Boundary problems for fractional-order

pseudodifferential operators

Gerd Grubb
Copenhagen University

Conference on Analysis and
Colloquium in Honor of the 60th Birthday of Elmar Schrohe
5-7 October, 2016, Hannover

Gerd Grubb Copenhagen University Fractional-order operators



1. Introduction

The fractional Laplacian (—A)? on R”, 0 < a < 1, is currently of great
interest mathematical physics and differential geometry, probability and
finance. It enters in linear as well as nonlinear equations.

It is a pseudodifferential operator (¢do) of order 2a, as described by use
of the Fourier transform F: u+— Fu =1 §) Jen €75 Cu(x) dx;

(—2)u = Op(|¢[*)u = FH(€[*a(€)).
In recent nonlinear and probability studies, it is viewed as a singular
integral operator,

(_A)au(x) = Cn,a'DV/ M dy.

|y‘n+23

n

One of the difficulties with the operator is that it is nonlocal, in contrast
to differential operators. This is problematic when one wants to study it
on a subset Q of R". We take 2 smooth.

The discussion we give in the following works for classical ¢)do’s P of
order 2a with symbol p ~ ZjENo pj(x, &) being even:

E.g. P = A(x,D)?, where A(x, D) is a 2 order strongly-elliptic diff. op.
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Overview of methods to treat boundary problems for P:
(a) The variational construction: Define the sesquilinear form

po(u, v) :/Puvdx, u,v € G5°(Q).
Q

It is completed to a form on Fl"’(ﬁ), coercive when P is strongly elliptic,
and then inducing an operator Pp in Ly(Q) acting like r*P with domain

D(Pp) = {ue H*(Q) | rtPu € L,(Q)}.

Here H*(Q) = {u € H?(R") | suppu C Q}, and r* indicates restriction
to Q. Pp has been known for many years, but an exact description of
D(Pp) for a > 1 has not been available until recently.

(b) Vishik and Eskin considered in the 1960's the problem
r'(=A)?u=finQ, suppucCQ,

called the homogeneous Dirichlet problem, in more general spaces, using
¥do methods. A result is that D(Pp) = H??(Q) when a < 1, and
D(Pp) € H*"275(Q) when a > 1. The techniques are mainly estimates
for constant-coefficient operators, perturbation and localization.
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(c) Recent real integral operator methods: A trick by Caffarelli and
Silvestre '07 to view (—A)? on R” as the Dirichlet-to-Neumann operator
for a degenerate elliptic differential boundary value problem on R” x R,.
(Not easy to use for subsets of R”.) Methods from potential theory, no
use of Fourier transforms (no reference to Vishik-Eskin or ¢do’s), results
in Holder spaces. This works in low smoothness.

For the question of regularity of solutions an interesting result was shown
by Ros-Oton and Serra (JMPA '14) on the homogeneous Dirichlet
problem for (—A)?: f € L, implies u € d?C*(Q) for small a; here

d(x) = dist(x, 0Q2). Improved later to a < a.

Extensions to more general translation-invariant singular integral
operators with even kernels.

(d) Very recent ¢»do methods: G'14,'15,'16, based on the a-transmission
property introduced by Hérmander (book 1985, earlier unpublished
notes). Allows x-dependent operatos.

The Boutet de Monvel theory is not directly applicable, since it deals with
integer-order ¥do’s having the O-transmission property. However, some
questions for our P can be reduced to questions within the BdM calculus.

| shall report on the development of (d), focusing on the latest results.
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2. The pseudodifferential strategy

Let Q be an open subset of R” that is either bounded smooth or equal to
R? = {x € R" | x, > 0}. r* stands for restriction from R" to Q, e*
stands for extension by zero from Q to R”. r~ and e~ are similar for (Q.
Recall some spaces:

e The power-distance spaces: &,(S2) equals e"d*C>(Q) for Rep > —1,
where d(x) is a smooth positive extension into Q of dist(x, 9§2) near 052.
For general u € C, £,_x(Q) = span D E,(Q), where D) runs through
smooth differential operators of order k.

e The Sobolev spaces (Bessel-potential spaces): For 1 < p < o0, s € R,
(€)= (€7 + 1)z,
Hy(R") = {u € S'(R") | FTH({£)*0) € Lp(R")},
HL(Q) = rtHy(R"),
H3(Q2) = {u € Hy(R") | suppu C Q2}.
When p =2, we omit p.
The notation with H and H stems from Hormander's works.
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e The Hélder spaces C*7(Q) where k € Ny, 0 < o < 1, are also denoted

C*(Q) with s = k + o when 0 < 1. For s € Ny, C5(Q) is the usual space
of continuously differentiable functions.

Holder-Zygmund-spaces C3(S2) generalize Holder spaces to all s € R with
good interpolation properties. (The spaces C? are also known as the
Besov spaces B, . .)

Also here the notation C and C can be used.
The p-transmission property was introduced by Hérmander (85 book

Th. 18.2.15, and lecture notes IAS Princeton '65). Let us just recall it for
real a:

Definition. A classical ps.d.o. of order m is said to satisfy the
a-transmission condition at 92 (for short: to be of type a), when

070g py(x, —v) = 21D o py (),
for all indices; here x € OS2 and v denotes the interior normal at x.

Boutet de Monvel's transmission condition is the case a = 0, found
independently. Both authors inspired from Vishik and Eskin, Dokl.'64.

NB! Our operators P of order 2a and with even symbol satisfy the
a-transmission condition for any €Q; in particular (—=A)? does so.
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Hérmander showed (Th. 18.2.18 in book '85, and notes):

Theorem 1. For a classical \»do P, the a-transmission property at 02 is
necessary and sufficient in order that

r* P maps £,(Q) into C>(Q).
In the affirmative case, when P is elliptic, there holds for u € H?(Q):
u€ & Q) = rtPuc C®(Q),
and the mapping from u to r*Pu is Fredholm (for bounded Q) .
This solves the homogeneus Dirichlet problem for P when f € C*°(Q),
r*fPu=finQ, suppucQ. (1)

The proof takes place in Sobolev spaces, for simplicity let p = 2.

Order-reducing operators of plus/minus type are an important tool.
The basic definition is:

=L =0p(xhi) on R, x4 = (&) £i&)"

These symbols extend analytlcally in &, to Im&, < 0. Hence, by the
Paley-Wiener theorem, = preserve support in Ri Then for all s € R,

=t ED) S HURY), rrEtet: HURT) S AR,
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In fact, = and r*=t e’ are adjoints. The inverses are =%, r*="fe".
The symbols x% are not standard pseudodifferential, the control over
&’-derivatives is too weak. There is another family with full control, A%
defining ¥do’s A, with properties like those for =% ; in particular the
support-preserving, adjoint and invertibility properties as above (G'90).
There is also a definition of similar operators /\(ji) for Q, constructed by
local coordinates.

The operators =2 and A2 also map &,(R7) N & to ei(,;oo(@i). They
have an additional interesting property: When u € £,(R_) N &', then

Y0(=3u) =T(a+ )yo(u/x)).

This follows from formulas for Fourier transformation of homogeneous
functions. It also holds with =9 replaced by A7.

Gerd Grubb Copenhagen University Fractional-order operators



The spaces &£, were generalized by Hormander to Sobolev space settings
as the a-transmission spaces. For R,

H*)(RY) == H °(R?), fors —a> —1i.

Here e*ﬁs_a(Ri) generally has a jump at x, = 0; it is mapped by =?
to a singularity of the type x7. In fact, we can show:

)

Ha(s)(@") = HS(Ri) if — 1 <s—a< l
Tl cetxH TR )+ H*(R") |f s—

N

with H*(R}) replaced by H*(R})ifs—a—1eN.
Replacement of =% by AL gives the same spaces.

In the curved situation, we define the corresponding spaces by use of
local coordinates, or directly by use of the families /\(i).
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Now consider P, elliptic of order 2a > 0 with even symbol. We want to
solve the Dirichlet problem (1) for a bounded open smooth set Q. The
main idea is to use that the a-transmission property implies that the ¥do

Q =AT2pA?)

is of order 0 and type 0, hence belongs to the Boutet de Monvel calculus.

Moreover, the truncated operator Q. = r™ Qe is elliptic in that calculus
without additional trace or Poisson operators. This can be seen in the
scalar case by use of a factorization of the principal symbol qg in
plus/minus factors g and g, of order 0 (it can also be shown for
systems when P is strongly elliptic).

By the BdM calclulus, Q. defines a Fredholm operator
Qi H(Q) 3H(Q), all s > —1.
Going back to P, we can show that for u supported in Q,

rPu = rtA®et Q+/\Sf)u.
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Then, arguing carefully with the operators /\S[a), r* and et it is possible

to lift the mapping properties of @, to r*P and obtain:

Theorem 2. Let P be a classical 1/)do of order 2a with even symbol,
elliptic avoiding a ray. Let s > a — 5. The homogeneous Dirichlet

problem (1), considered for u € H*~ 2+5(Q), satisfies:
feH 2a(Q) — ue H*®(Q), the a-transmission space.
Moreover, the mapping from u to f is Fredholm:
rPHO@Q) - B (Q).

So the a-transmission spaces are the domain spaces for homogeneous
Dirichlet problems.

Question: Can one define a nontrivial Dirichlet boundary value? and get
a well-posed nonhomogeneous Dirichlet problem?
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3. Nonhomogeneous boundary conditions

Consider the case Q =R'l. Here u € £, means that u = e"x3v with

v e C‘X’(ﬁi). By a Taylor expansion of v,

u(x) = xZ2v(x', 0)+x2 9, v(x',0)+3x3202v (X', 0)+. .. for x, > 0. (2)
Ifu€c& 1, u=e"x2"twwithw e Cw(ﬁi), we have analogously:

u(x) = x3tw(x’,0)+x20,w(x', 0)+3x3 2w (x’,0)+... for x, > 0. (3)
The only structural difference between (2) and (3) is the first term in (3),
x271w(x’,0). We conclude:

Sa(ﬁi) is the subset ofga_l(@i) for which vo(u/x3~1) = 0.
Moreover, there is clearly a bijection

Ya-1,0t Ea1(RY)/E(RY) 5 C2(R™Y),

represented by the mapping from u to w(x’,0) = vo(u/x371) in (3).
There is a similar result for Q, replacing x, by d.

In the Sobolev space setting, the map v,_10: u — '(a)yo(u/d?~1) from
E.-1(Q) 1to C>(9Q) extends to y,_1,0: H@DE(Q) — H*—2+2(dQ) for
s>a— 3.
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This gives a bijection
Yae1,0: HETDE(Q)/HE(Q) 5 H=272(9).

When we adjoin this mapping to the mapping in Theorem 2, we get a
Fredholm solvable nonhomogeneous Dirichlet problem:

Theorem 3. When P is as above, then for s > a — %

—s—2a

{rtP,va10}: HEDE(Q) = H2(Q) x H72(09)

is a Fredholm mapping.

Note that when a < 1, the solutions with y,_1 ou 7 0 are "large” at 0Q,
since u = d®~1v for a nice v with nonzero boundary value.

References for nonhomogeneous Dirichlet problems: G'14-'16,
Abatangelo’15.

The above results can also be obtained in Hj-spaces and in
Triebel-Lizorkin scales F, , and Besov scales B, .; in particular the
Holder-Zygmund scale C;.

One can also define Neumann problems:
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On the space H@=1()(R" ) we have in fact a longer expansion when s is
large enough (by Taylor expansion of u/x2~1, now normalized with
Gamma coefficients):

u(x) = rpxa tuo(X) + ey () + e we(x) + o x> 0,
Ya_1.0U = tp = I'(a)y0(u/x2"1), the Dirichlet value,
Ya—1.1u = uy = (@ + 1)70(0x,(u/x21)), the Neumann value,

Lyo is in

and generally v,_1 ju = u;. Note that v =u-— r(a) X2~
Ha(s)(@i), and that uy is the first coefficient in «/,

-1
Ya—1,1U = Yaou', when v’ = u— ﬁxﬁ up.

In particular, when ug =0, then v,_1 10 = 7y, 0u. For 2 C R", such

formulas hold with d instead of x,. We have for the Neumann problem:

Theorem 4. When P is principally like (—A)?, then for s > a+ 3,

s—2a
(

{rtP yac1a}: HEDE(@Q) = H 7(Q) x H273(09Q)

is a Fredholm mapping.
There is a corollary on the homogeneous Neumann_problem.
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4. Green's formula

One of the difficult questions for our operators is to establish
integration-by-parts formulas. An important paper of Ros-Oton and Serra
(ARMA '14) showed that for real functions u, v solving a homogeneous
Dirichlet problem,

/((—A)au Ojv + Oju(—A)v) dx = / Vi(x) Vaouaovdo; (6)
Q o9

here v; is the j'th component of the normal vector v.

This was surprising, because the boundary term is local, and the formula
holds for a curved boundary, cleanly without messy extra integrals.

It is equivalent with a so-called Pohozaev formula, leading to uniqueness
results for nonlinear problems.

Ros-Oton and Serra have with Valdinoci extended the formula to other
x-independent operators, and we have shown a generalization valid for
x-dependent tdo’s, with u, v € H*®)(Q), s > a + % JDE'16.

In (6), since the Dirichlet value y,_1 ou is zero, v, ou equals the
Neumann value y,_1 1u; the same holds for v.

Gerd Grubb Copenhagen University Fractional-order operators



We have recently been able to show a much more general formula,
involving nontrivial Neumann as well as Dirichlet data:

Theorem 5. Let P be a classical 1»do of order 2a > 0 with even symbol.
When u,v € HE=DE)(Q), then fors > a+ 1,

/(Pu V—uPrv)dx = / (sour Vo — soug V1 + Bug o) dx’,  (7)
Q aQ
With Uy = Ya_1,0U, U1 = Ya—1,1U;, Vo = Ya—1,0V, VI = Ya—1,1V;
here sp(x) = po(x, v(x)), and B is a first-order do on 9.
Remarkably, no ellipticity is assumed for this theorem. The proof is
based on reductions to applications of the finer details of BAM theory:
Let Q = R7. Let Ko be the Poisson operator with symbol ((¢/) +i&,)~?,
it satifies 79Kop = /. Then K,_109 = E_lfaeJ“Ko is a right inverse of v,_10.
Write u = v’ 4+ K,_1,0uo; then v,_1 0’ =0, so v’ € H¥)(Q). Do the
same for v. Then
(r*Pu,v)y =h+h+ b+,
I1 = (r*Pu’, V’>, /2 = <I’+PK3_170U0, V/>,
= (r"Pu’,Ks_10v0), ls = (r* PKo_1,0u0, Kaz1,0%0)-
Similarly, (u, r*P*u)y = I{ + I + I + 1.



It is not so hard to prove that /; — I{ = (rT P/, V') — (v, r" P*u') = 0.
The main part of the proof consists of analyzing h + 3+ ls — I — I — 1.
This produces a lot of nonlocal terms, however, the nonlocal contrlbutlons
from  + I3 — Ij — I cancel out, giving only the local contribution

(sou1, vo) — (sotio, v1)-
The last terms I, — I, give a generally nontrivial contribution (Bug, vo)
(even when a is integer), with B a 1do in general.
The proof for a curved boundary is deduced from this by localization.

For constant-coefficient operators on R”, B = 0 if the symbol of P is
real and symmetric in &,, e.g. for (—A + m?)2.

Corollary 6. When u € H@=DE)(Q), v € H*)(Q), then for s > a+ 3,
/(PuV—uW)dx:—/ SoUp \71dX/. (8)
Q o9

Follows from Theorem 5 since vy = 0.
Note that in this case vi = y,-1,1vV = Ya,0V.
In (8), the boundary contribution is completely local.
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Formula (8) was otained in Abatangelo '15 for P = (—A)?, 0 < a < 1.
The Pohozaev formulas (cf. (6)) can be deduced from (8).

General formulas as in Theorem 5 containing nontrivial Neumann data
u1, vi when ug and vy # 0 have to our knowledge not been shown earlier.

Many of the efforts around (—A)? are directed towards showing results
for linear or nonlinear equations where —A is replaced by (—A)? (or a
second-order elliptic PDO A is replaced by A?). The new Green's formula
is an addition to this picture. It allows to find the adjoint of a boundary
problem, and will for example make it possible to study general operators
defined by nonlocal boundary conditions; applications of the theory of
extensions in Functional Analysis.

Let us also point out that the study of the Neumann condition
Ya—1,1u = 7 for our operators is a new field, where not much has been
done, neither for linear nor nonlinear questions.
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