Spectral results for mixed problems and fractional order elliptic operators

Gerd Grubb Copenhagen University

Oberwolfach January 4–10, 2015

A⊒ ▶ ∢ ∃

1. Krein formula for the mixed problem

Let Ω be smooth open bounded $\subset \mathbb{R}^n$, with boundary $\partial \Omega = \Sigma$. Denote $\partial_n^j u|_{\Sigma} = \gamma_j u, j \in \mathbb{N}_0$. Denote by $H^s(\mathbb{R}^n)$ the L_2 -Sobolev space of order $s \in \mathbb{R}$, $H^s(\Omega) = r_{\Omega} H^s(\mathbb{R}^n)$, $\dot{H}^s(\overline{\Omega}) = \{u \in H^s(\mathbb{R}^n) \mid \text{supp } u \subset \overline{\Omega}\}$.

Consider a symmetric strongly elliptic second-order differential operator on Ω with real C^{∞} -coefficients,

$$Au = -\sum_{j,k=1}^{n} \partial_j (a_{jk}(x)\partial_k u) + a_0(x)u.$$

The associated sesquilinear form $a(u, v) = \sum_{j,k=1}^{n} (a_{jk}\partial_k u, \partial_j v) + (a_0 u, v)$ is coercive on $H^1(\Omega)$, and we add a constant to a_0 to make it positive. Set $\nu u = \sum n_j \gamma_0(a_{jk}\partial_k u) \ (= \gamma_1 u$ when $A = -\Delta$), the conormal derivative. Realizations of A:

The maximal realization A_{\max} , $D(A_{\max}) = \{u \in L_2(\Omega) \mid Au \in L_2(\Omega)\}$. The Dirichlet realization A_{γ} with $D(A_{\gamma}) = \{u \in H^2(\Omega) \mid \gamma_0 u = 0\}$. The Neumann realization A_{ν} with $D(A_{\nu}) = \{u \in H^2(\Omega) \mid \nu u = 0\}$. A mixed realization $A_{\nu,U}$. Here U is a smooth open subset of Σ , and $D(A_{\nu,U}) = \{u \in H^1(\Omega) \cap D(A_{\max}) \mid \nu u = 0 \text{ on } U, \gamma_0 u = 0 \text{ on } \Sigma \setminus U\}$. The latter three are defined variationally from the form a(u, v) considered on $\dot{H}^1(\overline{\Omega})$, $H^1(\Omega)$, resp. $H^1_U(\Omega) = \{u \in H^1(\Omega) \mid \operatorname{supp} \gamma_0 u \subset \overline{U}\}$. They are selfadjoint positive, and whereas $D(A_{\gamma})$ and $D(A_{\nu}) \subset H^2(\Omega)$, it is known that $D(A_{\nu,U}) \subset H^{\frac{3}{2}-\varepsilon}(\Omega)$ only.

Let $Z = \ker A_{\max}$, and let K_{γ} denote the Poisson operator $K_{\gamma} \colon \varphi \mapsto u$ solving the semihomogeneous Dirichlet problem

$$Au = 0 \text{ on } \Omega, \ \gamma_0 u = \varphi \text{ on } \Sigma,$$

it maps e.g. $K_{\gamma} \colon H^{-\frac{1}{2}}(\Sigma) \xrightarrow{\sim} Z$, closed subset of $L_2(\Omega)$.

Let $P = \nu K_{\gamma}$, the **Dirichlet-to-Neumann operator**; it is known to be a pseudodifferential operator on Σ of order 1.

Proposition 1. Let $x' \in \Sigma$ and choose coordinates such that the interior normal is (0, ..., 0, 1). Write the principal symbol of A at x' as $a_{nn}(x')\xi_n^2 + 2b(x', \xi')\xi_n + c(x', \xi')$, and let

$$m(x',\xi') = a_{nn}(x')c(x',\xi') - b(x',\xi')^2,$$

it is positive for $\xi' \neq 0$ by the ellipticity of A. Then P has principal symbol $p^0(x',\xi') = -m(x',\xi')^{\frac{1}{2}}$ at x'. Hence if M is a selfadjoint differential operator on Σ with principal symbol $m(x',\xi')$, $P = -M^{\frac{1}{2}}$ + order 0. Define for Σ the restriction operator $r^+: \varphi \mapsto \varphi|_U$, and the extension operator $e^+: \psi \mapsto \{\psi \text{ on } U, 0 \text{ on } \Sigma \setminus U\}$. When Q is an operator over Σ we denote $r^+Qe^+ = Q_+$ (truncation).

Let $X = \dot{H}^{-\frac{1}{2}}(\overline{U})$ (the subspace of distributions in $H^{-\frac{1}{2}}(\Sigma)$ supported in \overline{U}). Its dual space is $X^* = H^{\frac{1}{2}}(U) = r^+ H^{\frac{1}{2}}(\Sigma)$.

Define $V = K_\gamma(X) \subset Z$ and denote the restriction $K_\gamma|_X$ by

$$K_{\gamma,X} \colon X \xrightarrow{\sim} V$$
, with adjoint $K^*_{\gamma,X} \colon V \xrightarrow{\sim} X^*$.

In J. Math. An. Appl. '11 we showed:

Theorem 2. For the mixed problem there is an operator L mapping $D(L) \subset X$ onto X^* such that the Kreĭn resolvent formula holds:

$$A_{\nu,U}^{-1} - A_{\gamma}^{-1} = i_V K_{\gamma,X} L^{-1} K_{\gamma,X}^* \operatorname{pr}_V \equiv T.$$
 (1)

Here L acts like $-P_+$ and has

$$D(L) = \{ \varphi \in X \mid P_+ \varphi \in X^* \} \subset \dot{H}^{1-\varepsilon}(\overline{U}).$$

We want to find the spectral behavior of the Krein term T.

Question: What is L^{-1} ? (It does NOT act like $-(P^{-1})_+$). L^{-1} was studied in '11 using tools from Eskin '81, Birman-Solomiak '77, Laptev '81. This lead to a spectral asymptotic formula for T when $A = -\Delta +$ lower order terms near Σ , so that $P = -(-\Delta_{\Sigma})^{\frac{1}{2}} + 1$.o.t? on Σ .

2. Boundary problems for fractional order operators

Now a better tool is available: Boundary value theories for fractional powers of elliptic operators. This will allow general A and P.

A basic example of a pseudodifferential operator (ps.d.o.) of noninteger order is the fractional Laplacian $(-\Delta)^a$, 0 < a < 1:

$$(-\Delta)^{\mathfrak{s}}u = \mathcal{F}^{-1}(|\xi|^{2\mathfrak{s}}\hat{u}(\xi)), \quad \hat{u}(\xi) = \mathcal{F}u = \int_{\mathbb{R}^{n'}} e^{-ix\cdot\xi}u(x)\,dx.$$

Currently of interest both in probability, finance, mathematical physics and geometry. More general example: M^a , where M is a 2'order strongly elliptic differential operator with smooth coefficients on $\mathbb{R}^{n'}$. M^a is a ps.d.o. of order 2*a* by Seeley '66.

Let U be bounded smooth open $\subset \mathbb{R}^{n'}$. Dirichlet problem for M^a on U? Let $m_a(u, v) = (M^a u, v)$ for $u, v \in C_0^{\infty}(U)$. It satisfies

$$\operatorname{\mathsf{Re}} m_a(u,u) \geq c \|u\|_a^2 - k \|u\|_0^2, \ c > 0, k \in \mathbb{R},$$

and its closure with domain $\dot{H}^{a}(\overline{U})$ defines a convenient operator M_{Dir}^{a} in $L_{2}(U)$ by variational theory. It acts like M_{+}^{a} , with $D(M_{\text{Dir}}^{a}) \subset \dot{H}^{a}(\overline{U})$. It represents the problem

 $M^a_+ u = f$, u sought in $\dot{H}^a(\overline{U})$. $(\Box \to (2)) \to (\Xi \to \Xi \to \Xi \to \Xi \to \Xi$ Gerd Grubb Copenhagen University Fractional order What is $D(M_{\text{Dir}}^a)$? What are the regularity properties of solutions of (2)? Here the results are quite recent.

Ros-Oton and Serra (J.Math.Pur.Appl.'14) showed by potential theory and integral operator methods, when $M = -\Delta$ and U is $C^{1,1}$, that

$$f \in L_{\infty}(U) \implies u \in d^{a}C^{\alpha}(\overline{U}) \cap C^{a}(\overline{U}),$$
 (3)

for some $\alpha > 0$. Here $d(x) = \text{dist}(x, \partial U)$. They stated that they did not know of other regularity results for $(-\Delta)^a$ in the literature.

Ps.d.o. methods? The Boutet de Monvel calculus, initiated in '71, requires integer order plus a so-called 0-transmission property at ∂U . M^a is not covered.

But we have recently developed another calculus. It is based on a more general μ -transmission property, introduced by Hörmander in his 1985 book (in fact in an unpublished lecture note from IAS Princeton 1965). Here M^a has the *a*-transmission property, since the symbol has even parity and is of order 2*a*.

It allows to improve the information in (3) to $u \in d^a C^a(\overline{U})$ and to get higher regularity: $f \in C^t(\overline{\Omega}) \implies u \in d^a C^{a+t}(\overline{\Omega})$ for t > 0 (except for tor a + t integer, slightly weaker result). (G Adv.Math.'15, Anal&PDE'14.) The results rely on constructing an approximate inverse of M_{Dir}^a (a parametrix).

Consider a localized situation where U and $\mathbb{C}\overline{U}$ are replaced by, resp. $\mathbb{R}_{\pm}^{n'} = \{x \mid x_{n'} \ge 0\}$. There exist **order-reducing operators**:

Theorem 3. There exist two families of ps.d.o.s $\Lambda_{\pm}^{(t)}$ of order $t \in \mathbb{R}$, preserving support in $\overline{\mathbb{R}}_{\pm}^{n'}$, respectively, such that for all $s \in \mathbb{R}$,

$$\Lambda^{(t)}_+ \colon \dot{H}^s(\overline{\mathbb{R}}^{n'}_+) \stackrel{\sim}{\to} \dot{H}^{s-t}(\overline{\mathbb{R}}^{n'}_+), \quad (\Lambda^{(t)}_-)_+ \colon H^s(\mathbb{R}^{n'}_+) \stackrel{\sim}{\to} H^{s-t}(\mathbb{R}^{n'}_+).$$

Then M_{+}^{a} can be linked to an operator in the BdM calculus:

Theorem 4. On $\dot{H}^{a}(\overline{\mathbb{R}}^{n'}_{+})$, the operator M^{a}_{+} can be written in the form $M^{a}_{+} = (\Lambda^{(a)}_{-})_{+}r^{+}Q\Lambda^{(a)}_{+}, \qquad (4)$

where Q is a ps.d.o. of order 0 in the Boutet de Monvel calculus, such that the problem

$$Q_+v=g, \quad ext{supp } v \subset \overline{\mathbb{R}}^{n'}_+, \qquad (5)$$

is well-posed. Here the solution to (2) is found as $\Lambda_+^{(-a)}e^+v$, when $g = (\Lambda_-^{(-a)})_+f$.

Theorem 5. Let $\hat{Q}_+ + G_0$ be a parametrix for (5) (G_0 being a sing. Green op. of class and order 0 in the Boutet de Monvel calculus). Then the operator M_{Dir}^a has the parametrix

$$R = (\Lambda_{+}^{(-a)})_{+} (\widetilde{Q}_{+} + G_{0}) (\Lambda_{-}^{(-a)})_{+}.$$
 (6)

Similar results can be obtained in the situation of the manifold $\Sigma = \partial \Omega$ and its subset U (of dimension n' = n - 1).

Formula (6) can be used to get a spectral asymptotic estimate for R. **Theorem 6.** Let

$$\mathcal{P} = P_{1,+} \dots P_{l_0,+} (P_{0,+} + G) P_{l_0+1,+} \dots P_{l,+},$$

where P_0 is of order 0, G is a singular Green on U of order and class 0, and the P_j are of order $-t_j < 0$. Let $t = t_1 + \cdots + t_l$. Then the singular values $s_k(\mathcal{P})$ satisfy:

$$s_k(\mathcal{P})k^{t/(n-1)}
ightarrow \mathcal{C}(\mathcal{P})$$
 for $k
ightarrow \infty$,

where $C(\mathcal{P})$ is defined from the principal symbols on U. Corollary 7. For R in (6),

$$s_k(R)k^{2a/(n-1)} \rightarrow C(R).$$

3. Application to the mixed problem

For the mixed problem, we were aiming to find the spectral asymptotics of the Krein term

$$T = \mathrm{i}_V K_{\gamma,X} L^{-1} K^*_{\gamma,X} \operatorname{pr}_V.$$

Recall that we are here in a selfadjoint case. We know that L acts like $-P_+$, where P is the Dirichlet-to-Neumann operator. It was shown in Proposition 1 that P is of the form

$$P=-M^{\frac{1}{2}}-S,$$

where M is a selfadjoint 2' order differential operator on Σ and S is a ps.d.o. of order 0.

Then the operator L appearing in the Krein term acts like

$$L=-P_+=M_+^{rac{1}{2}}+S_+, ext{ with } D(L)\subset\dot{H}^{1-arepsilon}(\overline{U}).$$

Here $M_{+}^{\frac{1}{2}}$ acts like $M_{\text{Dir}}^{\frac{1}{2}}$.

Now we can use that we have found a parametrix R of $M_{\text{Dir}}^{\frac{1}{2}}$. Since L is invertible, we can deduce that

$$L^{-1} = R + S_1,$$
 (7)

where S_1 is of order -2.

For the eigenvalues of the Krein term we show by commutation:

$$\mu_{k}(T) = \mu_{k}(i_{V}K_{\gamma,X}L^{-1}K_{\gamma,X}^{*} \operatorname{pr}_{V}) = \mu_{k}(L^{-1}K_{\gamma,X}^{*}K_{\gamma,X}) = \mu_{k}(L^{-1}P_{1,+})$$

where $P_{1} = K_{\gamma}^{*}K_{\gamma}$ is a ps.d.o. of order -1.
With $P_{2} = P_{1}^{\frac{1}{2}}$ we deduce moreover, using also (7):
 $\mu_{k}(T) = \mu_{k}(P_{2,+}L^{-1}P_{2,+} + S_{2}) = \mu_{k}(P_{2,+}RP_{2,+} + S_{3})$

where S_2 and S_3 by various perturbation arguments will not enter in the principal asymptotics.

Now Theorem 6 can be applied to $P_{2,+}RP_{2,+}$. This leads to

Theorem 8. The eigenvalues of T satisfy

$$\mu_k(T)k^{2/(n-1)} \rightarrow C(T)$$
 for $k \rightarrow \infty$,

where C(T) is an integral over U of a function defined from the principal symbols:

$$C(T) = \frac{1}{(n-1)(2\pi)^{n-1}} \int_U \int_{|\xi'|=1} \left(\frac{a_{nn}(x')}{2m(x',\xi')}\right)^{\frac{n-1}{2}} d\omega(\xi') dx'.$$

· < @ > < 글 > < 글 > · · 글

(G JMAA'15)