What is a II_1 factor?

Outline:

- What is a von Neumann algebra?
- What is a factor?
- What is type II_1 ?
- Why do we care mostly about II₁ factors?
- What do we know about II₁ factors?

von Neumann algebras:

H= Hilbert space (over $\mathbb C$) with inner product $\langle \ , \ \rangle \colon H \times H \to \mathbb C$ and norm $\|x\|=\sqrt{\langle x,x\rangle}.$

 $B(H) = \{ \text{bounded (i.e. continuous) linear operators } H \to H \}.$

Strong operator topology: for operators $T_n, T \in B(H)$

 $T_n \to T$ in strong operator topology $\iff T_n(x) \to T(x)$ in H for every $x \in H$.

Strong operator convergence = pointwise convergence.

Adjoints: Every bounded operator T admits a unique bounded adjoint operator T^* defined by the property that

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$

for every $x, y \in H$.

A von Neumann algebra is a subalgebra $M \subseteq B(H)$ which contains the identity operator I, is closed under taking adjoints, and is closed in the strong operator topology.

Abelian von Neumann algebras look like $L^{\infty}(X,\mu)$ for some measure space (X,μ) . For example $L^{\infty}([0,1])$ and $\ell^{\infty}(\mathbb{N})$. Other examples: B(H). $n\times n$ complex matrices.

Factors:

A factor is a simple von Neumann algebra, that is, a von Neumann algebra with no ideals. Equivalently, the center

$$Z(M) = \{ T \in M \mid ST = TS \text{ for every } S \in M \}$$

is as small as possible:

$$Z(M) = \{ \lambda I \mid \lambda \in \mathbb{C} \}.$$

By a normalized trace on M we mean a linear functional $\tau \colon M \to \mathbb{C}$ such

$$\tau(T^*T) \ge 0$$
, $\tau(TS) = \tau(ST)$, $\tau(I) = 1$.

Example: the usual normalized trace on $n \times n$ matrices

$$\operatorname{tr}\begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{pmatrix} = \frac{1}{n} \sum_{i} x_{ii}.$$

Theorem/Definition. For a von Neumann algebra M the following are equivalent.

- 1. M is a II_1 factor.
- 2. M is a factor, M admits a normalized trace, $M \not\simeq n \times n$ complex matrices.
- 3. M admits a unique normalized trace which is moreover faithful (explain) and normal (do not explain), and its values on projections (explain?) are [0,1].

Examples of II_1 factors are not so easy to come by, but we will return to that later. They are, however, very important. This will be explained now.

Reduction theory: Given two von Neumann algebras M and N one can construct their direct sum $M \oplus N = \{(m,n) \mid m \in M, n \in N\}$ with pointwise operations. More generally, given a sequence of von Neumann algebras M_1, M_2, \ldots one constructs its ℓ^{∞} -direct sum

$$\bigoplus_{n=1}^{\infty} M_n = \{ (m_n)_{n=1}^{\infty} \mid m_n \in M_n \text{ and } \sup_n ||m_n|| < \infty \}.$$

Is every von Neumann algebra a sum of factors? Almost yes. Replace sum by integral, and the answer becomes yes.

Example:

$$L^{\infty}([0,1]) = \int_{[0,1]} \mathbb{C}, \qquad \ell^{\infty}(\mathbb{N}) = \bigoplus_{n=1}^{\infty} \mathbb{C} = \int_{\mathbb{N}} \mathbb{C}$$

So basically, everything about von Neumann algebras comes down to understanding factors.

Types of factors (type I, II, III, finite and infinite):

- type I = B(H)
- type II_1
- type $II_{\infty} = type II_1 \otimes B(H)$
- type III = the rest

Type I factors are completely understood. Type II_{∞} basically reduces to type $\mathrm{II}_1.$

If M is type III, then a crossed product $M \rtimes \mathbb{R}$ is type II_{∞} , and taking the crossed product once more essentially gets you back:

$$(M \rtimes \mathbb{R}) \rtimes \mathbb{R} = M \otimes B(H).$$

Type III basically reduces to type II_{∞} . So basically, everything about von Neumann algebras comes down to understanding factors of type II_1 .

How to construct factors of type II_1 ? Using groups.

A group G acts on $\ell^2(G)$ by translation λ_g :

$$(\lambda_q f)(h) = f(g^{-1}h), \qquad f \in \ell^2(G), \ g, h \in G$$

 $\lambda = left\ regular\ representation,$ extends by linearity to a representation of the group algebra $\mathbb{C}[G].$

The group von Neumann algebra vN(G) is the strong operator closure of $\mathbb{C}[G]$ when we view $\mathbb{C}[G] \subseteq B(\ell^2(G))$.

Theorem. vN(G) is a II_1 factor \iff every non-trivial element g of G has an infinite conjugacy class $\{hgh^{-1} \mid h \in G\}$ (and G is not the trivial group). We call such groups ICC.

Example of (non-isomorphic) II₁ factors: $vN(\mathbb{F}_2)$ and $vN(S_{\infty})$.

For a permutation $\pi \in \text{Perm}(\mathbb{N})$, its support is

$$\operatorname{supp}(\pi) = \{ n \in \mathbb{N} \mid \pi(n) \neq n \}.$$

$$S_{\infty} = \{ \pi \in \text{Perm}(\mathbb{N}) \mid \text{supp}(\pi) \text{ is finite} \} = \bigcup_{n \in \mathbb{N}} S_n.$$

General problem in the theory of von Neumann algebras: for which groups G and H is $\mathrm{vN}(G) \simeq \mathrm{vN}(H)$? How much about the group G does $\mathrm{vN}(G)$ remember? This is very hard!

Whenever G is ICC and amenable, then $vN(G) \simeq vN(S_{\infty})$. Conversely, if G is ICC and not amenable, then $vN(G) \not\simeq vN(S_{\infty})$.

Big open question: is $vN(\mathbb{F}_2) \simeq vN(\mathbb{F}_n)$ for some $3 \leq n \leq \infty$?

This is the free group factor problem. If true, then $\mathrm{vN}(\mathbb{F}_2) \simeq \mathrm{vN}(\mathbb{F}_n)$ for any $3 \leq n \leq \infty$.

Approximation properties of groups are remembered by the von Neumann algebra. It is known that

$$vN(PSL(2,\mathbb{Z})) \not\simeq vN(PSL(3,\mathbb{Z})),$$

because $vN(PSL(2,\mathbb{Z}))$ has the completely bounded approximation property, whereas $vN(PSL(3,\mathbb{Z}))$ does not.

Another open question: if $m, n \geq 3$ and $m \neq n$, is

$$vN(PSL(m, \mathbb{Z})) \not\simeq vN(PSL(n, \mathbb{Z}))$$
?