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1. Krein formula for the mixed problem

Let Ω be smooth open bounded ⊂ Rn, with boundary ∂Ω = Σ. Denote
∂jnu|Σ = γju, j ∈ N0. Denote by Hs(Rn) the L2-Sobolev space of order

s ∈ R, Hs(Ω) = rΩH
s(Rn), Ḣs(Ω) = {u ∈ Hs(Rn) | supp u ⊂ Ω}.

Consider a symmetric strongly elliptic second-order differential operator
on Ω with real C∞-coefficients,

Au = −
∑n

j,k=1
∂j(ajk(x)∂ku) + a0(x)u.

The associated sesquilinear form a(u, v) =
∑n

j,k=1(ajk∂ku, ∂jv) + (a0u, v)

is coercive on H1(Ω), and we add a constant to a0 to make it positive.
Set νu =

∑
njγ0(ajk∂ku) (= γ1u when A = −∆), the conormal

derivative. Realizations of A:

The maximal realization Amax, D(Amax) = {u ∈ L2(Ω) | Au ∈ L2(Ω)}.
The Dirichlet realization Aγ with D(Aγ) = {u ∈ H2(Ω) | γ0u = 0}.
The Neumann realization Aν with D(Aν) = {u ∈ H2(Ω) | νu = 0}.
A mixed realization Aν,U . Here U is a smooth open subset of Σ, and
D(Aν,U) = {u ∈ H1(Ω) ∩ D(Amax) | νu = 0 on U, γ0u = 0 on Σ \ U}.
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The latter three are defined variationally from the form a(u, v) considered
on Ḣ1(Ω), H1(Ω), resp. H1

U(Ω) = {u ∈ H1(Ω) | supp γ0u ⊂ U}.
They are selfadjoint positive, and whereas D(Aγ) and D(Aν) ⊂ H2(Ω), it

is known that D(Aν,U) ⊂ H
3
2−ε(Ω) only.

Let Z = kerAmax, and let Kγ denote the Poisson operator Kγ : ϕ 7→ u
solving the semihomogeneous Dirichlet problem

Au = 0 on Ω, γ0u = ϕ on Σ,

it maps e.g. Kγ : H−
1
2 (Σ)

∼→ Z , closed subset of L2(Ω).

Let P = νKγ , the Dirichlet-to-Neumann operator; it is known to be a
pseudodifferential operator on Σ of order 1.

Proposition 1. Let x ′ ∈ Σ and choose coordinates such that the interior
normal is (0, . . . , 0, 1). Write the principal symbol of A at x ′ as
ann(x ′)ξ2

n + 2b(x ′, ξ′)ξn + c(x ′, ξ′), and let

m(x ′, ξ′) = ann(x ′)c(x ′, ξ′)− b(x ′, ξ′)2,

it is positive for ξ′ 6= 0 by the ellipticity of A.
Then P has principal symbol p0(x ′, ξ′) = −m(x ′, ξ′)

1
2 at x ′.

Hence if M is a selfadjoint differential operator on Σ with principal
symbol m(x ′, ξ′), P = −M 1

2 + order 0.
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Define for Σ the restriction operator r+ : ϕ 7→ ϕ|U , and the extension
operator e+ : ψ 7→ {ψ on U, 0 on Σ \ U}.
When Q is an operator over Σ we denote r+Qe+ = Q+ (truncation).

Let X = Ḣ−
1
2 (U) (the subspace of distributions in H−

1
2 (Σ) supported in

U). Its dual space is X ∗ = H
1
2 (U) = r+H

1
2 (Σ).

Define V = Kγ(X ) ⊂ Z and denote the restriction Kγ |X by

Kγ,X : X
∼→ V , with adjoint K∗γ,X : V

∼→ X ∗.

In J. Math. An. Appl. ’11 we showed:

Theorem 2. For the mixed problem there is an operator L mapping
D(L) ⊂ X onto X ∗ such that the Krĕın resolvent formula holds:

A−1
ν,U − A−1

γ = iVKγ,XL
−1K∗γ,X prV ≡ T . (1)

Here L acts like −P+ and has

D(L) = {ϕ ∈ X | P+ϕ ∈ X ∗} ⊂ Ḣ1−ε(U).

We want to find the spectral behavior of the Krein term T .

Question: What is L−1? (It does NOT act like −(P−1)+). L−1 was
studied in ’11 using tools from Eskin ’81, Birman-Solomiak ’77, Laptev
’81. This lead to a spectral asymptotic formula for T when A = −∆+
lower order terms near Σ, so that P = −(−∆Σ)

1
2 + l.o.t. on Σ.

Gerd Grubb Copenhagen University Fractional order



2. Boundary problems for fractional order operators

Now a better tool is available: Boundary value theories for fractional
powers of elliptic operators. This will allow general A and P.

A basic example of a pseudodifferential operator (ps.d.o.) of noninteger
order is the fractional Laplacian (−∆)a, 0 < a < 1:

(−∆)au = F−1(|ξ|2aû(ξ)), û(ξ) = Fu =

∫
Rn′

e−ix·ξu(x) dx .

Currently of interest both in probability, finance, mathematical physics
and geometry. More general example: Ma, where M is a 2’order strongly
elliptic differential operator with smooth coefficients on Rn′ . Ma is a
ps.d.o. of order 2a by Seeley ’66.

Let U be bounded smooth open ⊂ Rn′ . Dirichlet problem for Ma on U?

Let ma(u, v) = (Mau, v) for u, v ∈ C∞0 (U). It satisfies

Rema(u, u) ≥ c‖u‖2
a − k‖u‖2

0, c > 0, k ∈ R,

and its closure with domain Ḣa(U) defines a convenient operator Ma
Dir in

L2(U) by variational theory. It acts like Ma
+, with D(Ma

Dir) ⊂ Ḣa(U). It
represents the problem

Ma
+u = f , u sought in Ḣa(U). (2)
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What is D(Ma
Dir)? What are the regularity properties of solutions of (2)?

Here the results are quite recent.
Ros-Oton and Serra (J.Math.Pur.Appl.’14) showed by potential theory
and integral operator methods, when M = −∆ and U is C 1,1, that

f ∈ L∞(U) =⇒ u ∈ daCα(U) ∩ C a(U), (3)

for some α > 0. Here d(x) = dist(x , ∂U). They stated that they did not
know of other regularity results for (−∆)a in the literature.

Ps.d.o. methods? The Boutet de Monvel calculus, initiated in ’71,
requires integer order plus a so-called 0-transmission property at ∂U.
Ma is not covered.

But we have recently developed another calculus. It is based on a more
general µ-transmission property, introduced by Hörmander in his 1985
book (in fact in an unpublished lecture note from IAS Princeton 1965).
Here Ma has the a-transmission property, since the symbol has even
parity and is of order 2a.
It allows to improve the information in (3) to u ∈ daC a(U) and to get
higher regularity: f ∈ C t(Ω) =⇒ u ∈ daC a+t(Ω) for t > 0 (except for t
or a + t integer, slightly weaker result).
(G Adv.Math.’15, Anal&PDE’14.)
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The results rely on constructing an approximate inverse of Ma
Dir (a

parametrix).
Consider a localized situation where U and {U are replaced by, resp.
Rn′

± = {x | xn′ ≷ 0}. There exist order-reducing operators:

Theorem 3. There exist two families of ps.d.o.s Λ
(t)
± of order t ∈ R,

preserving support in Rn′

± , respectively, such that for all s ∈ R,

Λ
(t)
+ : Ḣs(Rn′

+ )
∼→ Ḣs−t(Rn′

+ ), (Λ
(t)
− )+ : Hs(Rn′

+ )
∼→ Hs−t(Rn′

+ ).

Then Ma
+ can be linked to an operator in the BdM calculus:

Theorem 4. On Ḣa(Rn′

+ ), the operator Ma
+ can be written in the form

Ma
+ = (Λ

(a)
− )+r

+QΛ
(a)
+ , (4)

where Q is a ps.d.o. of order 0 in the Boutet de Monvel calculus, such
that the problem

Q+v = g , supp v ⊂ Rn′

+ , (5)

is well-posed. Here the solution to (2) is found as Λ
(−a)
+ e+v , when

g = (Λ
(−a)
− )+f .
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Theorem 5. Let Q̃+ + G0 be a parametrix for (5) (G0 being a sing.
Green op. of class and order 0 in the Boutet de Monvel calculus). Then
the operator Ma

Dir has the parametrix

R = (Λ
(−a)
+ )+(Q̃+ + G0)(Λ

(−a)
− )+. (6)

Similar results can be obtained in the situation of the manifold Σ = ∂Ω
and its subset U (of dimension n′ = n − 1).

Formula (6) can be used to get a spectral asymptotic estimate for R.

Theorem 6. Let

P = P1,+ . . .Pl0,+(P0,+ + G )Pl0+1,+ . . .Pl,+,

where P0 is of order 0, G is a singular Green on U of order and class 0,
and the Pj are of order −tj < 0. Let t = t1 + · · ·+ tl . Then the singular
values sk(P) satisfy:

sk(P)k t/(n−1) → C (P) for k →∞,

where C (P) is defined from the principal symbols on U.

Corollary 7. For R in (6),

sk(R)k2a/(n−1) → C (R).
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3. Application to the mixed problem

For the mixed problem, we were aiming to find the spectral asymptotics
of the Krein term

T = iVKγ,XL
−1K∗γ,X prV .

Recall that we are here in a selfadjoint case. We know that L acts like
−P+, where P is the Dirichlet-to-Neumann operator. It was shown in
Proposition 1 that P is of the form

P = −M 1
2 − S ,

where M is a selfadjoint 2’ order differential operator on Σ and S is a
ps.d.o. of order 0.
Then the operator L appearing in the Krein term acts like

L = −P+ = M
1
2

+ + S+, with D(L) ⊂ Ḣ1−ε(U).

Here M
1
2

+ acts like M
1
2

Dir.

Now we can use that we have found a parametrix R of M
1
2

Dir. Since L is
invertible, we can deduce that

L−1 = R + S1, (7)

where S1 is of order −2.
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For the eigenvalues of the Krein term we show by commutation:

µk(T ) = µk(iVKγ,XL
−1K∗γ,X prV ) = µk(L−1K∗γ,XKγ,X ) = µk(L−1P1,+)

where P1 = K∗γKγ is a ps.d.o. of order −1.

With P2 = P
1
2

1 we deduce moreover, using also (7):

µk(T ) = µk(P2,+L
−1P2,+ + S2) = µk(P2,+RP2,+ + S3)

where S2 and S3 by various perturbation arguments will not enter in the
principal asymptotics.
Now Theorem 6 can be applied to P2,+RP2,+. This leads to

Theorem 8. The eigenvalues of T satisfy

µk(T )k2/(n−1) → C (T ) for k →∞,

where C (T ) is an integral over U of a function defined from the principal
symbols:

C (T ) = 1
(n−1)(2π)n−1

∫
U

∫
|ξ′|=1

( ann(x ′)

2m(x ′, ξ′)

) n−1
2

dω(ξ′)dx ′.

(G JMAA’15)
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