left|\Theta_{0}\right|^{\alpha}=1$ because $\left|\Theta_{0}\right|=1$.

A necessary condition

Theorem (Jakubowski, 1993)
If (SSL) with $a_{n}=L(n) n^{1 / \alpha}$ then it exists a sequence $k_{n}, n / k_{n} \rightarrow \infty$ such that

Example

(MX) is satisfied for
(1) $\left(X_{t}\right)$ iid,
(2) $X_{t}=Y$ strictly stable for all $t \geqslant 1$!!!

Toward coupling conditions

Remark that $X_{t}=Y \in R V(\alpha)$ is a stationary sequence satisfying
(3) $\operatorname{RV}(\alpha)$,
c (MX).
However, (SSL) holds iff Y is strictly α-stable.
Mixing type conditions sufficient for (MX) excluding the case $X_{t}=Y$.

Coupling conditions

Assume that $X_{t}=f\left(\Phi_{t}\right)$ where $\left(\Phi_{t}\right)$ is a Markov chain: $\Phi_{t}=F\left(\Phi_{t-1}, \xi_{t}\right)$, where $\left(\xi_{t}\right)$ is iid.

Definition (Coupling scheme, Thorisson (2000))

Consider $X_{t}^{*}=f\left(\Phi_{t}^{*}\right)$ with $\Phi_{t}^{*}=F\left(\Phi_{t-1}^{*}, \xi_{t}\right)$ for $t \geqslant 1$ and $\left(\Phi_{0}^{*}, \Phi_{0}\right)$ iid:

Coupling conditions

Proposition

If $\sum_{t} \mathbb{E}\left|X_{t}-X_{t}^{*}\right|<\infty$ then (MX) is satisfied
Example $\left(\operatorname{AR}(1): X_{t}=\rho^{t} X_{0}+\sum_{j=1}^{t} \rho^{t-j} \xi_{j}\right)$

When small jumps matter.

The point process approach deals with $\sum_{t=1}^{n} \delta_{X_{t} / a_{n}}$ on some set vanishing around 0 .

Example (Coupled regularly varying Markov chain)

For $\left(T_{t}\right)$ iid positive $\operatorname{RV}\left(\alpha^{\prime}\right)$, $\left(B_{t}\right)$ iid Rademacher, $\left(\xi_{t}\right)$ iid centered $\operatorname{RV}(\alpha)$ with $\alpha>\alpha^{\prime}>1$ consider $X_{t}=B_{N_{T}(t)}+\xi_{t}, N_{T}(t)=\inf \left\{k \geqslant 1, T_{1}+\cdots+T_{k} \geqslant t\right\}$. Then $\begin{cases}\sum_{t=1}^{n} \delta_{X_{t} / a_{n}} \sim \sum_{t=1}^{n} \delta_{\xi_{t} / a_{n}} & \Rightarrow \alpha \text {-stable limit, } \\ S_{n} \sim \sum_{j=1}^{N_{T}(n)} \pm T_{j}, N_{T}(n) \mathbb{E}(T) \sim n & \Rightarrow L(n) n^{-\alpha^{\prime}} S_{n} \alpha^{\prime} \text {-stable limit. }\end{cases}$

Remark

- $\mathbb{E}\left|X_{t}-X_{t}^{*}\right|=\mathbb{E}\left|B_{N_{T}(t)}-B_{N_{T^{*}}(t)}^{*}\right| \leqslant 2 \mathbb{P}\left(T_{1} \geqslant t\right)=2 L(t) t^{-\alpha^{\prime}}$.
- Does not work for $0<\alpha^{\prime}<1$.

Vanishing small values condition

Additional hypothesis

Davis and Hsing (1995)

$$
\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \mathbb{P}\left(\left|\sum_{t=1}^{n} X_{t} I_{\left\{\left|X_{t}\right| \leqslant \epsilon a_{n}\right\}}-\mathbb{E}\left(X_{t} I_{\left\{\left|X_{t}\right| \leqslant \epsilon a_{n}\right\}}\right)\right|>x a_{n}\right)=0, \quad x>0
$$

Example

lid $\left(X_{t}\right)$ satisfies (VSV).
Condition (VSV) has to be verified for dependent $\left(X_{t}\right)$.

Identification of the clusters

SRE: $X_{t}=A_{t} X_{t-1}+B_{t}, t \geqslant 1$ with $\left(A_{t}, B_{t}\right)$ iid, $A_{t}>0, \mathbb{E} A_{0}^{\alpha}=1$ and $\mathbb{E}\left|B_{0}\right|^{\alpha+\varepsilon}<\infty, \varepsilon>0$. The unique stationary solution $\left(X_{t}\right)$ is $\operatorname{RV}(\alpha)$.

How to identify the clusters?

Approximation by local dependance (Rootzen, 1978)

When is it a good approximation when $m \rightarrow \infty$?

Davis \& Hsing (1995), Basrak \& Segers (2009)

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \mathbb{P}\left(\max _{m \leqslant|i| \leqslant n / k_{n}}\left|X_{i}\right|>x a_{n}| | X_{0} \mid>x a_{n}\right)=0, \quad x>0 . \tag{ALD}
\end{equation*}
$$

Under (ALD) $\theta>0$, i.e. average size of clusters are finite.

Drift condition (DCp)

Two issues

(1) Condition (MX) or sufficient coupling is not sufficient for (VSV),
(2) Condition (ALD) is not very tractable.

One solution

Let $X_{t}=f\left(\Phi_{t}\right)$ where Φ_{t} is a nice Markov chain. It satisfies Condition (DCp) for $p>0$ if there exist $\beta \in(0,1), b>0$ such that for any y,

$$
\begin{equation*}
\mathbb{E}\left(\left|f\left(\Phi_{1}\right)\right|^{p} \mid \Phi_{0}=y\right) \leqslant \beta|f(y)|^{p}+b . \tag{DCp}
\end{equation*}
$$

Remark that ($D C p$) implies ($D C p^{\prime}$) for $p>p^{\prime}$ (Jensen's inequality).

Examples for (DCp)

Examples

(1) $\left(X_{t}\right)$ iid $\operatorname{RV}(\alpha)$ then $\mathbb{E}\left(\left|X_{1}\right|^{p} \mid X_{0}=y\right)=\mathbb{E}\left|X_{1}\right|^{p}=: b, \quad 0<p<\alpha$,
(2) $\operatorname{AR}(1): X_{t}=\rho X_{t+1}+\xi_{t}$ with $\left(\xi_{t}\right)$ iid $\operatorname{RV}(\alpha)$ then

$$
\mathbb{E}\left(\left|\rho y+\xi_{1}\right|^{p} \mid X_{0}=y\right) \leqslant\left(|\rho| y+\left(\mathbb{E}\left|\xi_{1}\right|^{p}\right)^{1 / p}\right)^{p} \leqslant \beta y^{p}+b
$$

for $|\rho|^{p}<\beta<1$ and all $1 \leqslant p<\alpha$,
(0) $X_{t}=Y$ then $\mathbb{E}\left(\left|X_{1}\right|^{p} \mid X_{0}=y\right)=|y|^{p}$ does not satisfied (DCp).

Examples for (DCp)

Example

SRE: $X_{t}=A_{t} X_{t-1}+B_{t}$ with $\mathbb{E} A_{0}^{\alpha}=1$ and $\mathbb{E} B_{0}^{\alpha+\varepsilon}<\infty$ then

$$
\mathbb{E}\left(\left|A_{1} y+B_{1}\right|^{p} \mid X_{0}=y\right) \leqslant\left(\left(\mathbb{E} A_{0}^{p}\right)^{1 / p} y+\left(\mathbb{E}\left|\xi_{1}\right|^{p}\right)^{1 / p}\right)^{p} \leqslant \beta y^{p}+b
$$

for $\mathbb{E} A_{0}^{p}<\beta<1$ as $\left(\mathbb{E} A_{0}^{p}\right)^{1 / p}<\left(\mathbb{E} A_{0}^{\alpha}\right)^{1 / \alpha}=1$ for $1 \leqslant p<\alpha$,

Conjecture

If the Markov chain $\left(\Phi_{t}\right) \in \operatorname{RV}(\alpha)$ then it satisfies (DCp).

Regeneration of Markov chains with an accessible atom (Doeblin, 1939)

Definition

$\left(\Phi_{t}\right)$ is a Markov chain of kernel P on \mathbb{R}^{d} and $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$.

- A is an atom if \exists a measure ν on $\mathcal{B}\left(\mathbb{R}^{d}\right)$ st $P(x, B)=\nu(B)$ for all $x \in A$.
- A is accessible, i.e. $\sum_{k} P^{k}(x, A)>0$ for all $x \in \mathbb{R}^{d}$.

Let $\left(\tau_{A}(j)\right)_{j \geqslant 1}$ visiting times to the set A, i.e.
$\tau_{A}(1)=\tau_{A}=\min \left\{k>0: X_{k} \in A\right\}$ and $\tau_{A}(j+1)=\min \left\{k>\tau_{A}(j): X_{k} \in A\right\}$.

Regeneration cycles

(1) $N_{A}(t)=\#\left\{j \geqslant 1: \tau_{A}(j) \leqslant t\right\}, t \geqslant 0$, is a renewal process,
(2) The cycles $\left(\Phi_{\tau_{A}(t)+1}, \ldots, \Phi_{\tau_{A}(t+1)}\right)$ are iid.

Irreducible Markov chain and Nummelin scheme

Definition (Minorization condition, Meyn and Tweedie, 1993)
$\exists \delta>0$, a small set $C \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ and a distribution ν on C such that

$$
\begin{equation*}
P^{k}(x, B) \geqslant \delta \nu(B), \quad x \in C, \quad B \in \mathcal{B}\left(\mathbb{R}^{d}\right) . \tag{MCk}
\end{equation*}
$$

(MC1) is called the strongly aperiodic case.
Any irreducible aperiodic Markov chain $\left(\Phi_{t}\right)$ satisfies (MCk) for some $k \geqslant 1$.
Nummelin splitting scheme for pseudo-regenerative Markov chain Under (MC1) an enlargement of $\left(\Phi_{t}\right)$ on $\mathbb{R}^{d} \times\{0,1\} \subset \mathbb{R}^{d+1}$ possesses an accessible atom $A=C \times\{1\} \Longrightarrow$ the enlarged Markov chain regenerates.

Inference on real data, Bertail and Clemencon (2009)

Squared of \log-ratios $X_{t}=\log \left(P_{t} / P_{t-1}\right)^{2}$ where $\left(P_{t}\right)$ are CAC 40 prices.

Small sets $C=\left\{X_{t}^{2} \leqslant a_{n}\right\}$ for any $a_{n}>0$ (T-chains).

Coupling under (DCp)

Under (DCp) then $\mathbb{E} e^{c \tau_{A}(1)}<\infty, \mathbb{P}\left(\tau_{A}(1) \geqslant t\right) \leqslant \mathbb{E} e^{c \tau_{A}(1)} e^{-c t}$ and

$$
\mathbb{E}\left|X_{t}-X_{t}^{*}\right| \leqslant 2 \mathbb{E}\left|X_{t}\right| \mathbb{P}\left(\tau_{A}(1) \geqslant t\right) \leqslant 2 \mathbb{E}\left|X_{t}\right| C e^{-c t}
$$

(SSL) for sums of m-dependent r.v.

Assume $\left(X_{t}, t \leqslant 0\right)$ is independent of $\left(X_{t}, t \geqslant m\right)$ then $\Theta_{t}=0$ for $|t| \geqslant m$.

Theorem

If $\left(X_{t}\right)$ is centered $R V(\alpha)$ with $\alpha>1$ then it satisfies (SSL) $a_{n}^{-1} S_{n} \rightarrow Y$ where Y has c.f. $\exp \left(-|x|^{\alpha} \chi_{\alpha}\left(x, b_{+}, b_{-}\right)\right)$with cluster indices

$$
b_{ \pm}=\mathbb{E}\left[\left(\sum_{t=0}^{m-1} \Theta_{t}\right)_{ \pm}^{\alpha}-\left(\sum_{t=1}^{m-1} \Theta_{t}\right)_{ \pm}^{\alpha}\right]
$$

Large deviations for function of Markov chains

Assume $\left(X_{t}=f\left(\Phi_{t}\right)\right)$ where $\left(\Phi_{t}\right)$ (possibly enlarged) possesses an accessible atom A and an invariant measure π s.t. $\Phi_{0} \sim \pi$.

Theorem

If $\left(X_{t}\right)$ is centered $R V(\alpha)$ with $\alpha>1$ and satisfies (DCp) for $p<\alpha$ then it satisfies (SSL) with cluster indices

$$
b_{ \pm}=\mathbb{E}\left[\left(\sum_{t=0}^{\infty} \Theta_{t}\right)_{ \pm}^{\alpha}-\left(\sum_{t=1}^{\infty} \Theta_{t}\right)_{ \pm}^{\alpha}\right] .
$$

Sketch of the proof

Under (DCp) we have $\mathbb{E}\left|\Theta_{k}\right|^{p} \leqslant C \rho^{k}$ for some $C>0,0<\rho<1$. In particular $\left(\Theta_{t}\right)$ is a convergent series in $\mathbb{L}^{\alpha-1}$.
By the mean value theorem we have there exists $C>0$

$$
\mathbb{E}\left[\left(\sum_{t=0}^{m-1} \Theta_{t}\right)_{ \pm}^{\alpha}-\left(\sum_{t=1}^{m-1} \Theta_{t}\right)_{ \pm}^{\alpha}\right] \leqslant C \mathbb{E}\left|\sum_{t=0}^{m-1} \Theta_{t}\right|^{\alpha-1}
$$

By the dominated convergence theorem the cluster index exists.

Approximation by local dependence

SRE: $X_{t}=A_{t} X_{t-1}+B_{t}$, then $\Theta_{t}=\prod_{j=1}^{t} A_{j} \Theta_{0}$ satisfies

$$
\mathbb{E}\left|\Theta_{t}\right|^{\alpha}=1 \Longrightarrow \mathbb{E}\left(\sum_{t=1}^{\infty}\left|\Theta_{t}\right|^{\alpha}\right)=\infty .
$$

Under (DCp), good approximation in $\mathbb{L}^{p}, p<\alpha$ when $m \rightarrow \infty$.

Application to autocorrelograms of squared log-ratios

Assume that $X_{t}=\log \left(P_{t} / P_{t-1}\right)^{2}$ is $\mathrm{RV}(\alpha)$ satisfying (DCp).

Hill's estimator: $\hat{\alpha} \approx 2$.

Autocorrelogram in presence of extremes

$\hat{\gamma}_{n}(h) \approx \gamma(h)+Y_{1}(h)$ asymptotically $\alpha \approx 1$-stable asymmetric distributed.

Analysis on basis of autocorrelogram are not adapted to heavy tailed cases.

Regular variation of cycles

Denoting the independent cycles $S_{A}(t)=\sum_{i=1}^{\tau_{A}(t+1)} f\left(\Phi_{\tau_{A}(t)+i}\right)$,

$$
S_{n}=\sum_{1}^{\tau_{A}} X_{i}+\sum_{t=1}^{N_{A}(n)-1} S_{A}(t)+\sum_{\tau_{A}\left(N_{A}(n)\right)+1}^{n} X_{i}
$$

Theorem
If $\left(X_{t}\right) R V(\alpha)$ with $\alpha>0, \alpha \notin \mathbb{N}$ and (DCp) with $p<\alpha$ and $b \pm \neq 0$ then

$$
\mathbb{P}_{A}\left(S_{A}(1)>x\right) \sim_{x \rightarrow \infty} b_{ \pm} \mathbb{E}_{A}\left(\tau_{A}\right) \mathbb{P}(|X|>x)
$$

Remarks

(1) The full cycles $S_{A}(t)=\sum_{i=1}^{\tau_{A}(t+1)} f\left(\Phi_{\tau_{A}(t)+i}\right)$ are regularly varying with the same index $\alpha>0$ than X_{t},
(2) If τ_{A} is independent of $\left(X_{t}\right)$ then $\mathbb{P}_{A}\left(S_{A}(1)>x\right) \sim_{x \rightarrow \infty} \mathbb{E}_{A}\left(\tau_{A}\right) \mathbb{P}(X>x)$,
(3) Under (DCp) and $\mathbb{E}|X|^{p}$ then $\mathbb{E}_{A}\left|S_{A}(1)\right|^{p}<\infty$.

Precise large deviations for sums

Corollary (Under the hypothesis of the Theorem)

If $0<\alpha<1$ then $\lim _{n \rightarrow \infty} \sup _{x} \geqslant b_{n}\left|\frac{\mathbb{P}\left(\pm S_{n}>x\right)}{n \mathbb{P}(|X|>x)}-b_{ \pm}\right|=0$, where $b_{n}=n^{1 / \alpha \wedge 1 / 2+\varepsilon}$ else, if $\mathbb{P}\left(\tau_{A}>n\right)=o\left(n \mathbb{P}\left(|X|>c_{n}\right)\right)$,

$$
\lim _{n \rightarrow \infty} \sup _{b_{n} \leqslant x \leqslant c_{n}}\left|\frac{\mathbb{P}\left(\pm S_{n}>x\right)}{n \mathbb{P}(|X|>x)}-b_{ \pm}\right|=0 .
$$

Determination of the constant in LD of Davis and Hsing (1995) valid for $\alpha<2$.
Sketch of the proof:
Under $\mathbb{P}\left(\tau_{A}>n\right)=o\left(n \mathbb{P}\left(|X|>c_{n}\right)\right)$,

$$
S_{n} \approx \sum_{t=1}^{N_{A}(n)-1} S_{A}(t)
$$

Use Nagaev's precise LD result on the iid regularly varying cycles $S_{A}(t)$.

Link between extremal and cluster index, $\Theta_{0}=1$

Under $\mathrm{RV}(\alpha)$ and (DCp), extremal index $\theta_{+}=\mathbb{E}\left[\left(\sup _{t \geqslant 0} \Theta_{t}\right)_{+}^{\alpha}-\left(\sup _{t \geqslant 1} \Theta_{t}\right)_{+}^{\alpha}\right]$.
Example (Asymptotic independence)
$\Theta_{t}=0$ for all $t>0$ then $b_{+}=\theta_{+}=1$.

Example $\left(\operatorname{AR}(1): X_{t}=\rho X_{t-1}+\xi_{t}, \forall t \in \mathbb{Z}\right.$ with $\left.\rho>0\right)$
$\Theta_{t}=\rho^{t}$ for all $t \geqslant 0$ then $\theta_{+}=1-\rho^{\alpha}$ and $b_{+}=\theta_{+} /(1-\rho)^{\alpha}$.
Example $\left(\operatorname{GARCH}(1,1)^{2}: X_{t}^{2}=\sigma_{t}^{2} Z_{t}^{2}, \sigma_{t}^{2}=\alpha_{0}^{*}+\alpha_{1}^{*} X_{t-1}^{2}+\beta_{1}^{*} \sigma_{t-1}^{2}\right)$
$\Theta_{t}=\left(Z_{t} / Z_{0}\right)^{2} \prod_{i=1}^{t}\left(\alpha_{1}^{*} Z_{i-1}^{2}+\beta_{1}^{*}\right)$ for all $t \geqslant 0$ then b_{+}and θ_{+}are explicit.

Peaks over thresholds

Process of exceedances of the squared log-ratios

Description of the clusters

Renormalization by the first exceedance in the cluster

Representation of the average clusters

Average clusters

As. ind., observations, $\operatorname{AR}(1)$

Conclusions and perspectives on the extremes

- Conclusions
(1) Cluster indices $b_{ \pm}$determine the asymptotic distribution of the sums of dependent and regularly varying variables,
(2) The extremal and cluster indices describe the clusters of extreme values.
- Perspectives
(1) We use Markovian processes and their regenerative structures \Longrightarrow use also regenerative structures to identify the clusters.
(2) Model the extremal dependence in view of the observed clusters \Longrightarrow introduce new models with extremal behaviors similar than the observed ones.

