Intersection of class fields

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 501 KB, PDF-dokument

  • Lars Kühne
Using class field theory, we prove a restriction on the intersection of the maximal abelian extensions associated with different number fields. This restriction is then used to improve a result of Rosen and Silverman about the linear independence of Heegner points. In addition, it yields effective restrictions for the special points lying on an algebraic subvariety in a product of modular curves. The latter application is related to the André–Oort conjecture.
OriginalsprogEngelsk
TidsskriftActa Arithmetica
Vol/bind198
Udgave nummer2
Sider (fra-til)109-127
ISSN0065-1036
DOI
StatusUdgivet - 2021

ID: 305404368