The Balmer spectrum of the equivariant homotopy category of a finite abelian group

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

  • Markus Hausmann
  • Tobias Barthel
  • Niko Naumann
  • Thomas Nikolaus
  • Justin Noel
  • Nathaniel Stapleton
For a finite abelian group A, we determine the Balmer spectrum of the compact objects in genuine A-spectra. This generalizes the case A=Z/pZ due to Balmer and Sanders (Invent Math 208(1):283–326, 2017), by establishing (a corrected version of) their log_p -conjecture for abelian groups. We also work out the consequences for the chromatic type of fixed-points and establish a generalization of Kuhn’s blue-shift theorem for Tate-constructions (Kuhn in Invent Math 157(2):345–370, 2004)
TidsskriftInventiones Mathematicae
Sider (fra-til)215–240
Antal sider26
StatusUdgivet - 2019

ID: 211219206