The Balmer spectrum of the equivariant homotopy category of a finite abelian group

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

The Balmer spectrum of the equivariant homotopy category of a finite abelian group. / Hausmann, Markus; Barthel, Tobias; Naumann, Niko; Nikolaus, Thomas; Noel, Justin; Stapleton, Nathaniel.

I: Inventiones Mathematicae, 15.12.2019.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Hausmann, M, Barthel, T, Naumann, N, Nikolaus, T, Noel, J & Stapleton, N 2019, 'The Balmer spectrum of the equivariant homotopy category of a finite abelian group' Inventiones Mathematicae.

APA

Hausmann, M., Barthel, T., Naumann, N., Nikolaus, T., Noel, J., & Stapleton, N. (2019). The Balmer spectrum of the equivariant homotopy category of a finite abelian group. Inventiones Mathematicae.

Vancouver

Hausmann M, Barthel T, Naumann N, Nikolaus T, Noel J, Stapleton N. The Balmer spectrum of the equivariant homotopy category of a finite abelian group. Inventiones Mathematicae. 2019 dec 15.

Author

Hausmann, Markus ; Barthel, Tobias ; Naumann, Niko ; Nikolaus, Thomas ; Noel, Justin ; Stapleton, Nathaniel. / The Balmer spectrum of the equivariant homotopy category of a finite abelian group. I: Inventiones Mathematicae. 2019.

Bibtex

@article{158d7a2782934a6a96c6732507aadce2,
title = "The Balmer spectrum of the equivariant homotopy category of a finite abelian group",
abstract = "For a finite abelian group A, we determine the Balmer spectrum of the compact objects in genuine A-spectra. This generalizes the case A=Z/pZ due to Balmer and Sanders (Invent Math 208(1):283–326, 2017), by establishing (a corrected version of) their log_p -conjecture for abelian groups. We also work out the consequences for the chromatic type of fixed-points and establish a generalization of Kuhn’s blue-shift theorem for Tate-constructions (Kuhn in Invent Math 157(2):345–370, 2004)",
author = "Markus Hausmann and Tobias Barthel and Niko Naumann and Thomas Nikolaus and Justin Noel and Nathaniel Stapleton",
year = "2019",
month = "12",
day = "15",
language = "English",
journal = "Inventiones Mathematicae",
issn = "0020-9910",
publisher = "Springer",

}

RIS

TY - JOUR

T1 - The Balmer spectrum of the equivariant homotopy category of a finite abelian group

AU - Hausmann, Markus

AU - Barthel, Tobias

AU - Naumann, Niko

AU - Nikolaus, Thomas

AU - Noel, Justin

AU - Stapleton, Nathaniel

PY - 2019/12/15

Y1 - 2019/12/15

N2 - For a finite abelian group A, we determine the Balmer spectrum of the compact objects in genuine A-spectra. This generalizes the case A=Z/pZ due to Balmer and Sanders (Invent Math 208(1):283–326, 2017), by establishing (a corrected version of) their log_p -conjecture for abelian groups. We also work out the consequences for the chromatic type of fixed-points and establish a generalization of Kuhn’s blue-shift theorem for Tate-constructions (Kuhn in Invent Math 157(2):345–370, 2004)

AB - For a finite abelian group A, we determine the Balmer spectrum of the compact objects in genuine A-spectra. This generalizes the case A=Z/pZ due to Balmer and Sanders (Invent Math 208(1):283–326, 2017), by establishing (a corrected version of) their log_p -conjecture for abelian groups. We also work out the consequences for the chromatic type of fixed-points and establish a generalization of Kuhn’s blue-shift theorem for Tate-constructions (Kuhn in Invent Math 157(2):345–370, 2004)

M3 - Journal article

JO - Inventiones Mathematicae

JF - Inventiones Mathematicae

SN - 0020-9910

ER -

ID: 211219206