Projective measure without projective Baire

Publikation: Bog/antologi/afhandling/rapportBogForskningfagfællebedømt

David Schrittesser, Sy David Friedman

We prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a ∆13 set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.
ForlagAmerican Mathematical Society
Antal sider141
StatusAccepteret/In press - 2019
NavnMemoirs of the American Mathematical Society

ID: 188759426