Dimension-Free Entanglement Detection in Multipartite Werner States

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Accepted author manuscript, 390 KB, PDF document

  • Felix Huber
  • Igor Klep
  • Victor Magron
  • Jurij Volčič

Werner states are multipartite quantum states that are invariant under the diagonal conjugate action of the unitary group. This paper gives a complete characterization of their entanglement that is independent of the underlying local Hilbert space: for every entangled Werner state there exists a dimension-free entanglement witness. The construction of such a witness is formulated as an optimization problem. To solve it, two semidefinite programming hierarchies are introduced. The first one is derived using real algebraic geometry applied to positive polynomials in the entries of a Gram matrix, and is complete in the sense that for every entangled Werner state it converges to a witness. The second one is based on a sum-of-squares certificate for the positivity of trace polynomials in noncommuting variables, and is a relaxation that involves smaller semidefinite constraints.

Original languageEnglish
JournalCommunications in Mathematical Physics
Volume396
Pages (from-to)1051–107
ISSN0010-3616
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

ID: 319245780