Spectral results for mixed problems and fractional order elliptic operators

Gerd Grubb
Copenhagen University

Oberwolfach
January 4-10, 2015

1. Krein formula for the mixed problem

Let Ω be smooth open bounded $\subset \mathbb{R}^{n}$, with boundary $\partial \Omega=\Sigma$. Denote $\left.\partial_{n}^{j} u\right|_{\Sigma}=\gamma_{j} u, j \in \mathbb{N}_{0}$. Denote by $H^{s}\left(\mathbb{R}^{n}\right)$ the L_{2}-Sobolev space of order $s \in \mathbb{R}, H^{s}(\Omega)=r_{\Omega} H^{s}\left(\mathbb{R}^{n}\right), \dot{H}^{s}(\bar{\Omega})=\left\{u \in H^{s}\left(\mathbb{R}^{n}\right) \mid\right.$ supp $\left.u \subset \bar{\Omega}\right\}$.
Consider a symmetric strongly elliptic second-order differential operator on Ω with real C^{∞}-coefficients,

$$
A u=-\sum_{j, k=1}^{n} \partial_{j}\left(a_{j k}(x) \partial_{k} u\right)+a_{0}(x) u
$$

The associated sesquilinear form $a(u, v)=\sum_{j, k=1}^{n}\left(a_{j k} \partial_{k} u, \partial_{j} v\right)+\left(a_{0} u, v\right)$ is coercive on $H^{1}(\Omega)$, and we add a constant to a_{0} to make it positive. Set $\nu u=\sum n_{j} \gamma_{0}\left(a_{j k} \partial_{k} u\right)\left(=\gamma_{1} u\right.$ when $\left.A=-\Delta\right)$, the conormal derivative. Realizations of A :
The maximal realization $A_{\max }, D\left(A_{\max }\right)=\left\{u \in L_{2}(\Omega) \mid A u \in L_{2}(\Omega)\right\}$.
The Dirichlet realization A_{γ} with $D\left(A_{\gamma}\right)=\left\{u \in H^{2}(\Omega) \mid \gamma_{0} u=0\right\}$.
The Neumann realization A_{ν} with $D\left(A_{\nu}\right)=\left\{u \in H^{2}(\Omega) \mid \nu u=0\right\}$.
A mixed realization $A_{\nu, U}$. Here U is a smooth open subset of Σ, and $D\left(A_{\nu, U}\right)=\left\{u \in H^{1}(\Omega) \cap D\left(A_{\max }\right) \mid \nu u=0\right.$ on $U, \gamma_{0} u=0$ on $\left.\Sigma \backslash U\right\}$.

The latter three are defined variationally from the form $a(u, v)$ considered on $\dot{H}^{1}(\bar{\Omega}), H^{1}(\Omega)$, resp. $H_{U}^{1}(\Omega)=\left\{u \in H^{1}(\Omega) \mid \operatorname{supp} \gamma_{0} u \subset \bar{U}\right\}$.
They are selfadjoint positive, and whereas $D\left(A_{\gamma}\right)$ and $D\left(A_{\nu}\right) \subset H^{2}(\Omega)$, it is known that $D\left(A_{\nu, U}\right) \subset H^{\frac{3}{2}-\varepsilon}(\Omega)$ only.
Let $Z=\operatorname{ker} A_{\max }$, and let K_{γ} denote the Poisson operator $K_{\gamma}: \varphi \mapsto u$ solving the semihomogeneous Dirichlet problem

$$
A u=0 \text { on } \Omega, \gamma_{0} u=\varphi \text { on } \Sigma,
$$

it maps e.g. $K_{\gamma}: H^{-\frac{1}{2}}(\Sigma) \xrightarrow{\sim} Z$, closed subset of $L_{2}(\Omega)$.
Let $P=\nu K_{\gamma}$, the Dirichlet-to-Neumann operator; it is known to be a pseudodifferential operator on Σ of order 1 .
Proposition 1. Let $x^{\prime} \in \Sigma$ and choose coordinates such that the interior normal is $(0, \ldots, 0,1)$. Write the principal symbol of A at x^{\prime} as $a_{n n}\left(x^{\prime}\right) \xi_{n}^{2}+2 b\left(x^{\prime}, \xi^{\prime}\right) \xi_{n}+c\left(x^{\prime}, \xi^{\prime}\right)$, and let

$$
m\left(x^{\prime}, \xi^{\prime}\right)=a_{n n}\left(x^{\prime}\right) c\left(x^{\prime}, \xi^{\prime}\right)-b\left(x^{\prime}, \xi^{\prime}\right)^{2}
$$

it is positive for $\xi^{\prime} \neq 0$ by the ellipticity of A.
Then P has principal symbol $p^{0}\left(x^{\prime}, \xi^{\prime}\right)=-m\left(x^{\prime}, \xi^{\prime}\right)^{\frac{1}{2}}$ at x^{\prime}.
Hence if M is a selfadjoint differential operator on Σ with principal symbol $m\left(x^{\prime}, \xi^{\prime}\right), P=-M^{\frac{1}{2}}+$ order 0 .

Define for Σ the restriction operator $r^{+}:\left.\varphi \mapsto \varphi\right|_{U}$, and the extension operator $e^{+}: \psi \mapsto\{\psi$ on $U, 0$ on $\Sigma \backslash U\}$.
When Q is an operator over Σ we denote $r^{+} Q e^{+}=Q_{+}$(truncation).
Let $X=\dot{H}^{-\frac{1}{2}}(\bar{U})$ (the subspace of distributions in $H^{-\frac{1}{2}}(\Sigma)$ supported in $\bar{U})$. Its dual space is $X^{*}=H^{\frac{1}{2}}(U)=r^{+} H^{\frac{1}{2}}(\Sigma)$.
Define $V=K_{\gamma}(X) \subset Z$ and denote the restriction $K_{\gamma} \mid x$ by

$$
K_{\gamma, X}: X \xrightarrow{\sim} V, \text { with adjoint } K_{\gamma, X}^{*}: V \xrightarrow{\sim} X^{*} .
$$

In J. Math. An. Appl. '11 we showed:
Theorem 2. For the mixed problem there is an operator L mapping $D(L) \subset X$ onto X^{*} such that the Kreĭn resolvent formula holds:

$$
\begin{equation*}
A_{\nu, U}^{-1}-A_{\gamma}^{-1}=\mathrm{i}_{V} K_{\gamma, X} L^{-1} K_{\gamma, X}^{*} \mathrm{pr}_{V} \equiv T \tag{1}
\end{equation*}
$$

Here L acts like $-P_{+}$and has

$$
D(L)=\left\{\varphi \in X \mid P_{+} \varphi \in X^{*}\right\} \subset \dot{H}^{1-\varepsilon}(\bar{U}) .
$$

We want to find the spectral behavior of the Krein term T.
Question: What is L^{-1} ? (It does NOT act like $-\left(P^{-1}\right)_{+}$). L^{-1} was studied in '11 using tools from Eskin '81, Birman-Solomiak '77, Laptev '81. This lead to a spectral asymptotic formula for T when $A=-\Delta+$ lower order terms near Σ, so that $P=-\left(-\Delta_{\Sigma}\right)^{\frac{1}{2}}+$ l.o.t. on Σ.

2. Boundary problems for fractional order operators

Now a better tool is available: Boundary value theories for fractional powers of elliptic operators. This will allow general A and P.
A basic example of a pseudodifferential operator (ps.d.o.) of noninteger order is the fractional Laplacian $(-\Delta)^{a}, 0<a<1$:

$$
(-\Delta)^{a} u=\mathcal{F}^{-1}\left(|\xi|^{2 a} \hat{u}(\xi)\right), \quad \hat{u}(\xi)=\mathcal{F} u=\int_{\mathbb{R}^{n^{\prime}}} e^{-i x \cdot \xi} u(x) d x .
$$

Currently of interest both in probability, finance, mathematical physics and geometry. More general example: M^{a}, where M is a 2^{\prime} order strongly elliptic differential operator with smooth coefficients on $\mathbb{R}^{n^{\prime}} . M^{a}$ is a ps.d.o. of order $2 a$ by Seeley '66.
Let U be bounded smooth open $\subset \mathbb{R}^{n^{\prime}}$. Dirichlet problem for M^{a} on U ? Let $m_{a}(u, v)=\left(M^{a} u, v\right)$ for $u, v \in C_{0}^{\infty}(U)$. It satisfies

$$
\operatorname{Re} m_{a}(u, u) \geq c\|u\|_{a}^{2}-k\|u\|_{0}^{2}, c>0, k \in \mathbb{R},
$$

and its closure with domain $\dot{H}^{a}(\bar{U})$ defines a convenient operator $M_{\text {Dir }}^{Z}$ in $L_{2}(U)$ by variational theory. It acts like M_{+}^{a}, with $D\left(M_{\text {Dir }}^{a}\right) \subset \dot{H}^{a}(\bar{U})$. It represents the problem

$$
\begin{equation*}
M_{+}^{a} u=f, \quad u \text { sought in } \dot{H}^{a}(\bar{U}) \tag{2}
\end{equation*}
$$

What is $D\left(M_{\mathrm{Di}}^{\mathrm{i}}\right)$? What are the regularity properties of solutions of (2)? Here the results are quite recent.
Ros-Oton and Serra (J.Math.Pur.Appl.'14) showed by potential theory and integral operator methods, when $M=-\Delta$ and U is $C^{1,1}$, that

$$
\begin{equation*}
f \in L_{\infty}(U) \Longrightarrow u \in d^{a} C^{\alpha}(\bar{U}) \cap C^{a}(\bar{U}), \tag{3}
\end{equation*}
$$

for some $\alpha>0$. Here $d(x)=\operatorname{dist}(x, \partial U)$. They stated that they did not know of other regularity results for $(-\Delta)^{a}$ in the literature.
Ps.d.o. methods? The Boutet de Monvel calculus, initiated in '71, requires integer order plus a so-called 0 -transmission property at ∂U. M^{a} is not covered.
But we have recently developed another calculus. It is based on a more general μ-transmission property, introduced by Hörmander in his 1985 book (in fact in an unpublished lecture note from IAS Princeton 1965). Here M^{a} has the a-transmission property, since the symbol has even parity and is of order $2 a$.
It allows to improve the information in (3) to $u \in d^{a} C^{a}(\bar{U})$ and to get higher regularity: $f \in C^{t}(\bar{\Omega}) \Longrightarrow u \in d^{a} C^{a+t}(\bar{\Omega})$ for $t>0$ (except for t or $a+t$ integer, slightly weaker result).
(G Adv.Math.'15, Anal\&PDE'14.)

The results rely on constructing an approximate inverse of $M_{\text {Dir }}^{a}$ (a parametrix).
Consider a localized situation where U and $C \bar{U}$ are replaced by, resp. $\mathbb{R}_{ \pm}^{n^{\prime}}=\left\{x \mid x_{n^{\prime}} \gtrless 0\right\}$. There exist order-reducing operators:
Theorem 3. There exist two families of ps.d.o.s $\Lambda_{ \pm}^{(t)}$ of order $t \in \mathbb{R}$, preserving support in $\overline{\mathbb{R}}_{ \pm}^{n^{\prime}}$, respectively, such that for all $s \in \mathbb{R}$,

$$
\Lambda_{+}^{(t)}: \dot{H}^{s}\left(\overline{\mathbb{R}}_{+}^{n^{\prime}}\right) \xrightarrow{\sim} \dot{H}^{s-t}\left(\overline{\mathbb{R}}_{+}^{n^{\prime}}\right), \quad\left(\Lambda_{-}^{(t)}\right)_{+}: H^{s}\left(\mathbb{R}_{+}^{n^{\prime}}\right) \xrightarrow{\sim} H^{s-t}\left(\mathbb{R}_{+}^{n^{\prime}}\right) .
$$

Then M_{+}^{a} can be linked to an operator in the BdM calculus:
Theorem 4. On $\dot{H}^{a}\left(\overline{\mathbb{R}}_{+}^{n^{\prime}}\right)$, the operator M_{+}^{a} can be written in the form

$$
\begin{equation*}
M_{+}^{a}=\left(\Lambda_{-}^{(a)}\right)_{+} r^{+} Q \Lambda_{+}^{(a)}, \tag{4}
\end{equation*}
$$

where Q is a ps.d.o. of order 0 in the Boutet de Monvel calculus, such that the problem

$$
\begin{equation*}
Q_{+} v=g, \quad \text { supp } v \subset \overline{\mathbb{R}}_{+}^{n^{\prime}} \tag{5}
\end{equation*}
$$

is well-posed. Here the solution to (2) is found as $\Lambda_{+}^{(-a)} e^{+} v$, when $g=\left(\Lambda_{-}^{(-a)}\right)_{+} f$.

Theorem 5. Let $\widetilde{Q}_{+}+G_{0}$ be a parametrix for (5) (G_{0} being a sing. Green op. of class and order 0 in the Boutet de Monvel calculus). Then the operator $M_{\text {Dir }}^{\text {a }}$ has the parametrix

$$
\begin{equation*}
R=\left(\Lambda_{+}^{(-a)}\right)_{+}\left(\widetilde{Q}_{+}+G_{0}\right)\left(\Lambda_{-}^{(-a)}\right)_{+} . \tag{6}
\end{equation*}
$$

Similar results can be obtained in the situation of the manifold $\Sigma=\partial \Omega$ and its subset U (of dimension $n^{\prime}=n-1$).
Formula (6) can be used to get a spectral asymptotic estimate for R.
Theorem 6. Let

$$
\mathcal{P}=P_{1,+} \ldots P_{l_{0},+}\left(P_{0,+}+G\right) P_{l_{0}+1,+} \ldots P_{l,+},
$$

where P_{0} is of order $0, G$ is a singular Green on U of order and class 0 , and the P_{j} are of order $-t_{j}<0$. Let $t=t_{1}+\cdots+t_{l}$. Then the singular values $s_{k}(\mathcal{P})$ satisfy:

$$
s_{k}(\mathcal{P}) k^{t /(n-1)} \rightarrow C(\mathcal{P}) \text { for } k \rightarrow \infty
$$

where $C(\mathcal{P})$ is defined from the principal symbols on U.
Corollary 7. For R in (6),

$$
s_{k}(R) k^{2 a /(n-1)} \rightarrow C(R) .
$$

3. Application to the mixed problem

For the mixed problem, we were aiming to find the spectral asymptotics of the Krein term

$$
T=\mathrm{i}_{V} K_{\gamma, X} L^{-1} K_{\gamma, X}^{*} \mathrm{pr}_{V}
$$

Recall that we are here in a selfadjoint case. We know that L acts like $-P_{+}$, where P is the Dirichlet-to-Neumann operator. It was shown in Proposition 1 that P is of the form

$$
P=-M^{\frac{1}{2}}-S,
$$

where M is a selfadjoint 2' order differential operator on Σ and S is a ps.d.o. of order 0 .
Then the operator L appearing in the Krein term acts like

$$
L=-P_{+}=M_{+}^{\frac{1}{2}}+S_{+}, \text {with } D(L) \subset \dot{H}^{1-\varepsilon}(\bar{U}) .
$$

Here $M_{+}^{\frac{1}{2}}$ acts like $M_{\text {Dir }}^{\frac{1}{2}}$.
Now we can use that we have found a parametrix R of $M_{\text {Dir }}^{\frac{1}{2}}$. Since L is invertible, we can deduce that

$$
\begin{equation*}
L^{-1}=R+S_{1}, \tag{7}
\end{equation*}
$$

where S_{1} is of order -2 .

For the eigenvalues of the Krein term we show by commutation:

$$
\mu_{k}(T)=\mu_{k}\left(\mathrm{i}_{V} K_{\gamma, X} L^{-1} K_{\gamma, X}^{*} \mathrm{pr}_{V}\right)=\mu_{k}\left(L^{-1} K_{\gamma, X}^{*} K_{\gamma, X}\right)=\mu_{k}\left(L^{-1} P_{1,+}\right)
$$

where $P_{1}=K_{\gamma}^{*} K_{\gamma}$ is a ps.d.o. of order -1 .
With $P_{2}=P_{1}^{\frac{1}{2}}$ we deduce moreover, using also (7):

$$
\mu_{k}(T)=\mu_{k}\left(P_{2,+} L^{-1} P_{2,+}+S_{2}\right)=\mu_{k}\left(P_{2,+} R P_{2,+}+S_{3}\right)
$$

where S_{2} and S_{3} by various perturbation arguments will not enter in the principal asymptotics.
Now Theorem 6 can be applied to $P_{2,+} R P_{2,+}$. This leads to
Theorem 8. The eigenvalues of T satisfy

$$
\mu_{k}(T) k^{2 /(n-1)} \rightarrow C(T) \text { for } k \rightarrow \infty
$$

where $C(T)$ is an integral over U of a function defined from the principal symbols:

$$
C(T)=\frac{1}{(n-1)(2 \pi)^{n-1}} \int_{U} \int_{\left|\xi^{\prime}\right|=1}\left(\frac{a_{n n}\left(x^{\prime}\right)}{2 m\left(x^{\prime}, \xi^{\prime}\right)}\right)^{\frac{n-1}{2}} d \omega\left(\xi^{\prime}\right) d x^{\prime}
$$

(G JMAA'15)

