K-invariant cusp forms for reductive symmetric spaces of split rank one

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Erik Ban van den, Job Jacob Kuit, Henrik Schlichtkrull

Let G/H be a reductive symmetric space of split rank one and let K be a maximal compact subgroup of G. In a previous article the first two authors introduced a notion of cusp forms for G/H. We show that the space of cusp forms coincides with the closure of the space of K-finite generalized matrix coefficients of discrete series representations if and only if there exist no K-spherical discrete series representations. Moreover, we prove that every K-spherical discrete series representation occurs with multiplicity one in the Plancherel decomposition of G/H.
TidsskriftForum Mathematicum
Udgave nummer2
Sider (fra-til)341-349
Antal sider8
StatusUdgivet - 2019

ID: 215037284