
LECTURES ON HOMOTOPICAL GROUP ACTIONS

(OUTLINE OF 3 TALKS AT UNIV. COPENHAGEN)

JESPER GRODAL

Abstract. 3 lectures, each 2 x 45 min.

Outline. .
Lecture 1 will explain what is introduce basic equivariant homotopy theory, and begin

to study how equivariant homotopy theory relates to the homotopy theory of diagrams.
Lecture 2 will examine, for a Z/p-space X the relationship between X and XZ/p, part of

what is usually called Smith theory. It is “classical” Smith theory when X is assumed finite.
When X is not assumed finite, Elmendorf’s theorem shows that the homotopy type of X
says basically nothing about that of XZ/p However, surprisingly, the niceness of the finite
case resumes, if one replaces “fixed-points” by “homotopy fixed-points”. This “homotopy
smith theory” uses the Steenrod algebra and the T functor of Lannes and it’s interpretation
by Dwyer-Wilkerson. The link to the classical case is precisely described via the Sullivan
conjecture.

Lecture 3 ...

1. Lecture 1: Equivariant homotopy theory and the theory of diagrams

Ref: [12, 11, 9]

1.1. Assumptions and setup: .
G will be a finite group.
G-space X is a topological space with a G-action, which admits the structure of a G-

CW-complex. (Since G is only amounts to assuming that X admits the structure of a
CW-complex.)
G-map f : X → Y is a map which respect the G-action, i.e., f(g · x) = g · f(x)
Two maps f, f ′ : X → Y are called G-homotopic, if there exists a G-map F : X × I → Y

such that F (·, 0) = f and F (·, 1) = g.

An important point is that there will be two different notions of G-equivalence:

Definition 1.1. A G-map f : X → Y is called a G-equivalence (or sometimes strong G-
equivalence) if there exists a G-map g : Y → X, such that f ◦ g and g ◦ f are G-homotopic.

A map G-map f : X → Y is called an hG-equivalence (or sometimes weak G-equivalence)
if f is a homotopy equivalence as a non-equivariant map.

equivequiv Theorem 1.2 (Equivariant Whitehead theorem). A G-map f : X → Y is a G-equivalence
if the induced map fH : XH → Y H is non-equivariant equivalence for all subgroups H ≤ G.
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2 JESPER GRODAL

Sketch of proof. That G-equivalences induces equivalences on fixed-points follows directly
from the definition.

Conversely, if a G-map is an equivalence on all fixed-points, on can use induction of
G-cells to construct an inverse. �

Remark 1.3. Note that, contrary to the above, a map being an hG-equivalence tells us
nothing on what happens on the fixed-points for non-trivial subgroups H. E.g, for any
G-space X, X × EG → X is an hG-equivalence, but (X × EG)H = ∅ for all 1 � H ≤ G.
(Where EG as usual denotes a free contractible G-space.)

In the next subsection, we will introduce a sort of derived fixed-points, the homotopy
fixed-points, which we can still work with in absence of meaningful actual fixed-points, and
which by deep theorems agree with actual fixed-points in good cases (e.g. X finite, and “at
a prime p”).

1.2. Equivariant homotopy theory, and the diagram categories: Elmendorf’s
theorem. Ref: [6]

Proposition 1.2 shows that equivariant equivalences can be described as non-equivariant
equivalences on fixed-points.

Note that the category of G-spaces and hG-equivalences can be described as functor
category, with object-wise equivalences, namely the category of functors from G (viewed as
a category with one object, and G as morphisms) to spaces.

In this subsection we will address two natural questions:

• Can the the category ofG-spaces andG-equivalences be understood via non-equivariant
homotopy theory as a certain functor category? (yes, Prop )

• Is there a relationship between the homotopy type of X and that of, say, XZ/p? (in
general little by Theorem , under finiteness and “at p” assumptions a lot, cf later).

To warm up to Elmendorf’s theorem, we do the following baby case first.

Definition 1.4 (The orbit category and the p-orbit category). Let O(G) denote the orbit
category of G, i.e., the category with objects G/P , where P runs through the subgroups of
G, and morphisms G-maps.

The p-orbit category Op(G) is the full subcategory of O(G), where P is assumed to be a
p-subgroup.

Note that

HomO(G)(G/P,G/Q) = {g ∈ G|g−1Pg ≤ Q}/Q = (G/Q)P

and in particular HomO(G)(G/P,G/P ) = NG(P )/P .
Will, in fact, most often be interested in the opposite orbit and p-orbit categories. Let us

do a couple of examples:

Example 1.5.
• Suppose that G = Z/p, then the p-orbit category has two objects G/G and G/e,

with G as self-maps of G/e and only the identity self-map of G/G, and exactly one
morphism between them. Diagrammatic the opposite p-orbit category looks like:

G/G // G/e
��

• Suppose G = Σ3. The opposite 2-orbit category looks like
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G/P _*4 G/e
��

that is only the identity self-map of G/P , G worth of self-map of G/e, and 3 maps
between them, which naturally identify with G/P .

Theorem 1.6 (Elmendorf [6]). The functor

X 7→ {XH}G/H∈O(G)op

induces a 1− 1-correspondence

{G-spaces}/G-equivalence←→ {Fun(O(G)op, Spaces)}/objectwise h.e.

In fact, with suitable definition of model category structures on the left- and right-hand
side, this induces a Quillen equivalence of model categories. []

Before giving a sketch of proof of this theorem, let us do the special case G = Z/p, which
is already interesting.

Example 1.7 (Elmendorf’s theorem for G = Z/p). Elmendorf’s theorem for Z/p claims
that giving a G-space X, up to G-equivalence is equivalent to giving space Y0, a G-space
Y1 and a (non-equivariant) map f : Y0 → Y G

1 , up to equivalence of diagrams. We want to
give an inverse functor.

We claim that we can take X to be the homotopy pushout of the diagram

EG× Y0
proj //

EG×f
��

Y0

EG× Y1
First one observes that the G-homotopy homotopy type of X only depends, up to object-

wise equivalence of diagrams.
Then one checks that these procedures are each other inverses:
Taking fixed-points on the homotopy pushout one easily sees that one recovers the di-

agram Y0 → Y1, up to homotopy. Likewise, if one starts with a G-space, then homotopy
colimit maps to X, and this map is a G-equivalence, since it induces an equivalence on all
fixed-points.

Sketch of proof of Elmendorf’s theorem; general case. The inverse Ψ : Fun(O(G)op, Spaces)→
G− spaces is given by the geometric realization of the simplicial space with n-simplices

(G/e→ G/P0 → G/P1 → · · · → G/Pn, x ∈ F (G/Pn))

and the obvious simplicial maps.
(This is by definition equival to the two-sided bar construction B(E,O(G)op, F ), where

E : O(G) → G-spaces is the identity functor which sends G/H to the G-space G/H, and
likewise identifies with hocolimEO(G)op F , where EO(G) := G/e ↓ O(G).)

We want to construct the natural equivalence ΦC ⇒ Id.

For this, note that EO(G)H has objects G/e
f−→ G/P for H ≤ Gf , and hence has terminal

object G/H, so we have a natural equivalence

(hocolim(EO(G))op F )H = hocolim(EO(G)H)op F
∼=−→ F (G/H)

by the “cofinality” property of hocolim (G/H is a terminal object in (EO(G)H)op). �
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1.3. Invariants of hG-equivalence: Homotopy fixed points and homotopy orbits
(aka Borel construction). Ref: [5]

Fixed-points XH and orbit spaces X/H, for H ≤ G are of course invariants of G-
equivalence. In this subsection we will introduce the homotopy orbit space and homotopy
fixed-points, which are invariants of the space, up to hG-equivalence.

Denote by BG the classifying space of G, i.e., BG ' K(G, 1), and let EG denote the
universal contractible e G-space on which G acts freely. We have BG ' EG/G.

Definition 1.8. Define the Borel construction, or homotopy orbit space, of an action of G
on X as as XhG = (X × EG)/G, where G acts diagonally on the product.

Dually define the homotopy fixed-points as XhG = mapG(EG,X), i.e., the space of equi-
variant maps, or equivalently the G-fixed-points on the mapping space map(EG,X) where
g acts on f : EG→ X by (g · f)(x) = gf(g−1x).

Note that we have a map XG → XhG induced by EG → ∗. The homotopy fixed-points
should be thought of as derived fixed-points.

sectionslemma Lemma 1.9. XhG ' space of sections of fibration XhG → BG.

Proof. We will describe the maps in the two directions:
Given a G-equivariant map EG→ X, we get the commutative diagram of G-maps

EG
diag//

JJJ
JJJ

JJJ
J

JJJ
JJJ

JJJ
J X × EG

proj
��

EG

which upon quotienting out by G produces the section.
In the other direction, given a section of the fibration XhG → BG we get a G-equivariant

map EG→ X by pulling X×EG)/G→ BG back along EG→ BG, and taking the induced

map EG→ X × EG proj−−→ X �

invarianceprop Proposition 1.10. If f : X → Y is an hG-equivalence, then it induces a homotopy equiv-
alence fhG : XhG → YhG and fhG : XhG → Y hG.

Proof. If X → Y is an hG-equivalence, then X × EG → Y × EG is a G-equivalence, by
Lemma 1.2, and hence XhG → YhG is an equivalence (over BG) by the invariance property
of orbit spaces, showing the first claim.

To see the second claim, note that by Lemma 1.9 the map XhG → Y hG identifies with
the from the space of sections of XhG → BG to the space of sections of YhG → BG.

By elementary homotopy theory, we can choose an inverse equivalence over BG to the
map XhG → YhG, giving the wanted homotopy inverse on the level of spaces of sections.

�

Proposition 1.11. Applying EG × − or map(EG,−) to a map f : X → Y turns an
hG-equivalence into a G-equivalence.

In particular G-spaces X and Y are hG-equivalent if and only if X × EG and Y × EG
are G-equivalent if and only if map(EG,X) and map(EG, Y ) are G-equivalent.

Proof. For f × EG and map(EG, f) will obviously be hG equivalences. Furthermore, if
H ≤ G is a nontrivial subgroup then map (f × EG)H will a map between empty spaces
and hence trivially an equivalence, likewise map(EG, f)H will be an equivalence by the
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hH-invariance of homotopy fixed-points (Prop. 1.10). It follows by Lemma 1.2 that the
maps are in fact G-equivalences.

If X and Y are hG-equivalent they are connected by a zig-zag of hG-equivalences.

X = X0 → X1 ← X2 → · · · ← Xn = Y

Applying EG×− and map(EG,−) to this shows the one direction of the ’in particular’.

The other direction is immediate, noting that EG×X proj−−→ X and X → map(EG,X) are
hG-equivalences. �

Remark 1.12. Examining this a bit more closely, one sees that the category of G-spaces
with hG-equivalence equivalent to the category of spaces over BG, and non-equivariant
equivalences.

One can construct two model structures on hG-spaces, where EG×− and map(EG,−)
are cofibrant respectively fibrant replacement.

2. Lecture 2: Smith theory: The fixed-points XZ/p from X

We have now seen that without special assumptions on the space, there is little rela-
tionship between the homotopy type or hG-homotopy type of a space, and that of its
fixed-points. We have also introduced the Borel construction and homotopy fixed-points as
(so far quite undescribed) invariants of the hG-homotopy type of X.

In this section we want to see the following:

• When X is a finite CW-complex and V is an elementary abelian group, cohomology
of H∗(XV Fp) is determinable from cohomological information which only depends
on the hV -homotopy type of X.
• More generally, when X is a finite CW-complex and P is a p-group there is a close

relationship between the homotopy type of X, as a hP -homotopy type, and that of
XP , “at a prime p”.
• Replacing fixed-points by homotopy fixed-points, we find a natural home for these

theorems, and we can significantly weaken the finiteness assumption on X.

This will be used in the next section to explore how if we view all the XhP together, via
the p-orbit category, we can get strong invariants of X, up to hG-equivalence (at a prime
p).

2.1. The localization theorem. Define the Borel equivariant cohomology of X as the
ordinary cohomology of the Borel construction, i.e., H∗hG(X) = H∗(XhG). Borel cohomology
is an equivariant cohomology theory, and obviously only depend on X up to hG-equivalence.

Theorem 2.1 (Localization theorem, Borel, Quillen,...). Let V = Z/p and let S denote the
non-trivial elements in H1(V ;Fp) if p = 2 and the non-nilpotent elements in H2(V ;Fp) if
p is odd. Then

S−1H∗hV (X;Fp)
∼=−→ S−1H∗hV (XV ;Fp) = S−1H∗(V ;Fp)⊗H∗(XV ;Fp)

There is also a relative version, as well as a version involving two elementary abelian
p-groups W ≤ V .

Sketch of proof. By long exact sequence in Borel cohomology and induction on cells, enough
to prove for relative cells (G/G×Dn, G/G× Sn−1) and (G/e×Dn, G/e× Sn−1).

However, in both cases the result is clear: For G/G there is nothing to prove. And for
G/e it is also clear, since both sides are seen to be zero.



6 JESPER GRODAL

�

Corollary 2.2 (P.A.Smith). X finite V -CW complex. If X is Fp-acyclic, then so is XV .
If X is an Fp-homology sphere, so is XV .

2.2. Smith theory, Dwyer-Wilkerson and Lannes style. The formula for the homol-
ogy of the fixed-points, due to Dwyer-Wilkerson, where we’ll explain the notation after the
theorem.

dwtheorem Theorem 2.3 (Dwyer-Wilkerson [3, 4, 8]). Let X be a finite V -CW complex. IF

H∗hV (XV ;Fp)
∼=−→ Un(S−1H∗hV (XV ))

∼=←− Un(S−1(H∗hV (X)))

and in particular

H∗(XV ;Fp) = Fp ⊗H∗(V ) Un(S−1H∗hV (X))

Here Un is the largest unstable module, i.e.,

Definition 2.4. For a module M over the Steenrod algebra A2 define

Un(M) = {x ∈M |SqI(x) = 0 if excess(I) > |x|}

i.e., the largest submodule which satisfies the instability condition. Similarly for odd primes.

We also need to say how we get a Steenrod action after inverting S. This is described as
follows.

Observation 2.5. For R an R-algebra over the Steenrod algebra, M an unstable R-module
over the Steenrod algebra (i.e., R⊗M →M satisfies Cartan formula), and S a multiplicative
subset of R, then S−1M has a Steenrod algebra action given by the following formula

Pξ(x/s) = Pξ(x)(Pξ(s))
−1 = Pξ(x)(s+ Sq1(s)ξ + Sq2(s)ξ2 + · · · )−1

Sketch of proof of Theorem 2.3. By the localization theorem we just need to see that

Un(S−1H∗(V )⊗H∗(XV )) = H∗(V )⊗H∗(XV )

By a small calculation this in fact holds for any unstable module M

H∗(V )⊗M
∼=−→ Un(S−1H∗(V )⊗M)

This is a small calculation. The key reason is that, by the formula above, elements in
the denominator have quite long Steenrod squares on them, and presense of these in hence
not compatible with instability....

The short paper by Dwyer-Wilkerson well is worth reading! �

Remark 2.6. Note how Theorem 2.3 should seem surprising, in that, a priori, there would
be no reason to believe that the homology of H∗(XV ;Fp) should be determinable from the
hV -homotopy type of X. (Historically, the first display of this was through the Sullivan
conjecture; see below.)

Exercise 2.7. Use the Dwyer-Wilkerson theorem to prove the following: X finite Z/2-CW
complex with H∗(X;F2) ∼= H∗(RPn;F2) = F2[x]/xn+1 then H∗(XG;F2) = H∗(RP i−1) ⊕
H∗(RP j−1), i+ j = n+ 1. (These are obviously realized by flipping i of the axes.)



LECTURES ON HOMOTOPICAL GROUP ACTIONS 7

2.3. Smith theory, Lannes style.

• The formular above also holds for homotopy fixed-points.
• In fact, for any X (subject to some mild technical conditions) there exists a functor
Fix, derived from the so-called Lannes T-functor, such that

H∗(XhV ;Fp) = Fp ⊗H∗(V ) Fix(H∗hV (X))

See [7, §4.9]

2.4. Fixed-points vs homotopy fixed-points: The Sullivan conjecture.

Theorem 2.8 (Sullivan Conjecture, Miller, Carlsson, Lannes). Let X be a finite P -CW-
complex, P a finite group, then

XP
p̂
∼=−→ X p̂

hP

In particular, under mild assumptions e.g., fixed-points simply connected,

H∗(XP ;Fp) ∼= H∗(XhP ;Fp)
Guide to various proofs: Before you go, yeah, well, sure, note that in the case the action

is trivial, the statement reads that map(BP,X)
'−→ X, in particular map∗(RP∞, X) ∼= ∗,

when X is a finite complex, which are not at all obvious—Sullivan considered it a test case
for the conjecture. There are several proofs of the general statement, none of them easy!

There’s a (technical) proof by Dwyer-Miller-Neisendorfer [2], building on the original work
by Miller in the trivial action case [10]. There is a technical proof by Carlsson [1], deriving
in from the Segal conjecture which he proved. And, there is a proof by Lannes (simplified
by Farjoun-Smith) [7] which is long but “robust”, but builds up a lot of machinery along
the way: It establishes an algebraic formula for map(BV,X) when X is arbitrary Y , and
hence in particular Y = XhV , which enables one to get the statement for arbitrary actions
from things about trivial actions. You can give a reasonable sketch of this proof in a couple
of lectures, but we don’t have time here.... (I can do it in the fall if enough people are
interested.) �

Remark 2.9. Note how the Sullivan conjecture relates to the Dwyer-Wilkerson formula:
The formula of Dwyer-Wilkerson tells us that that XV can be extracted from the hV -
homotopy type of X, and even gives a concrete formula for the cohomology. The Sullivan
conjecture is then the additional formation that the homotopical model for this is indeed
XhV . A philosophical and/or practialcal question: Why doesn’t the Dwyer-Wilkerson for-
mula give more aid in the proof??

3. Lecture 3: Homological algebra of the p-orbit category and the
collection of fixed-points {XP }G/P∈Op(G)

We have seen that fixedpoints and homotopy fixedpoints relate nicely when the group is
a p-group, but hardly at all when the group is not a p-group. We may however very well
still want to study spaces up to hG-equivalence for arbitary (finite) G. The way to do this
is to examine fixed-points under all p-subgroups, viewed together as a functor on the p-orbit
category. The first-level results will only be up to p-completion, which can however later
be used to get integral results, via the Sullivan arithmetic square.

We want to go a step further, and try to make naive algebraic models for hG-spaces.
For non-equivariant spaces a very naive model, namely C̃∗(X;Fp). This will in this case

just be equal to giving H∗(X;Fp). We can try to do the same model non-equivariantly....
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3.1. The model theorem.

Theorem 3.1 (Compact model theorem, G-Smith). Let G be a finite group and X be a
finite G-CW-complex.

Then the functor X : G/P 7→ C̃∗(X
P ;Fp) in Ch∗(FpOp(G)op−mod) is quasi-isomorphic

to a finite chain complex of projective FpOp(G)op-modules.

(Also with Zp and Z(p) coefficients.)

Theorem 3.2 (Compact model theorem, G-Smith). Let G be a finite group and X a G-
CW-complex with H∗(X;Fp) finite.

Then the functor X : G/P 7→ C̃∗(X
hP ;Fp) in Ch∗(FpOp(G)op−mod) is quasi-isomorphic

to a finite chain complex of projective FpOp(G)op-modules.

(XhP is enterpreted as profinite space — or assume fixed-points simply connected, or
H∗(X) nice e.g., like sphere.)

Note this second version is significantly more powerful, since only depends on the hG-
homotopy type, and we have good tools for calculating the homotopy fixed-points that
occur, as explained last time.

Unique minimal model, up to isomorphism.
Same type of argument as H∗hP (X,XP ) finite, H∗hP (X,XhP ) finite.

• What does this model look like?
• What does it tell us about X? Note, if G is the trivial group, this model is enough

to determine sphere, up to p-completion, but not a complete invariant very much
beyond this! (though still useful...)

Notation: We call such an object an algebraic sphere if H(X(G/e)) is one-dimensional.
Warmup question number 1a: What happens when X = S0? It says that the

constant functor on FpOp(G)op has a finite projective resolution, i.e. that for any functor
F

lim
FpOp(G)op

∗F = Ext∗FpOp(G)op(Fp, F )

vanishes in large degrees. This is a celebrated result of Jackowski-McClure-Oliver. So, what
is this projective resolution. There is obviously some relevant homological algebra to be
understood here. To be continued....

3.2. Basic homological algebra. What does the category FpOp(G)op look like?
Simple objects: Non-zero on only one G/P , where the value is a simple FpNG(P )/P -

module.
Projective objects: Let S be a simple FpNG(P )/P -module with projective cover PS .

Then the projective functors are sums of

G/Q 7→ Fp mapG(G/Q,G/P )⊗FpNG(P )/P PS

I.e. finitely many simples, finitely many projectives, we can write them down in concrete
cases.

Example 3.3 (G = Cp). The opposite p-orbit category looks like

G/G // G/e
��
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The two simple functors are the atomic functors S1 = (k → 0) and S2 = (0 → k), which
have projective covers P1 = PS1 = (k → k) and P2 = PS2 = (0→ kCp) respectively.

We easily see that any algebraic sphere has a minimal model with the following structure

· · · → 0→ P2 → P2 → · · · → P2 → P1 → 0→ · · ·
Here P1 is in homological degree d(G/G) and the last P2 is in homological degree d(G/e).
If p is odd, then the number of P2, which equals d(G/e)− d(G/G), has to be even.

Smith theory revisited: G = Z/p If H(X(G/e)) = 0. Then X = 0, so fixed-points
also contractible. Look at top dimension. If H∗(X(G/e)) = Fp. Then

(1) X(G/G) = Fp
(2) In lower dimension
(3) if p odd difference congruent to 0 mod 2

Could do Z/2× Z/2 and one easily get the “Borel” conditions.
Together, these are called the Borel-Smith conditions.
Note also: The sphere is determined by it’s dimension.

Example 3.4 (G = Σ3, p = 2, char(k) = 2). The opposite p-orbit category looks like

G/D _*4 G/e
��

There are three simple functors, namely S1 = (k → 0), S2 = (0 → k), and S3 = (0 → St).
These have projective covers P1 = (k → k[G/D]), P2 = (0→ k[G/C3]), and P3 = (0→ St).

We see that any minimal model for an algebraic G-sphere looks like

· · · → 0→ P2 → P2 → · · ·P2 → P2 ⊕ P3 → P1 → 0→ · · ·
where the number of P2’s can be any non-negative number. In terms of the dimension
function d(G/D) counts the homological degree of P1 and d(G/e) − d(G/D) counts the
number of copies of P2. Note that the homological dimension equals the dimension of the
minimal model, except in the case where the algebraic sphere is trivial (i.e., except in the
case where the dimension function has no jumps).

One can easily go through the obstruction theory in this case, and see that vanish.
Non-equivariantly p-complete spheres are determined by their dimension i.e., mod p co-

homology.

Theorem 3.5 (G-Smith). Let G be a finite group. Then
{p-complete G-sphere} → {Algebraic G-sphere} → {oriented dimension function}
completely determines p-complete G-spheres up to hG-equivalence.
If X and Y are p-complete G-spaces with the mod H̃∗(X;Fp) = H̃∗(Y ;Fp) = Fp. Then

X and Y are hG-equivalent if and only if they have the same oriented dimension function.

Oriented just means that one has to remember the action of G on H∗(XFp) ∼= Fp when
p is odd.
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LZ95 [8] J. Lannes and S. Zarati. Théorie de Smith algébrique et classification des H∗V -U -injectifs. Bull. Soc.

Math. France, 123(2):189–223, 1995.
may96 [9] J. P. May. Equivariant homotopy and cohomology theory, volume 91 of CBMS Regional Conference

Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington,
DC, 1996. With contributions by M. Cole, G. Comezana, S. Costenoble, A. D. Elmendorf, J. P. C.
Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner.

miller84 [10] H. Miller. The Sullivan conjecture on maps from classifying spaces. Ann. of Math. (2), 120(1):39–87,
1984. (Erratum: Ann. of Math. 121 (1985), no. 3, 605–609).

tomdieck79 [11] T. tom Dieck. Transformation groups and representation theory, volume 766 of Lecture Notes in Math-
ematics. Springer, Berlin, 1979.

tomdieck87book [12] T. tom Dieck. Transformation groups, volume 8 of de Gruyter Studies in Mathematics. Walter de
Gruyter & Co., 1987.

Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
E-mail address: jg@math.ku.dk


	Outline
	1. Lecture 1: Equivariant homotopy theory and the theory of diagrams
	1.1.  Assumptions and setup:
	1.2. Equivariant homotopy theory, and the diagram categories: Elmendorf's theorem
	1.3. Invariants of hG-equivalence: Homotopy fixed points and homotopy orbits (aka Borel construction)

	2. Lecture 2: Smith theory: The fixed-points XZ/p from X
	2.1. The localization theorem
	2.2. Smith theory, Dwyer-Wilkerson and Lannes style
	2.3. Smith theory, Lannes style
	2.4. Fixed-points vs homotopy fixed-points: The Sullivan conjecture

	3. Lecture 3: Homological algebra of the p-orbit category and the collection of fixed-points {XP}G/P Op(G)
	3.1. The model theorem
	3.2. Basic homological algebra

	References

