Boundary problems for fractional Laplacians and other fractional-order operators

Gerd Grubb
Copenhagen University

Otto-von-Guericke-School in partial differential equations University of Magdeburg

March 14-16, 2016

Introduction

The fractional Laplacian $(-\Delta)^{a}$ on $\mathbb{R}^{n}, 0<a<1$, is currently of great interest in probability, finance, mathematical physics and differential geometry. In particular, it enters in nonlinear equations.
One way to describe it is as an integral operator with a convolution kernel:

$$
(-\Delta)^{a} u(x)=c_{n, a} P V \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|y|^{n+2 a}} d y .
$$

Another way to describe it is by use of the Fourier transform \mathcal{F} :

$$
\begin{aligned}
\mathcal{F} u & =\hat{u}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} u(x) d x ; \text { then } \\
(-\Delta)^{a} u & =\operatorname{Op}\left(|\xi|^{2 a}\right) u=\mathcal{F}^{-1}\left(|\xi|^{2 a} \hat{u}(\xi)\right) .
\end{aligned}
$$

This shows that it is a pseudodifferential operator (ps.d.o.) of order 2a.
One of the difficulties with the operator is that it is nonlocal, in contrast to differential operators. This is problematic when one wants to study it on a bounded set; what is really meant? Here comes one of the interpretations:

For a bounded open set $\Omega \subset \mathbb{R}^{n}$ with some smoothness, we consider the problem

$$
(-\Delta)^{a} u=f \text { in } \Omega, \quad \text { supp } u \subset \bar{\Omega} ;
$$

this is called the homogeneous Dirichlet problem.
It is known that there is a solvability for $f \in L_{2}(\Omega)$, by a variational construction; here $u \in \dot{H}^{a}(\bar{\Omega})$ (the functions in $H^{a}\left(\mathbb{R}^{n}\right)$ with support in $\bar{\Omega}$). What more can be said about the regularity of u ?
Through the times, the results on the regularity of the solutions were somewhat sparse.

- Vishik, Eskin, Shamir 1960's. E.g., $u \in \dot{H}^{2 a}(\bar{\Omega})$ when $a<\frac{1}{2}$.
- When f and Ω are C^{∞}, there is some analysis of the behavior of solutions at $\partial \Omega$ by Eskin ' 81 , Hörmander ' 85 , Bennish '93, Chkadua and Duduchava '01.
Recent activity:
- Ros-Oton and Serra (JMPA '14) showed by potential theoretic and integral operator methods, when Ω is $C^{1,1}$, that for small $\alpha>0$,

$$
f \in L_{\infty}(\Omega) \Longrightarrow u \in d^{a} C^{\alpha}(\bar{\Omega}), \quad d(x)=\operatorname{dist}(x, \partial \Omega)
$$

Moreover, $u \in C^{a}(\bar{\Omega})$. Lifted to $\alpha=a-\varepsilon$ later. They gave further results recently in low-regularity situations.

- G (Adv.Math. '15) presented a new systematic theory of ps.d.o. boundary problems covering $(-\Delta)^{a}$, using unpublished ideas of Hörmander. Further developed in Anal.PDE '14. When Ω is C^{∞},

$$
\begin{aligned}
f \in L_{\infty}(\Omega) & \Longrightarrow u \in d^{a} C^{a}(\bar{\Omega}), \quad a \neq \frac{1}{2} \\
f \in C^{t}(\bar{\Omega}) & \Longrightarrow u \in d^{a} C^{a+t}(\bar{\Omega}), \text { for } t>0, a+t, 2 a+t \notin \mathbb{N}, \\
f \in C^{\infty}(\bar{\Omega}) & \Longleftrightarrow u \in d^{a} C^{\infty}(\bar{\Omega}) . \quad \text { (Hörmander book'85) }
\end{aligned}
$$

In the excepted cases there is a correction $-\varepsilon$ in the Hölder exponent. Optimal in the case of smooth Ω. The factor d^{a} is necessarily there.
The regularity study was a prerequisite for the proof of an integration by parts formula by Ros-Oton and Serra ARMA'14:

$$
\begin{aligned}
2 \int_{\Omega}(x \cdot \nabla u) & (-\Delta)^{a} u d x=(2 a-n) \int_{\Omega} u(-\Delta)^{a} u d x \\
& +\Gamma(1+a)^{2} \int_{\partial \Omega} x \cdot \nu \gamma_{0}\left(d^{-a} u\right)^{2} d \sigma
\end{aligned}
$$

here $\nu(x)$ is the interior normal to $\partial \Omega$ at $x \in \partial \Omega$, and γ_{0} denotes taking the boundary value from inside Ω.

This leads to a Pohozaev formula for solutions of the Dirichlet problem with nonlinear right-hand side $f(u)$, useful in uniqueness questions.
The formula has been generalized to a larger class of positive translation-invariant integral operators with homogeneous convolution kernels, by R.-O. and S. jointly with Valdinoci (arXiv Feb.'15).
We have very recently (arXiv Nov.'15) found out how to extend the formula to a corresponding class of pseudodifferential operators that are moreover allowed to be x-dependent (not translation invariant); here we assume smoothness of Ω and of the x-dependence.
In the lectures I will try to give you the background and mechanisms for these results.

Plan:

1. The pseudodifferential calculus on \mathbb{R}^{n}.
2. The model Dirichlet problem on \mathbb{R}_{+}^{n}.
3. General Dirichlet problems on sets Ω.
4. Nonhomogeneous boundary conditions.
5. Integration by parts and a Pohozaev formula.

1. The pseudodifferential calculus on \mathbb{R}^{n}

Pseudodifferential operators were introduced in the 1960's as a generalization of singular integral operators (Calderon, Zygmund, Seeley, Giraud, Mikhlin ..., and particularly Kohn, Nirenberg, Hörmander.) It generalizes the use of the Fourier transformation to x-dependent operators. Recall that the Fourier transform

$$
\mathcal{F} u=\hat{u}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} u(x) d x
$$

is bijective on $\mathcal{S}\left(\mathbb{R}^{n}\right)=\left\{u \in C^{\infty}| | x^{\alpha} D^{\beta} u \mid \leq C\right.$, all $\left.\alpha, \beta\right\}$ (the Schwartz space), and extends to a bijection on $L_{2}\left(\mathbb{R}^{n}\right)$, with a similar inverse. We use multi-index notation, $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, D^{\alpha}=(-i)^{|\alpha|} \partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}$. A very important property is that \mathcal{F} sends the differential operator D^{α} over into the multiplication operator ξ^{α}. Imitating this idea, when we have a function $p(\xi)$, the pseudodifferential operator P with symbol p is the operator

$$
P u=\mathcal{F}^{-1}(p(\xi) \hat{u}(\xi))=\operatorname{Op}(p) u .
$$

For example,

$$
\Delta=\operatorname{Op}\left(-|\xi|^{2}\right), \quad(-\Delta)^{a}=\operatorname{Op}\left(|\xi|^{2 a}\right) .
$$

This is simple and easy when the symbols only depend on ξ, for example,

$$
\begin{equation*}
\operatorname{Op}(p(\xi)) \operatorname{Op}(q(\xi))=\operatorname{Op}(p(\xi) q(\xi)) . \tag{*}
\end{equation*}
$$

But now we extend the definition to x-dependent symbols $p(x, \xi)$,

$$
(P u)(x)=\mathcal{F}^{-1}(p(x, \xi) \hat{u}(\xi))=\operatorname{Op}(p(x, \xi)) u
$$

and this is more delicate. We no longer have $(*)$, but, with a good choice of the symbol classes (given below),

$$
\operatorname{Op}(p(x, \xi)) \operatorname{Op}(q(x, \xi))-\operatorname{Op}(p(x, \xi) q(x, \xi)) \text { is of lower order. } \quad(* *)
$$

Definition. S^{m} is the space of symbols $p(x, \xi)$ of order m, satisfying

$$
\left|D_{x}^{\beta} D_{\xi}^{\alpha} p(x, \xi)\right| \leq C\langle\xi\rangle^{m-|\alpha|}, \text { for } x, \xi \in \mathbb{R}^{n},
$$

all α, β. p is called classical, when there is a sequence of symbols $p_{j}(x, \xi)$, homogeneous of degree $m-j$ in ξ for $|\xi| \geq 1$, such that

$$
\left|D_{x}^{\beta} D_{\xi}^{\alpha}\left(p-\sum_{j<M} p_{j}\right)\right| \leq C\langle\xi\rangle^{m-|a|-M}
$$

for all α, β, M. Here $\langle\xi\rangle=\left(|\xi|^{2}+1\right)^{\frac{1}{2}}$.

When p is of order $m, P=\operatorname{Op}(p(x, \xi))$ is continuous:

$$
P: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s-m}\left(\mathbb{R}^{n}\right), \text { all } s \in \mathbb{R} ;
$$

recall that $H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid\langle\xi\rangle^{s} \hat{u} \in L_{2}\left(\mathbb{R}^{n}\right)\right\}$.
So P has better continuity properties, the lower m is. In particular, when $p \in S^{-\infty}=\bigcap_{m} S^{m}, P$ maps any H^{s} into C^{∞}; is a "smoothing operator". For compositions, one has that $P Q=R+\mathcal{S}$, where \mathcal{S} is smoothing, and the symbol of R is the Leibniz product:

$$
p(x, \xi) \# q(x, \xi) \sim \sum_{\alpha \in \mathbb{N}_{0}^{n}} \partial_{\xi}^{\alpha} p(x, \xi) D_{x}^{\alpha} q(x, \xi) / \alpha!
$$

modulo symbols in $S^{-\infty}$.
In particular, when p and q are of orders m_{1}, m_{2},

$$
p \# q=p \cdot q+s_{1}, \text { where } s_{1} \sim \sum_{|\alpha| \geq 1} \partial_{\xi}^{\alpha} p D_{x}^{\alpha} q / \alpha!;
$$

here s_{1} is of order $m_{1}+m_{2}-1$. This shows ($* *$).
Technical difficulties in the theory of ps.d.o.s:

1) Series expansions are usually not convergent, but hold in an asymptotic sense. (Like Taylor expansions of non-analytic functions.)
2) Some formulas just hold modulo smoothing operators.
3) Integrals need interpretation as oscillatory integrals.

Somewhat sophisticated, but can be made useful with some care. Introduction e.g. in G'09, Springer GTM book.
When p is classical with expansion $p \sim \sum_{j \in \mathbb{N}_{0}} p_{j}$, the first term p_{0} (homogeneous in ξ of degree m) is called the principal symbol. P and p are said to be elliptic, when $p_{0}(x, \xi) \neq 0$ for $|\xi| \geq 1$; strongly elliptic when $\operatorname{Re} p_{0}(x, \xi)>0$ for $|\xi| \geq 1$. Many properties are governed by the principal symbol, and a study of the x-independent operator $\operatorname{Op}\left(p_{0}\left(x_{0}, \xi\right)\right)$ for fixed x_{0} is usually a pilot project for the study of the full operator.
The symbol will be said to be even, when

$$
\partial_{x}^{\beta} \partial_{\xi}^{\alpha} p_{j}(x,-\xi)=(-1)^{-j-|\alpha|} \partial_{x}^{\beta} \partial_{\xi}^{\alpha} p_{j}(x, \xi) \text { for }|\xi| \geq 1, \text { all } j, \alpha, \beta .
$$

We shall consider operators satisfying: P is a classical strongly elliptic ps.d.o. of order $2 a$ with even symbol, $0<a<1$.
This includes $(-\Delta)^{a}$ (there is a trick to handle that the symbol $|\xi|^{2 a}$ is not quite smooth at 0), and $A(x, D)^{a}$, where $A(x, D)$ is a second-order strongly elliptic differential operator with smooth coefficients. In particular, $\left(-\Delta+m^{2}\right)^{a}$.

2. The model Dirichlet problem on \mathbb{R}_{+}^{n}

Now consider a subset Ω of \mathbb{R}^{n}, either a bounded open C^{∞}-subset, or $\mathbb{R}_{+}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right) \mid x^{\prime} \in \mathbb{R}^{n-1}, x_{n}>0\right\}$. In either case we denote by r^{+} the restriction operator from \mathbb{R}^{n} to Ω, and by e^{+}the extension-by-zero operator

$$
e^{+} f(x)=\left\{\begin{array}{l}
f(x), \text { when } x \in \Omega \\
0 \text { when } x \in C \Omega\left(=\mathbb{R}^{n} \backslash \Omega\right)
\end{array}\right.
$$

The analogous operators for $\left\lceil\bar{\Omega}\right.$ are called r^{-}and e^{-}.
The properties of classical ps.d.o.s are preserved under C^{∞}-coordinate changes, and there is an invariant definition of the principal symbol (as a section of the cotangent bundle). Therefore situations with arbitrary smooth subsets Ω can usually be reduced to situations with \mathbb{R}_{+}^{n}, by use of local coordinates and partitions of unity.
We shall now discuss the Dirichlet problem, aiming to see why the factor $d(x)^{a}, d(x)=\operatorname{dist}(x, \partial \Omega)$, enters in the description of solutions.

A model case.

Consider $P=(-\Delta+1)^{a}$ on $\mathbb{R}^{n}, \Omega=\mathbb{R}_{+}^{n}$. Here $d(x)=x_{n}$.

The symbol of $(-\Delta+1)^{a}$ equals $\left(|\xi|^{2}+1\right)^{a}=\langle\xi\rangle^{2 a}$. It has a factorization

$$
\langle\xi\rangle^{2 a}=\left(\left\langle\xi^{\prime}\right\rangle^{2}+\xi_{n}^{2}\right)^{a}=\left(\left\langle\xi^{\prime}\right\rangle-i \xi_{n}\right)^{a}\left(\left\langle\xi^{\prime}\right\rangle+i \xi_{n}\right)^{a}
$$

Set $\chi_{ \pm}^{t}\left(\xi^{\prime}, \xi_{n}\right)=\left(\left\langle\xi^{\prime}\right\rangle \pm i \xi_{n}\right)^{t}$, and define $\Xi_{ \pm}^{t}=\operatorname{Op}\left(\chi_{ \pm}^{t}\right)$. Then

$$
(-\Delta+1)^{a}=\bar{\Xi}_{-}^{a} \bar{\Xi}_{+}^{a} .
$$

The powers $z^{t}, z \in \mathbb{C}$, are defined to be real for $z>0$. The operators $\bar{\Xi}_{ \pm}^{t}$ are a kind of generalized ps.d.o.s; their symbols satisfy

$$
\left|\partial_{\xi^{\prime}}^{\alpha^{\prime}} \partial_{\xi_{n}}^{a_{n}} \chi_{ \pm}^{t}\left(\xi^{\prime}, \xi_{n}\right)\right| \leq C\left(\left\langle\xi^{\prime}\right\rangle^{t-\left|\alpha^{\prime}\right|}+\langle\xi\rangle^{t-\left|\alpha^{\prime}\right|}\right)\langle\xi\rangle^{-\alpha_{n}},
$$

but not the full set of ps.d.o. estimates in ξ.
They are invertible, with $\left(\bar{\Xi}_{ \pm}^{t}\right)^{-1}=\bar{\Xi}_{ \pm}^{-t}$. Moreover, $\left(\bar{\Xi}_{+}^{t}\right)^{*}=\Xi_{-}^{t}$.
With $\mathbb{C}_{ \pm}=\{z \in \mathbb{C} \mid \operatorname{Im} z \gtrless 0\}$, we observe that $\chi_{+}^{t}\left(\xi^{\prime}, \xi_{n}\right)$ extends holomorphically into \mathbb{C}_{-}as a function of ξ_{n} (and $\chi_{-}^{t}\left(\xi^{\prime}, \xi_{n}\right)$ extends holomorphically into \mathbb{C}_{+}as a function of ξ_{n}).
Hence, by the Paley-Wiener theorem, $\widetilde{\chi}_{+}^{t}\left(\xi^{\prime}, x_{n}\right)=\mathcal{F}_{\xi_{n} \rightarrow x_{n}}^{-1} \chi_{+}^{t}\left(\xi^{\prime}, \xi_{n}\right)$ is supported for $x_{n} \geq 0$, and therefore the operator Ξ_{+}^{t} (which in the x_{n}-direction is a convolution with $\widetilde{\chi}_{+}^{t}\left(\xi^{\prime}, x_{n}\right)$) preserves support in $\overline{\mathbb{R}}_{+}^{n}$.

Introduce the two families of Sobolev spaces

$$
\begin{aligned}
\bar{H}^{s}(\Omega) & =r^{+} H^{s}\left(\mathbb{R}^{n}\right), \\
\dot{H}^{s}(\bar{\Omega}) & =\left\{u \in H^{s}\left(\mathbb{R}^{n}\right) \mid \operatorname{supp} u \subset \bar{\Omega}\right\},
\end{aligned}
$$

(used presently with $\Omega=\mathbb{R}_{+}^{n}$). Here $\bar{H}^{s}(\Omega)$ and $\dot{H}^{-s}(\bar{\Omega})$ are dual spaces of one another. (The notation with dots and lines stems from works of Hörmander.)
Because of the support preserving property of $\bar{\Xi}_{+}^{t}$,

$$
\Xi_{+}^{t}: \dot{H}^{s}\left(\overline{\mathbb{R}}_{+}^{n}\right) \xrightarrow{\sim} \dot{H}^{s-t}\left(\overline{\mathbb{R}}_{+}^{n}\right), \text { all } s,
$$

with inverse $\bar{\Xi}_{+}^{-t}$.
This mapping $\bar{\Xi}_{+}^{t}$ has the adjoint $r^{+} \bar{\Xi}_{-}^{t} e^{+}$, mapping in the dual scale of spaces:

$$
r^{+} \bar{\Xi}_{-}^{t} e^{+}: \bar{H}^{t-s}\left(\mathbb{R}_{+}^{n}\right) \xrightarrow{\sim} \bar{H}^{-s}\left(\mathbb{R}_{+}^{n}\right),
$$

with inverse $r^{+} \Xi_{-}^{-t} e^{+}$.

Now we show how to solve the model Dirichlet problem

$$
\begin{equation*}
r^{+}(-\Delta+1)^{a} u=f \text { on } \mathbb{R}_{+}^{n}, \quad \text { supp } u \subset \overline{\mathbb{R}}_{+}^{n} . \tag{1}
\end{equation*}
$$

Say, f is given in $\bar{H}^{t}\left(\mathbb{R}_{+}^{n}\right)$ for some $t \geq 0$, and u is sought in $\dot{H}^{a}\left(\overline{\mathbb{R}}_{+}^{n}\right)$. By the factorization,
 since $r^{-} \Xi_{+}^{a} u=0$. Then since $\left(r^{+} \Xi_{-}^{a} e^{+}\right)^{-1}=r^{+} \Xi_{-}^{-a} e^{+}$on the \bar{H}^{s}-scales, (1) can be reduced to

$$
\begin{equation*}
r^{+} \bar{\Xi}_{+}^{a} u=r^{+} \Xi_{-}^{-a} e^{+} f, \quad \text { supp } u \subset \overline{\mathbb{R}}_{+}^{n}, \tag{2}
\end{equation*}
$$

where $r^{+} \Xi_{-}^{-a} e^{+} f \in \bar{H}^{t+a}\left(\mathbb{R}_{+}^{n}\right)$. By a moment's thought, this has the unique solution

$$
u=\Xi_{+}^{-a} e^{+}\left(r^{+} \bar{\Xi}_{-}^{-a} e^{+} f\right) .
$$

Thus (1) has the unique solution u, and it lies in

$$
\bar{\Xi}_{+}^{-a}\left(e^{+} \bar{H}^{t+a}\left(\mathbb{R}_{+}^{n}\right)\right) \equiv H^{a(t+2 a)}\left(\overline{\mathbb{R}}_{+}^{n}\right) \text {, Hörmander's space. }
$$

What is this space? If $t+a<\frac{1}{2}$, it is simply $\dot{H}^{t+2 a}\left(\overline{\mathbb{R}}_{+}^{n}\right)$. But when $t+a>\frac{1}{2}, e^{+} \bar{H}^{t+a}\left(\mathbb{R}_{+}^{n}\right)$ has a jump at $x_{n}=0$; this gives rise to a singularity at $x_{n}=0$ when Ξ_{+}^{-a} is applied. We can calculate:

Special Fourier transformation formula: For $s>-1, \sigma>0$ (e.g. $\left\langle\xi^{\prime}\right\rangle$),

$$
\mathcal{F}_{\xi_{n} \rightarrow x_{n}}^{-1}\left(\sigma+i \xi_{n}\right)^{-s-1}=\frac{1}{\Gamma(s+1)} e^{+} r^{+} x_{n}^{s} e^{-\sigma x_{n}}
$$

(Note that $e^{+} r^{+}$corresponds to multiplying with the Heaviside function.) To study the example $\Xi_{+}^{-a}\left(e^{+} \bar{H}^{1}\left(\mathbb{R}_{+}^{n}\right)\right)=H^{a(1+a)}\left(\overline{\mathbb{R}}_{+}^{n}\right)$, let $v \in \bar{H}^{1}\left(\mathbb{R}_{+}^{n}\right)$. Let $\varphi=\gamma_{0} v$ (the boundary value), it is in $H^{\frac{1}{2}}\left(\mathbb{R}^{n-1}\right)$. Let $v_{0}=\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\hat{\varphi}\left(\xi^{\prime}\right)\left(\left\langle\xi^{\prime}\right\rangle+i \xi_{n}\right)^{-1}\right)=\mathcal{F}_{\xi^{\prime} \rightarrow x^{\prime}}^{-1}\left(\hat{\varphi}\left(\xi^{\prime}\right) e^{+} r^{+} e^{-\left\langle\xi^{\prime}\right\rangle x_{n}}\right) \in e^{+} \bar{H}^{1}\left(\mathbb{R}_{+}^{n}\right)$.
Then v and v_{0} have the same boundary value φ (from \mathbb{R}_{+}^{n}), and the rest $v^{\prime}=e^{+} v-v_{0}$ belongs to $\dot{H}^{1}\left(\overline{\mathbb{R}}_{+}^{n}\right)$.
When we apply Ξ_{+}^{-a}, v^{\prime} is mapped into $\dot{H}^{1+a}\left(\overline{\mathbb{R}}_{+}^{n}\right)$. For $v_{0} \in e^{+} \bar{H}^{1}\left(\mathbb{R}_{+}^{n}\right)$ we find, using (\star) :

$$
\bar{E}_{+}^{-a} v_{0}=\mathcal{F}^{-1}\left(\hat{\varphi}\left(\xi^{\prime}\right)\left(\left\langle\xi^{\prime}\right\rangle+i \xi_{n}\right)^{-1-a}\right)=\frac{1}{\Gamma(a+1)} x_{n}^{a} v_{0} .
$$

Hence

$$
H^{a(1+a)}\left(\overline{\mathbb{R}}_{+}^{n}\right) \subset e^{+} x_{n}^{a} \bar{H}^{1}\left(\mathbb{R}_{+}^{n}\right)+\dot{H}^{1+a}\left(\overline{\mathbb{R}}_{+}^{n}\right)
$$

A similar analysis gives more generally, when $t+a>\frac{1}{2}$,

$$
H^{a(t+2 a)}\left(\overline{\mathbb{R}}_{+}^{n}\right) \subset e^{+} x_{n}^{a} \bar{H}^{t+a}\left(\mathbb{R}_{+}^{n}\right)+\dot{H}^{t+2 a(-\varepsilon)}\left(\overline{\mathbb{R}}_{+}^{n}\right)
$$

$(-\varepsilon)$ active if $t+a-\frac{1}{2} \in \mathbb{N}$. Moreover, $H^{a(t+2 a)}\left(\overline{\mathbb{R}}_{+}^{n}\right) \in H_{\text {loc }}^{t+2 a}\left(\mathbb{R}^{n} \underline{\mp}\right)$.

To sum up, we have found:
Theorem 1. The Dirichlet problem for $(-\Delta+1)^{a}$ on \mathbb{R}_{+}^{n} is uniquely solvable; here when $t \geq 0$,

$$
\begin{aligned}
& f \in \bar{H}^{t}\left(\mathbb{R}_{+}^{n}\right) \Longrightarrow u \in H^{a(t+2 a)}\left(\overline{\mathbb{R}}_{+}^{n}\right), \\
& \text { with } H^{a(t+2 a)}\left(\overline{\mathbb{R}}_{+}^{n}\right)\left\{\begin{array}{l}
=\dot{H}^{t+2 a}\left(\overline{\mathbb{R}}_{+}^{n}\right) \text { if }-\frac{1}{2}<t+a<\frac{1}{2}, \\
\subset e^{+} x_{n}^{a} \bar{H}^{t+a}\left(\mathbb{R}_{+}^{n}\right)+\dot{H}^{t+2 a(-\varepsilon)}\left(\overline{\mathbb{R}}_{+}^{n}\right) \text { if } t+a>\frac{1}{2} .
\end{array}\right.
\end{aligned}
$$

The case $-\frac{1}{2}<t+a<\frac{1}{2}$ is covered in Eskin's book '81.
As a corollary for $t \rightarrow \infty$, we see that the solutions satisfy:
$f \in C^{\infty}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ with bounded support $\Longrightarrow u \in e^{+} x_{n}^{a} C^{\infty}\left(\overline{\mathbb{R}}_{+}^{n}\right)$.
This was just a model case, and there remains to make the ideas work for general operators P and general domains Ω.
Remark. For $P=(-\Delta)^{a}$ we are relying on the complex factorization $|\xi|^{2 a}=\left(\left|\xi^{\prime}\right|-i \xi_{n}\right)^{a}\left(\left|\xi^{\prime}\right|+i \xi_{n}\right)^{a}$ in the model case of operators defined in terms of ξ_{n}. In contrast, the basic argument of Ros-Oton and Serra relies on the factorization $|\xi|^{2 a}=|\xi|^{a}|\xi|^{a}$, as real symbols, with a different complicated analysis of the operators $\operatorname{Op}\left(|\xi|^{a}\right)$ in terms of ξ_{n}.

3. General Dirichlet problems on sets Ω

Now we shall treat a general ps.d.o. P satisfying our assumptions, and a general $\Omega \subset \mathbb{R}_{+}^{n}$. First there is an auxiliary theorem (G CPDE'90):
Theorem 2. 1° For any $t \in \mathbb{R}$ there exist pseudodifferential operators $\Lambda_{ \pm}^{t}$ of order t with symbols $\lambda_{ \pm}^{t}\left(\xi^{\prime}, \xi_{n}\right)$, homogeneous of degree t for $|\xi| \geq 1$ and invertible, with $\overline{\lambda_{+}^{t}}=\lambda_{-}^{t}$, such that λ_{+}^{t} extends holomorphically into \mathbb{C}_{-}as a function of ξ_{n}, and λ_{-}^{t} extends holomorphically into \mathbb{C}_{+}as a function of ξ_{n}.
2° Moreover, when Ω is smooth bounded $\subset \mathbb{R}^{n}$, there exist ps.d.o. families $\Lambda_{ \pm}^{(t)}$ for $t \in \mathbb{R}$, elliptic of order t and invertible with inverse $\Lambda_{ \pm}^{(-t)}$, such that the symbols in local coordinates at $\partial \Omega$ are like those of $\Lambda_{ \pm}^{t}$. The first family of operators $\Lambda_{ \pm}^{t}$ then have all the nice mapping properties relative to $\mathbb{R}_{+}^{n} \subset \mathbb{R}^{n}$ that the $\Xi_{ \pm}^{t}$ had, with the advantage of being true ps.d.o.s so that the general calculus applies to them. The second family of operators $\Lambda_{ \pm}^{(t)}$ have the mapping properties relative to the embedding $\Omega \subset \mathbb{R}^{n}$, for all s :

$$
\Lambda_{+}^{(t)}: \dot{H}^{s}(\bar{\Omega}) \xrightarrow{\sim} \dot{H}^{s-t}(\bar{\Omega}), \quad r^{+} \Lambda_{-}^{(t)} e^{+}: \bar{H}^{s}(\Omega) \xrightarrow{\sim} \bar{H}^{s-t}(\Omega)
$$

with inverses $\Lambda_{+}^{(-t)}$ resp. $r^{+} \Lambda_{-}^{(-t)} e^{+}$.

Consider the Dirichlet problem on Ω for a given P,

$$
\begin{equation*}
r^{+} P u=f \text { on } \Omega, \quad \text { supp } u \subset \bar{\Omega} . \tag{3}
\end{equation*}
$$

Define

$$
Q=\Lambda_{-}^{(-a)} P \Lambda_{+}^{(-a)} .
$$

Q is of order 0 , and thanks to the evenness of P it satisfies the so-called 0 -transmission property:

$$
\partial_{x}^{\beta} \partial_{\xi}^{\alpha} q_{j}(x,-\nu(x))=(-1)^{-j-|\alpha|} \partial_{x}^{\beta} \partial_{\xi}^{\alpha} q_{j}(x, \nu(x))
$$

at the boundary points; $x \in \partial \Omega$ and $\nu(x)$ is the interior normal at x. For operators like Q, there has existed a boundary value calculus for many years, the Boutet de Monvel calculus, initiated in BdM Acta'71 and further developed in e.g. G Duke'84, CPDE'90, book'96.
In the present case we can moreover show:
Theorem 3. Under our hypotheses on P, the principal symbol q_{0} of Q has a factorization, in local coordinates at $\partial \Omega$ (with normal direction ξ_{n}):

$$
q_{0}\left(x, \xi^{\prime}, \xi_{n}\right)=q_{0}^{-}\left(x, \xi^{\prime}, \xi_{n}\right) q_{0}^{+}\left(x, \xi^{\prime}, \xi_{n}\right),
$$

where $q_{0}^{ \pm}$are homogeneous of degree 0 , and q_{0}^{+}extends holomorphically into \mathbb{C}_{-}as a function of ξ_{n}, q_{0}^{-}extends holomorphically into \mathbb{C}_{+}as a function of ξ_{n}.

Using this, we get from the Boutet de Monvel calculus for Q :
Proposition 4. The operator $r^{+} Q e^{+}$maps

$$
r^{+} Q e^{+}: \bar{H}^{s}(\Omega) \rightarrow \bar{H}^{s}(\Omega), \text { for all } s>-\frac{1}{2},
$$

as a Fredholm operator with smooth kernel and cokernel.
It has the regularity property: When $v \in \bar{H}^{\sigma}(\Omega)$ with $\sigma>-\frac{1}{2}$,
$r^{+} Q e^{+} v \in \bar{H}^{s}(\Omega) \Longrightarrow v \in \bar{H}^{s}(\Omega)$.
This leads to solvability of the Dirichlet problem for P, by use of the support-preservation properties of the families $\Lambda_{ \pm}^{(t)}$, as follows.
The question is: For given $f \in \bar{H}^{t}(\Omega)$, find $u \in \dot{H}^{a}(\bar{\Omega})$ such that (3) holds. To find this, insert $P=\Lambda_{-}^{(a)} Q \Lambda_{+}^{(a)}$ in (3), then
$r^{+} P=r^{+} \Lambda_{-}^{(a)} Q \Lambda_{+}^{(a)}=r^{+} \Lambda_{-}^{(a)}\left(e^{+} r^{+}+e^{-} r^{-}\right) Q \Lambda_{+}^{(a)}=\left(r^{+} \Lambda_{-}^{(a)} e^{+}\right) r^{+} Q \Lambda_{+}^{(a)}$,
since $r^{+} \Lambda_{-}^{(a)} e^{-}=0$, and (3) can be written as

$$
\begin{equation*}
\left(r^{+} \Lambda_{-}^{(a)} e^{+}\right) r^{+} Q \Lambda_{+}^{(a)} u=f \tag{4}
\end{equation*}
$$

Define

$$
\begin{array}{rlr}
g=\left(r^{+} \Lambda_{-}^{(-a)} e^{+}\right) f \in \bar{H}^{t+a}(\Omega), & \text { then } f=\left(r^{+} \Lambda_{-}^{(a)} e^{+}\right) g ; \\
v=r^{+} \Lambda_{+}^{(a)} u \in L_{2}(\Omega), & \text { then } u=\Lambda_{+}^{(-a)} e^{+} v .
\end{array}
$$

Hereby the problem reduces to: Find $v \in L_{2}(\Omega)$ such that

$$
\begin{equation*}
\left(r^{+} Q e^{+}\right) v=g, \text { given in } \bar{H}^{t+a}(\Omega) \tag{5}
\end{equation*}
$$

Call $\left(r^{+} Q e^{+}\right)=Q_{+}$for short. By Proposition 4, Q_{+}has a parametrix (almost-inverse) $\widetilde{Q_{+}}$, such that

$$
Q_{+} \widetilde{Q_{+}}=I+\mathcal{S}_{1}, \quad \widetilde{Q_{+}} Q_{+}=I+\mathcal{S}_{2}
$$

with smoothing operators \mathcal{S}_{1} and \mathcal{S}_{2} of finite rank. Hereby $v=\widetilde{Q_{+}} g$ solves (5) in a Fredholm sense. Then, by insertion,

$$
u=\Lambda_{+}^{(-a)} e^{+} v=\Lambda_{+}^{(-a)} e^{+} \widetilde{Q_{+}}\left(r^{+} \Lambda_{-}^{(-a)} e^{+}\right) f
$$

solves the original problem (3) in a Fredholm sense.
Introduce the Hörmander spaces:

$$
H^{a(s)}(\bar{\Omega})=\Lambda_{+}^{(-a)} e^{+} \bar{H}^{s-a}(\Omega)
$$

We can show using the model case discussed earlier, that they satisfy:

$$
H^{a(s)}(\bar{\Omega})\left\{\begin{array}{l}
=\dot{H}^{s}(\bar{\Omega}) \text { if }-\frac{1}{2}<s-a<\frac{1}{2}, \\
\subset e^{+} d^{a} \bar{H}^{s-a}(\Omega)+\dot{H}^{s(-\varepsilon)}(\bar{\Omega}) \text { if } s-a>\frac{1}{2},
\end{array}\right.
$$

where $d(x)=\operatorname{dist}(x, \partial \Omega),(-\varepsilon)$ is active if $s-a-\frac{1}{2} \in \mathbb{N}$;

Then we finally conclude:
Theorem 5. $r^{+} P$ is Fredholm

$$
r^{+} P: H^{a(t+2 a)}(\bar{\Omega}) \rightarrow \bar{H}^{t}(\Omega), \text { for all } t>-\frac{1}{2}
$$

There is the regularity property: When $u \in \dot{H}^{\sigma}(\bar{\Omega})$ with $\sigma>-\frac{1}{2}$, then $r^{+} P u \in \bar{H}^{t}(\Omega) \Longrightarrow u \in H^{a(t+2 a)}(\bar{\Omega})$.

The theorem can be extended to other scales of function spaces, e.g.:

- The Sobolev scale $H_{p}^{s}, 1<p<\infty$, and the Besov and Triebel-Lizorkin scales $B_{p q}^{s}, F_{p q}^{s}$, for large sets of indices.
- The Hölder-Zygmund scale $C_{*}^{s}=B_{\infty, \infty}^{s}$ (here C_{*}^{s} equals the Hölder space C^{s} when $\left.s \in \mathbb{R}_{+} \backslash \mathbb{N}\right)$.
Thus for example:

$$
\begin{aligned}
f \in C^{t}(\bar{\Omega}) & \Longrightarrow u \in e^{+} d^{a} C^{a+t}(\bar{\Omega}), \text { for } t \geq 0, a+t, 2 a+t \notin \mathbb{N}, \\
f \in C^{\infty}(\bar{\Omega}) & \Longrightarrow u \in e^{+} d^{a} C^{\infty}(\bar{\Omega}) ;
\end{aligned}
$$

with ε subtracted from the Hölder exponent in the excepted cases.

4. Nonhomogeneous boundary conditions

Up to now we have studied the socalled homogeneous Dirichlet problem.
Question: Is there a nontrivial "Dirichlet boundary value" on $\partial \Omega$, such that the problem represents the case where that value is zero?
To give a simple explanation, consider the C^{∞}-situation. Define

$$
\mathcal{E}_{a}(\bar{\Omega})=e^{+}\left(d^{a} C^{\infty}(\bar{\Omega})\right) .
$$

One can show that $\mathcal{E}_{a}(\bar{\Omega})$ is dense in $H^{a(s)}(\bar{\Omega})$ for all $s>a-\frac{1}{2}$, and that

$$
H^{a(s)}(\bar{\Omega}) \text { converges to } \mathcal{E}_{a}(\bar{\Omega}) \text { for } s \rightarrow \infty .
$$

Take $\Omega=\mathbb{R}_{+}^{n}$. When $u \in \mathcal{E}_{a}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ then $u=x_{n}^{a} v$ with $v \in e^{+} C^{\infty}\left(\overline{\mathbb{R}}_{+}^{n}\right)$, and

$$
u(x)=x_{n}^{a} v\left(x^{\prime}, 0\right)+x_{n}^{a+1} \partial_{n} v\left(x^{\prime}, 0\right)+\frac{1}{2} x_{n}^{a+2} \partial_{n}^{2} v\left(x^{\prime}, 0\right)+\ldots \text { for } x_{n}>0
$$

by Taylor expansion of v.
When $u \in \mathcal{E}_{a-1}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ then $u=x_{n}^{a-1} w$ with $w \in e^{+} C^{\infty}\left(\overline{\mathbb{R}}_{+}^{n}\right)$, and

$$
u(x)=x_{n}^{a-1} w\left(x^{\prime}, 0\right)+x_{n}^{a} \partial_{n} w\left(x^{\prime}, 0\right)+\frac{1}{2} x_{n}^{a+1} \partial_{n}^{2} w\left(x^{\prime}, 0\right)+\ldots
$$

We see that $\mathcal{E}_{a-1}\left(\overline{\mathbb{R}}_{+}^{n}\right) \supset \mathcal{E}_{a}\left(\overline{\mathbb{R}}_{+}^{n}\right)$, differing just by the term $x_{n}^{a-1} w\left(x^{\prime}, 0\right)$. Hereby

$$
u \in \mathcal{E}_{a-1}\left(\overline{\mathbb{R}}_{+}^{n}\right) \text { is in } \mathcal{E}_{a}\left(\overline{\mathbb{R}}_{+}^{n}\right) \Longleftrightarrow\left(w\left(x^{\prime}, 0\right)=\right) \gamma_{0}\left(x_{n}^{1-a} u\right)=0 .
$$

This also holds for the H-scales: $H^{(a-1)(s)}\left(\overline{\mathbb{R}}_{+}^{n}\right) \supset H^{a(s)}\left(\overline{\mathbb{R}}_{+}^{n}\right)$, and

$$
u \in H^{(a-1)(s)}\left(\overline{\mathbb{R}}_{+}^{n}\right) \text { is in } H^{a(s)}\left(\overline{\mathbb{R}}_{+}^{n}\right) \Longleftrightarrow \gamma_{0}\left(x_{n}^{1-a} u\right)=0
$$

For general Ω replace x_{n} by $d(x)$; then we likewise have $H^{(a-1)(s)}(\bar{\Omega}) \supset H^{a(s)}(\bar{\Omega})$, and

$$
u \in H^{(a-1)(s)}(\bar{\Omega}) \text { is in } H^{a(s)}(\bar{\Omega}) \Longleftrightarrow \gamma_{0}\left(d^{1-a} u\right)=0 .
$$

Definition. For $u \in H^{(a-1)(s)}(\bar{\Omega})$, the Dirichlet resp. Neumann boundary values are defined as:

$$
\begin{aligned}
& \gamma_{0}\left(d^{1-a} u\right) \in H^{s-a+\frac{1}{2}}(\partial \Omega), \text { when } s>a-\frac{1}{2} \text { resp. } \\
& \gamma_{1}\left(d^{1-a} u\right)=\gamma_{0}\left(\partial_{\nu}\left(d^{1-a} u\right)\right) \in H^{s-a-\frac{1}{2}}(\partial \Omega), \text { when } s>a+\frac{1}{2} .
\end{aligned}
$$

One can check that when u is in the smaller space $H^{a(s)}(\bar{\Omega})$ (i.e., when $\gamma_{0}\left(d^{1-a} u\right)$ vanishes $)$, then $\gamma_{1}\left(d^{1-a} u\right)=\gamma_{0}\left(d^{-a} u\right)$.
All this allows to set up nonhomogeneous Dirichlet resp. Neumann problems, where u is sought in $H^{(a-1)(s)}(\bar{\Omega})$ (for suitable s):

$$
\begin{aligned}
& \text { Dirichlet problem : }\left\{\begin{array}{l}
r^{+} P u=f \text { on } \Omega, \\
\text { supp } u \subset \bar{\Omega}, \\
\gamma_{0}\left(d^{1-a} u\right)=\varphi \text { on } \partial \Omega .
\end{array}\right. \\
& \text { Neumann problem : }\left\{\begin{array}{l}
r^{+} P u=f \text { on } \Omega, \\
\operatorname{supp} u \subset \bar{\Omega}, \\
\gamma_{1}\left(d^{1-a} u\right)=\psi \text { on } \partial \Omega .
\end{array}\right.
\end{aligned}
$$

The data are given with $f \in \bar{H}^{s-2 a}(\Omega), \varphi \in H^{s-a+\frac{1}{2}}(\partial \Omega)$, $\psi \in H^{s-a-\frac{1}{2}}(\partial \Omega)$.
One finds that the nonhomogeneous Dirichlet problem is Fredholm solvable in these spaces.
The Neumann problem is Fredholm solvable at least when P has principal symbol $\sim|\xi|^{2 a}$. (G in A\&PDE '14)

Note here that when $u \in \mathcal{E}_{a-1}(\bar{\Omega})$, say, is such that $\gamma_{0}\left(d^{1-a} u\right)=\varphi \neq 0$ at $x_{0} \in \partial \Omega$, then $u(x)$ blows up like d^{a-1} when $x \rightarrow x_{0}$. The solutions with nonzero Dirichlet data are "large" in this sense (also observed by Abatangelo, arXiv '13).
These Dirichlet and Neumann problems have local boundary conditions.
There exist other boundary value problems with good solvability. For example a certain "nonlocal Neumann problem" for $(-\Delta)^{a}$ (Dipierro, Ros-Oton and Valdinoci, arXiv'14), where a homogeneous condition linking the value on Ω with the value on $C \Omega$ is imposed.

There also exist some quite different operators associated with $(-\Delta)^{a}$, namely the "spectral fractional Laplacians". They are the a'th powers (defined by spectral theory) of the standard realizations $-\Delta_{\text {Dir }}$ and $-\Delta_{\text {Neu }}$ on Ω. Here the acting operator is different from $r^{+}(-\Delta)^{a}$ for $0<a<1$, and the domains differ in general.
For example, the domain of the spectral fractional Dirichlet operator differs from that of our Dirichlet operator (for $f \in L_{2}(\Omega)$) when $a \geq \frac{1}{2}$. Regularity studies in Caffarelli-Stinga AnnIHP'16 and G MathNach'16.

5. Integration by parts and a Pohozaev formula

Let us first focus on the reduction to the boundary of the expression

$$
I \equiv \int_{\Omega} P u \partial_{j} \bar{u}^{\prime} d x+\int_{\Omega} \partial_{j} u \overline{P^{*} u^{\prime}} d x
$$

Ros-Oton and Serra showed when $P=(-\Delta)^{a}$ (ARMA'14), and jointly with Valdinoci for more general x-independent selfadjoint positive homogeneous P (arXiv'15), that

$$
I=\Gamma(a+1)^{2} \int_{\partial \Omega} s_{0}(x) \nu_{j}(x) \gamma_{0}\left(\frac{u}{d^{a}}\right) \gamma_{0}\left(\frac{\bar{u}^{\prime}}{d^{a}}\right) d \sigma,
$$

when u, u^{\prime} solve the Dirichlet problem (3) with $r^{+} P u, r^{+} P u^{\prime} \in C^{0,1}(\bar{\Omega})$. Here $\nu_{j}(x)$ is the j 'th component of the interior normal ν at $x \in \partial \Omega$, and $s_{0}(x)=p_{0}(x, \nu(x))$, where p_{0} is the (principal) symbol of $P . \Omega$ is $C^{1,1}$. It is a striking formula, since it is exact and turns I into a local expression, and it is remarkable by pointing to the role of the boundary value $\gamma_{0}\left(\frac{u}{d^{a}}\right)$; the Neumann value when the Dirichlet value is 0 . It generalizes the easy formula for $a=1$:

$$
\int_{\Omega}\left[(-\Delta u) \partial_{j} \bar{u}^{\prime}+\partial_{j} u\left(-\Delta \bar{u}^{\prime}\right)\right] d x=\int_{\partial \Omega} \nu_{j} \gamma_{1} u \gamma_{1} \bar{u}^{\prime} d \sigma
$$

We set out to understand their formula in the context of ps.d.o.s, and to generalize it to cases where P is x-dependent and not necessarily selfadjoint, positive, homogeneous. We take Ω smooth. The result is:
Theorem 6. Let P be a classical ps.d.o. of order 2a ($0<a<1$) with even symbol, elliptic avoiding a ray. Then for solutions u, u^{\prime} of the Dirichlet problem (3),

$$
I=\Gamma(a+1)^{2} \int_{\partial \Omega} s_{0} \nu_{j} \gamma_{0}\left(\frac{u}{d^{a}}\right) \gamma_{0}\left(\frac{\bar{u}^{\prime}}{d^{a}}\right) d \sigma+\int_{\Omega}\left[P, \partial_{j}\right] u \bar{u}^{\prime} d x,
$$

where $\left[P, \partial_{j}\right]$ is the commutator $P \partial_{j}-\partial_{j} P$.
It suffices that $r^{+} P u, r^{+} P u^{\prime}$ are in $C^{1-a+\varepsilon}(\bar{\Omega})$ or $\bar{H}^{\frac{1}{2}-a+\varepsilon}(\Omega)$.
For u, u^{\prime} of low regularity, the integrals in I are understood as Sobolev space dualities. "Elliptic avoiding a ray" means that $p_{0}(x, \xi) \in$ $\mathbb{C} \backslash\left\{z=r e^{i \theta} \mid r \geq 0\right\}$ for some θ. It holds e.g. when $\operatorname{Re} p_{0}>0$ for $\xi \neq 0$, strong ellipticity, which is usually assumed when you study heat equations $\partial_{t} u+P u=0$.
The model case is $(-\Delta+1)^{a}$ on $\mathbb{R}_{+}^{n}, j=n$. To fix the ideas, take $u, u^{\prime} \in H^{a(1+a)}\left(\overline{\mathbb{R}}_{+}^{n}\right)\left(\right.$ then $\left.r^{+} P u, r^{+} P u^{\prime} \in \bar{H}^{1-a}\left(\mathbb{R}_{+}^{n}\right)\right)$. There is an auxiliary result:

Proposition 7. Let $u, u^{\prime} \in H^{a(a+1)}\left(\overline{\mathbb{R}}_{+}^{n}\right)$. Let $w=r^{+} \bar{\Xi}_{+}^{a} u, w^{\prime}=r^{+} \bar{\Xi}_{+}^{a} u^{\prime}$; they are in $\bar{H}^{1}\left(\mathbb{R}_{+}^{n}\right)$. Then

$$
\int_{\mathbb{R}_{+}^{n}} \Xi_{-}^{a} e^{+} w \partial_{n} \bar{u}^{\prime} d x=\int_{\mathbb{R}^{n-1}} \gamma_{0} w \gamma_{0} \bar{w}^{\prime} d x^{\prime}+\int_{\mathbb{R}_{+}^{n}} w \partial_{n} \bar{w}^{\prime} d x .
$$

In this nontrivial calculation it enters that $r^{+} \partial_{n} u^{\prime} \in r^{+} \partial_{n} x_{n}^{a} \bar{H}^{1}\left(\mathbb{R}_{+}^{n}\right)$ $+\dot{H}^{a}\left(\overline{\mathbb{R}}_{+}^{n}\right)$, having an x_{n}^{a-1}-singularity at the boundary.
Since $r^{+}(-\Delta+1)^{a} u=r^{+}$Ea $_{-}^{a} e^{+} r^{+}$Е्$_{+}^{a} u=r^{+}$Ea $_{-}^{a} e^{+} w$, we find

$$
\begin{aligned}
I & \equiv \int_{\mathbb{R}_{+}^{n}}(-\Delta+1)^{a} u \partial_{n} \bar{u}^{\prime} d x+\int_{\mathbb{R}_{+}^{n}} \partial_{n} u(-\Delta+1)^{a} \bar{u}^{\prime} d x \\
& =\int_{\mathbb{R}_{+}^{n}} \bar{\Xi}_{-}^{a} e^{+} w \partial_{n} \bar{u}^{\prime} d x+\int_{\mathbb{R}_{+}^{n}} \partial_{n} u \overline{\bar{\Xi}_{-}^{a} e^{+} w^{\prime}} d x \\
& =2 \int_{\mathbb{R}^{n-1}} \gamma_{0} w \gamma_{0} \bar{w}^{\prime} d x^{\prime}+\int_{\mathbb{R}_{+}^{n}}\left(w \partial_{n} \bar{w}^{\prime}+\partial_{n} w \bar{w}^{\prime}\right) d x \\
& =\int_{\mathbb{R}^{n-1}} \gamma_{0} w \gamma_{0} \bar{w}^{\prime} d x^{\prime} .
\end{aligned}
$$

One has moreover that $w=r^{+} \bar{\Xi}_{+}^{a} u \Longrightarrow \gamma_{0} w=\Gamma(a+1) \gamma_{0}\left(\frac{u}{x_{n}^{a}}\right)$. This implies Theorem 6 in the model case.

For general P, still with $\Omega=\mathbb{R}_{+}^{n}$, a factorization is used:

$$
P=\Lambda_{-}^{a} Q \Lambda_{+}^{a}=\Lambda_{-}^{a} Q_{0}^{-} Q_{0}^{+} \Lambda_{+}^{a}+\mathcal{S}
$$

where $Q_{0}^{ \pm}$are defined from the factors $q_{0}^{ \pm}$in the principal symbol of Q (Theorem 3). Here $Q_{0}^{ \pm}$are generalized ps.d.o.s of order 0 , and \mathcal{S} is a generalized ps.d.o. of order $2 a-1$.
For bounded smooth sets Ω one combines the result for \mathbb{R}_{+}^{n} with calculations in local coordinates. Extensive details in arXiv:1511.03901.
Corollary 8. For functions $u, u^{\prime} \in H^{a(s)}(\bar{\Omega})\left(s>a+\frac{1}{2}\right)$ there holds

$$
\begin{aligned}
& \int_{\Omega}\left(P u\left(x \cdot \nabla \bar{u}^{\prime}\right)+(x \cdot \nabla u) \overline{P^{*} u^{\prime}}\right) d x= \\
& \Gamma(a+1)^{2} \int_{\partial \Omega}(x \cdot \nu) s_{0} \gamma_{0}\left(\frac{u}{d^{a}}\right) \gamma_{0}\left(\frac{\bar{u}^{\prime}}{d^{a}}\right) d \sigma-n \int_{\Omega} P u \bar{u}^{\prime} d x+\int_{\Omega}[P, x \cdot \nabla] u \bar{u}^{\prime} d x .
\end{aligned}
$$

Here
$[P, x \cdot \nabla]=P_{1}-P_{2}, \quad P_{1}=\operatorname{Op}\left(\xi \cdot \nabla_{\xi} p(x, \xi)\right), \quad P_{2}=\operatorname{Op}\left(x \cdot \nabla_{x} p(x, \xi)\right)$.
P_{2} is new, P_{1} is new when p is not homogeneous in ξ.

This has implications for the nonlinear Dirichlet problem

$$
\begin{equation*}
r^{+} P u=f(u), \quad \text { supp } u \subset \bar{\Omega}, \tag{6}
\end{equation*}
$$

with $f(s) \in C^{0,1}(\mathbb{R})$. Let $F(t)=\int_{0}^{t} f(s) d s$.
Corollary 9. Let P be selfadjoint. For the bounded real solutions of (6) there holds the Pohozaev formula:

$$
\begin{aligned}
-2 n \int_{\Omega} F(u) d x & +n \int_{\Omega} f(u) u d x \\
& =\Gamma(1+a)^{2} \int_{\partial \Omega}(x \cdot \nu) s_{0} \gamma_{0}\left(\frac{u}{d^{d}}\right)^{2} d \sigma+\int_{\Omega}[P, x \cdot \nabla] u u d x .
\end{aligned}
$$

In particular, when P is x-independent,

$$
\begin{aligned}
-2 n \int_{\Omega} F(u) d x & +n \int_{\Omega} f(u) u d x \\
& =\Gamma(1+a)^{2} \int_{\partial \Omega}(x \cdot \nu) s_{0} \gamma_{0}\left(\frac{u}{d^{a}}\right)^{2} d \sigma+\int_{\Omega} P_{1} u u d x .
\end{aligned}
$$

Let us end with two small applications.

Example 1. Let $P=\left(-\Delta+m^{2}\right)^{a}$. For the eigenvalue problem

$$
r^{+} P u=\lambda u, \quad \operatorname{supp} u \subset \bar{\Omega},
$$

any λ, one can derive that $\gamma_{0}\left(\frac{u}{d^{a}}\right)=0$ implies $u \equiv 0$. Hence:
There are no eigenfunctions with vanishing of both Dirichlet and Neumann data.

Example 2. For $P=\left(-\Delta+m^{2}\right)^{a}$, consider the problem

$$
r^{+} P u=\operatorname{sign} u|u|^{r}, \quad \text { supp } u \subset \bar{\Omega},
$$

on a star-shaped domain Ω.
When $r \geq \frac{n+2 a}{n-2 a}$, the critical and supercritical cases, one can derive that:
There are no nontrivial solutions.
The results in both examples follow from an analysis of the signs of terms in the symbols of P and P_{1}.
Applications of the formula in x-dependent cases will also need sign analyses of the various terms derived from the symbol of P. As far as I know, this is an open question.

