Chromatic cohomology of finite general linear groups

Neil Strickland (with Sam Marsh and Sam Hutchinson)

April 11, 2018

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ► There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let *E* be Morava *E*-theory of height n > 0 at a prime p > 2.

Many things are known about E^0BG for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ▶ There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ▶ There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n>0 at a prime p>2. Many things are known about E^0BG for finite groups G.

- ▶ The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ▶ There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ▶ There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ▶ There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- ▶ The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ▶ There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- ▶ The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ▶ There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- ▶ The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ▶ There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- ▶ The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ► There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d=p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- ▶ The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ► There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n > 0 at a prime p > 2. Many things are known about E^0BG for finite groups G.

- ▶ The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ► There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

Let E be Morava E-theory of height n>0 at a prime p>2. Many things are known about E^0BG for finite groups G.

- The full structure is known for abelian groups, symmetric groups and various other groups.
- ▶ The Hopkins-Kuhn-Ravenel generalised character theory gives a clear description of $\mathbb{Q} \otimes E^0BG$ for any G.
- This determines the 0th chromatic stratum precisely; there are approximate descriptions of the other strata in similar terms.
- ▶ In the common case where $E^1BG = 0$, the ring E^0BG has a natural inner product making it a Frobenius algebra.
- ► There is an extensive theory of the relationship between E^0BG and the λ -ring structure of the representation ring R(G).

Here we take $G = GL_d(F)$, where F is a finite field of characteristic $\neq p$. The ring $E^0BGL_d(F)$ was described by Tanabe, but we are looking for a more explicit answer. The first interesting case d = p was done in the thesis of Sam Marsh. Most of the general case is in the thesis of Sam Hutchinson.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[[u_1, \dots, u_{n-1}][u^{\pm 1}] \text{ with } |u_i| = 0 \text{ and } |u| = -2.$
- $ightharpoonup E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket \text{ with } |t| = 0.$
- It is often natural to formulate results in terms of the formal scheme $X_E = \operatorname{spf}(E^0X)$ (similar to the ordinary scheme $\operatorname{spec}(E^0X)$) rather than directly in terms of E^0X .
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- ▶ For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\}$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- \triangleright $E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket$ with |t| = 0.
- ▶ It is often natural to formulate results in terms of the formal scheme $X_E = \operatorname{spf}(E^0X)$ (similar to the ordinary scheme $\operatorname{spec}(E^0X)$) rather than directly in terms of E^0X .
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- ▶ For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- ► More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\}$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- $ightharpoonup E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket$ with |t| = 0.
- It is often natural to formulate results in terms of the formal scheme X_E = spf(E⁰X) (similar to the ordinary scheme spec(E⁰X)) rather than directly in terms of E⁰X.
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- ▶ For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- ► More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\}$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- $ightharpoonup E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket \text{ with } |t| = 0.$
- It is often natural to formulate results in terms of the formal scheme X_E = spf(E⁰X) (similar to the ordinary scheme spec(E⁰X)) rather than directly in terms of E⁰X.
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- ▶ For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\}$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- $ightharpoonup E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket \text{ with } |t| = 0.$
- It is often natural to formulate results in terms of the formal scheme $X_E = \operatorname{spf}(E^0X)$ (similar to the ordinary scheme $\operatorname{spec}(E^0X)$) rather than directly in terms of E^0X .
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- ▶ For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- ► More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\}$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- ► $E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*[[t]]$ with |t| = 0.
- It is often natural to formulate results in terms of the formal scheme $X_E = \operatorname{spf}(E^0X)$ (similar to the ordinary scheme $\operatorname{spec}(E^0X)$) rather than directly in terms of E^0X .
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- ▶ For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\}$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- $ightharpoonup E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket \text{ with } |t| = 0.$
- It is often natural to formulate results in terms of the formal scheme $X_E = \operatorname{spf}(E^0X)$ (similar to the ordinary scheme $\operatorname{spec}(E^0X)$) rather than directly in terms of E^0X .
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- ▶ For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- ► More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\}$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- ► $E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*[[t]]$ with |t| = 0.
- It is often natural to formulate results in terms of the formal scheme $X_E = \operatorname{spf}(E^0X)$ (similar to the ordinary scheme $\operatorname{spec}(E^0X)$) rather than directly in terms of E^0X .
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- ▶ For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $ightharpoonup E^* = E^*(point) = \mathbb{Z}_p[\![u_1,\ldots,u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- $ightharpoonup E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t \rrbracket \text{ with } |t| = 0.$
- It is often natural to formulate results in terms of the formal scheme $X_E = \operatorname{spf}(E^0X)$ (similar to the ordinary scheme $\operatorname{spec}(E^0X)$) rather than directly in terms of E^0X .
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Morava E-theory is a generalised cohomology theory giving a graded ring E*X for every space X.
- $E^* = E^*(point) = \mathbb{Z}_p[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$ with $|u_i| = 0$ and |u| = -2.
- $ightharpoonup E^*BS^1 = E^*\mathbb{C}P^{\infty} \simeq E^*\llbracket t
 bracket$ with |t| = 0.
- It is often natural to formulate results in terms of the formal scheme $X_E = \operatorname{spf}(E^0X)$ (similar to the ordinary scheme $\operatorname{spec}(E^0X)$) rather than directly in terms of E^0X .
- ▶ The formal scheme $\mathbb{G} = (BS^1)_E$ has a natural abelian group structure.
- For finite abelian groups A we have $BA_E = \text{Hom}(A^*, \mathbb{G}) = \text{Tor}(A, \mathbb{G})$, where $A^* = \text{Hom}(A, S^1)$ is the character group.
- More concretely,

$$E^{0}BC_{p^{m}} = E^{0}[[t]]/[p^{m}](t) = E^{0}\{t^{i} \mid 0 \leq i < p^{nm}\},$$

- ▶ We also have $BU(d)_E = \mathbb{G}^d/\Sigma_d$. This can be identified with $\operatorname{Div}_d^+(\mathbb{G})$, the moduli scheme for effective divisors of degree d on \mathbb{G} .
- ▶ There is a dual version $E_*^{\vee}(X)$ and quotient theories $K^*(X)$ and $K_*(X)$ with $K^0(\text{point}) = \mathbb{Z}/p$.

- Let F be a finite field of characteristic not equal to p.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m-1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi: x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$ and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- ▶ Let *F* be a finite field of characteristic not equal to *p*.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$ This implies that $v_p(q^m-1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi: x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- ▶ We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$ and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- ▶ Let *F* be a finite field of characteristic not equal to *p*.
- ▶ To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m-1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi: x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- ▶ Let *F* be a finite field of characteristic not equal to *p*.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m-1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi \colon x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- ▶ Let *F* be a finite field of characteristic not equal to *p*.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- ▶ Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi: x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G}=(BS^1)_E$ and canonically isomorphic to $\text{Tor}(\overline{F}^\times,\mathbb{G})$.

- ▶ Let *F* be a finite field of characteristic not equal to *p*.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi: x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- ▶ Let *F* be a finite field of characteristic not equal to *p*.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi: x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- ▶ We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F}) \simeq \{u \in S^1 \mid u^r = 1 \text{ for some } r \in \mathbb{Z}, \ (r,q) = 1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- ▶ Let *F* be a finite field of characteristic not equal to *p*.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi \colon x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 \text{ for some } r\in \mathbb{Z}, \ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

- ▶ Let *F* be a finite field of characteristic not equal to *p*.
- To simplify bookkeeping, we will assume that |F| = q with $v_p(q-1) = r > 0$ so $q = 1 \pmod{p^r}$ but $q \neq 1 \pmod{p^{r+1}}$. This implies that $v_p(q^m 1) = v_p(m) + r$ for all m > 0.
- Let \overline{F} be an algebraic closure of F. This has a Frobenius automorphism $\phi \colon x \mapsto x^q$, and the Galois group Γ is isomorphic to $\widehat{\mathbb{Z}}$, topologically generated by ϕ .
- We put $\mathbb{H} = BGL_1(\overline{F})_E$, which has a natural group structure. One can choose an isomorphism

$$GL_1(\overline{F})\simeq \{u\in S^1\mid u^r=1 \text{ for some } r\in \mathbb{Z},\ (r,q)=1\},$$

and using this we find that \mathbb{H} is noncanonically isomorphic to $\mathbb{G} = (BS^1)_E$, and canonically isomorphic to $\text{Tor}(\overline{F}^{\times}, \mathbb{G})$.

General linear groups over \overline{F}

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d/\Sigma_d \simeq \mathsf{Div}_d^+(\mathbb{H})$.

Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1, \ldots, x_d \rrbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory.

The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F}

One can then choose an embedding $\overline{W} \to \mathbb{C}$

Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this.

General linear groups over \overline{F}

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d/\Sigma_d \simeq \mathsf{Div}_d^+(\mathbb{H})$. Equivalently,

 $E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1, \ldots, x_d \rrbracket,$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the n

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology. The claim follows easily from this.

General linear groups over \overline{F}

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d/\Sigma_d \simeq \mathsf{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1, \ldots, x_d \rrbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory.

The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} . One can then choose an embedding $\overline{W} \to \mathbb{C}$.

Using the fact that |F| is coprime to p, one can check that the map

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d/\Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1, \ldots, x_d \rrbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory. The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} .

One can then choose an embedding $\overline{W} \to \mathbb{C}$. Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d/\Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1, \ldots, x_d \rrbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory.

The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} .

One can then choose an embedding $\overline{W} \to \mathbb{C}$.

Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d/\Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1, \ldots, x_d \rrbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory.

The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} .

One can then choose an embedding $\overline{W} \to \mathbb{C}$.

Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this

Theorem

The inclusion $GL_1(\overline{F})^d \to GL_d(\overline{F})$ induces $GL_d(\overline{F})_E \simeq \mathbb{H}^d/\Sigma_d \simeq \text{Div}_d^+(\mathbb{H})$. Equivalently,

$$E^0(BGL_1(\overline{F})^d) = E^0\llbracket x_1, \ldots, x_d \rrbracket,$$

and $E^0BGL_d(\overline{F})$ is the subring of symmetric functions, generated by elementary symmetric functions c_1, \ldots, c_d .

Proof.

This is built into the foundations of étale homotopy theory.

The main point is that one can build a torsion-free local ring \overline{W} (the Witt ring of \overline{F}) with residue field \overline{F} .

One can then choose an embedding $\overline{W} \to \mathbb{C}$.

Using the fact that |F| is coprime to p, one can check that the maps

$$BGL_d(\overline{F}) \leftarrow BGL_d(\overline{W}) \rightarrow BGL_d(\mathbb{C})$$

induce isomorphisms in mod p cohomology.

The claim follows easily from this.

Recall that the group $\Gamma = \operatorname{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ .

Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}[[c_{1}, \ldots, c_{d}]]}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{F}$$

Equivalently, we have $BGL_d(F)_E = Div_d^+(\mathbb{H})^\Gamma$.

Recall that the group $\Gamma = \operatorname{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ .

Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d \rrbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}[[c_{1}, \ldots, c_{d}]]}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}.$$

Equivalently, we have $BGL_d(F)_E = \mathsf{Div}_d^+(\mathbb{H})^\Gamma$.

Recall that the group $\Gamma = \operatorname{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ .

Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d
rbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}[[c_{1}, \ldots, c_{d}]]}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}.$$

Equivalently, we have $BGL_d(F)_E = Div_d^+(\mathbb{H})^{\Gamma}$.

Recall that the group $\Gamma = \operatorname{Gal}(\overline{F}/F)$ is generated by the Frobenius map ϕ .

Theorem (Tanabe)

The elements

$$\phi^*(c_k) - c_k \in E^0 BGL_d(\overline{F}) = E^0 \llbracket c_1, \ldots, c_d
rbracket$$

form a regular sequence, and

$$E^{0}BGL_{d}(F) = \frac{E^{0}[[c_{1}, \ldots, c_{d}]]}{(\phi^{*}(c_{1}) - c_{1}, \ldots, \phi^{*}(c_{d}) - c_{d})} = (E^{0}BGL_{d}(\overline{F}))_{\Gamma}.$$

Equivalently, we have $BGL_d(F)_E = Div_d^+(\mathbb{H})^{\Gamma}$.

- ▶ Let V be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $BV \simeq \coprod_d BGL_d(F)$.
- ▶ We write \overline{V} for the corresponding groupoid for \overline{F} , so $B\overline{V} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ► The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes \mathcal{BV}_E a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- ► Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}$$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^a$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_u L_X$

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ make $B\mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B\mathcal{V}_E$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- ► Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}$$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$

- ▶ Let V be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $BV \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ make $B\mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B\mathcal{V}_E$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- ► Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}$$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H})$, and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ make $B\mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B\mathcal{V}_E$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- ► Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}$$

This has
$$B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$$
.
There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_{\mathcal{E}} = \coprod_{d} \operatorname{Div}_{d}^{+}(\mathbb{H}) = \operatorname{Div}^{+}(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_{F} V$ gives $B\mathcal{V}_{\mathcal{E}} = \operatorname{Div}^{+}(\mathbb{H})^{\Gamma}.$
- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ make $B\mathcal{V}$ a commutative semiring in the homotopy category of spaces. This in turn makes $B\mathcal{V}_E$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathrm{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- ► Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}$$

This has
$$B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$$
.
There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes $\mathcal{BV}_{\mathcal{E}}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- ► Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}$$

This has
$$B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$$
.
There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors $\oplus, \otimes \colon \mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes $\mathcal{BV}_{\mathcal{E}}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}$$

This has
$$B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$$
.
There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors $\oplus, \otimes \colon \mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes $\mathcal{BV}_{\mathcal{E}}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}$$

This has
$$B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$$
.
There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors $\oplus, \otimes \colon \mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes $\mathcal{BV}_{\mathcal{E}}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors $\oplus, \otimes \colon \mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes $\mathcal{BV}_{\mathcal{E}}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$.

There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors $\oplus, \otimes \colon \mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes $\mathcal{BV}_{\mathcal{E}}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- ▶ Let \mathcal{V} be the groupoid of finite dimensional vector spaces over F, and their isomorphisms. Then $B\mathcal{V} \simeq \coprod_d BGL_d(F)$.
- ▶ We write $\overline{\mathcal{V}}$ for the corresponding groupoid for \overline{F} , so $B\overline{\mathcal{V}} \simeq \coprod_d BGL_d(\overline{F})$.
- Now $B\overline{\mathcal{V}}_E = \coprod_d \operatorname{Div}_d^+(\mathbb{H}) = \operatorname{Div}^+(\mathbb{H}),$ and the functor $V \mapsto \overline{F} \otimes_F V$ gives $B\mathcal{V}_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- ▶ The functors $\oplus, \otimes \colon \mathcal{V}^2 \to \mathcal{V}$ make \mathcal{BV} a commutative semiring in the homotopy category of spaces. This in turn makes $\mathcal{BV}_{\mathcal{E}}$ a commutative semiring in the category of formal schemes. This matches an obvious commutative semiring structure on $\mathsf{Div}^+(\mathbb{H})^\Gamma$.
- ▶ Alternatively, $E_*^{\vee}(BV)$ and $K_*(BV)$ are Hopf rings.
- Some other groupoids are also relevant, for example

$$\mathcal{L} = \{(X, L) \mid X \text{ is a finite set, and } L \text{ is an } F\text{-linear line bundle over } X\}.$$

This has $B\mathcal{L} \simeq \coprod_d E\Sigma_d \times_{\Sigma_d} BGL_1(F)^d$. There is a functor $\pi \colon \mathcal{L} \to \mathcal{V}$ given by $\pi(X, L) = \bigoplus_x L_x$.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ightharpoonup Let $\mathcal G$ be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- ► HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 B \mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L)$$
 $L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with Rep⁺ $(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{O} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.
- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ightharpoonup Let $\mathcal G$ be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- ► HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 B \mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L)$$
 $L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- We can identify $[\Theta^*, \mathcal{V}]$ with $\operatorname{Rep}^+(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{O} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.
- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ightharpoonup Let $\mathcal G$ be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- ► HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 \mathcal{BG} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L)$$
 $L \otimes_{E_0} E_0^{\vee} \mathcal{BG} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with Rep⁺ $(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- ▶ Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial
- ► Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ▶ Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- ► HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 B \mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L)$$
 $L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with Rep⁺ $(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{O} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial
- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ▶ Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- ► HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 B \mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L)$$
 $L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with Rep⁺ $(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- ▶ Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomia
- ► Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ightharpoonup Let ${\cal G}$ be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 \mathcal{BG} \simeq \mathsf{Map}([\Theta^*,\mathcal{G}],L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} \mathcal{BG} \simeq L\{[\Theta^*,\mathcal{G}]\}.$$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with Rep⁺ $(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- ▶ Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomia
- ► Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ▶ Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 \mathcal{BG} \simeq \mathsf{Map}([\Theta^*,\mathcal{G}],L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} \mathcal{BG} \simeq L\{[\Theta^*,\mathcal{G}]\}.$$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with $\text{Rep}^+(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomia
- ► Theorem: $E_0^{\vee} B \mathcal{V}$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ▶ Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 B \mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with $Rep^+(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial
- ► Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ▶ Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 B \mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with $Rep^+(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomia
- ► Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\mathrm{Aut}(\Theta^*)$.
- ▶ Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 \mathcal{BG} \simeq \mathsf{Map}([\Theta^*,\mathcal{G}],L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} \mathcal{BG} \simeq L\{[\Theta^*,\mathcal{G}]\}.$$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with $Rep^+(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- ▶ Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.
- ► Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Put $\Theta^* = \mathbb{Z}_p^n$, and regard it as a groupoid with one object.
- ▶ Hopkins, Kuhn and Ravenel defined a ring L which is an extension of $\mathbb{Q} \otimes E^0$ with Galois group $\operatorname{Aut}(\Theta^*)$.
- ▶ Let \mathcal{G} be a groupoid with finite hom sets.
- ▶ Write $[\Theta^*, \mathcal{G}]$ for the set of natural isomorphism classes of functors $\Theta^* \to \mathcal{G}$.
- HKR constructed isomorphisms

$$L \otimes_{E^0} E^0 B \mathcal{G} \simeq \mathsf{Map}([\Theta^*, \mathcal{G}], L) \qquad \qquad L \otimes_{E_0} E_0^{\vee} B \mathcal{G} \simeq L\{[\Theta^*, \mathcal{G}]\}.$$

- ▶ $E_0^{\vee} B\mathcal{G}$ has a natural inner product, which becomes $\langle [\alpha], [\beta] \rangle = |\operatorname{Iso}(\alpha, \beta)|$ on $L\{[\Theta^*, \mathcal{G}]\}$.
- ▶ We can identify $[\Theta^*, \mathcal{V}]$ with $Rep^+(\Theta^*; F)$, the semiring of isomorphism classes of F-linear representations of Θ^* .
- ▶ Additively, this is freely generated by the set $Irr(\Theta^*; F)$ of irreducibles.
- ▶ It follows that $L \otimes_{E_0} E_0^{\vee} B \mathcal{V}$ is a polynomial algebra over L, with one generator for each irreducible; and then that $\mathbb{Q} \otimes E_0^{\vee} B \mathcal{V}$ is polynomial.
- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(\mathcal{BV}; K_*)$ is generated by \mathcal{BV}_1 and has countably many polynomial generators b_i and exterior generators e_i .
- Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(BV)$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(BV; K_*)$ is generated by BV_1 and has countably many polynomial generators b_i and exterior generators e_i .
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(BV)$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(\mathcal{BV}; K_*)$ is generated by \mathcal{BV}_1 and has countably many polynomial generators b_i and exterior generators e_i .
- Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(BV)$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(BV; K_*)$ is generated by BV_1 and has countably many polynomial generators b_i and exterior generators e_i .
- ▶ Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(BV)$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Theorem: $E_0^{\vee}B\mathcal{V}$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(\mathcal{BV}; K_*)$ is generated by \mathcal{BV}_1 and has countably many polynomial generators b_i and exterior generators e_i .
- Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(BV)$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(BV; K_*)$ is generated by BV_1 and has countably many polynomial generators b_i and exterior generators e_i .
- Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(\mathcal{BV})$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(BV; K_*)$ is generated by BV_1 and has countably many polynomial generators b_i and exterior generators e_i .
- Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(\mathcal{BV})$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(BV; K_*)$ is generated by BV_1 and has countably many polynomial generators b_i and exterior generators e_i .
- Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ▶ Tanabe and HKR also tell us that $K_*(BV)$ is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(B\mathcal{V})$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ Theorem: $E_0^{\vee}BV$ is also polynomial.
- ▶ It is enough to prove that K_0BV is polynomial.
- ▶ We use the Atiyah-Hirzebruch spectral sequence $H_*(BV; K_*) \Longrightarrow K_*(BV)$ and its dual.
- ▶ Quillen: $H_*(BV; K_*)$ is generated by BV_1 and has countably many polynomial generators b_i and exterior generators e_i .
- Let F(k) be the extension of F of degree p^k , so $GL_d(F(k))$ maps to $GL_{p^kd}(F)$. The group $GL_1(F(k))$ is cyclic so the AHSS is well understood, with only one differential. This gives some information about the AHSS for $GL_{p^k}(F)$.
- ► Tanabe and HKR also tell us that K_{*}(BV) is concentrated in even degrees, with known rank.
- ▶ The ordinary ring structure on $K^*(BGL_d(F))$ also gives some information.
- ▶ At the E_{∞} page, all exterior generators have been killed, and $b_i^{p^{m_i}}$ survives. This leaves a polynomial algebra, and it follows that $K_*(B\mathcal{V})$ is also polynomial.
- ▶ This is the most complex pattern of AHSS differentials that we have seen.

- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee}B\mathcal{V}$ and on $K_0B\mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee}B\mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- ▶ We can grade everything with $GL_d(F)$ in degree d; then |a*b| = |a| + |b|.
- $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ embeds in $\mathsf{K}_0 \mathcal{B} \overline{\mathcal{V}} = \mathsf{K}_0 [\mathsf{K}_0 \mathcal{B} \mathcal{G} L_1(\overline{F})]$, which is polynomial under *; so $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ has no *-nilpotents. If $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ and $\mathsf{E}_0^{\vee} \mathcal{B} \mathcal{V}$ are polynomial under *.
- The diagonal $\delta \colon \mathcal{V} \to \mathcal{V}^2$ gives a coproduct $[V] \mapsto [V] \otimes [V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ► There is another coproduct, induced by the transfer associated to $\oplus \colon \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee}B\mathcal{V}, *, \psi_*)$ is not a Hopf algebra.

- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee}B\mathcal{V}$ and on $K_0B\mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee}B\mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- ▶ We can grade everything with $GL_d(F)$ in degree d; then |a*b| = |a| + |b|.
- $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ embeds in $\mathsf{K}_0 \mathcal{B} \overline{\mathcal{V}} = \mathsf{K}_0 [\mathsf{K}_0 \mathcal{B} \mathcal{G} L_1(\overline{F})]$, which is polynomial under *; so $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ has no *-nilpotents. If $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ and $\mathsf{E}_0^{\vee} \mathcal{B} \mathcal{V}$ are polynomial under *.
- ▶ The diagonal $\delta \colon \mathcal{V} \to \mathcal{V}^2$ gives a coproduct $[V] \mapsto [V] \otimes [V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to $\oplus \colon \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = H \oplus W} [U] \otimes [W]$.
- Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee}B\mathcal{V}, *, \psi_*)$ is not a Hopf algebra.

- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee}B\mathcal{V}$ and on $K_0B\mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee}B\mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- ▶ We can grade everything with $GL_d(F)$ in degree d; then |a*b| = |a| + |b|.
- $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ embeds in $\mathsf{K}_0 \mathcal{B} \overline{\mathcal{V}} = \mathsf{K}_0 [\mathsf{K}_0 \mathcal{B} \mathcal{G} L_1(\overline{F})]$, which is polynomial under *; so $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ has no *-nilpotents. If $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $\mathsf{K}_0 \mathcal{B} \mathcal{V}$ and $\mathsf{E}_0^{\vee} \mathcal{B} \mathcal{V}$ are polynomial under *.
- ▶ The diagonal $\delta \colon \mathcal{V} \to \mathcal{V}^2$ gives a coproduct $[V] \mapsto [V] \otimes [V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ► There is another coproduct, induced by the transfer associated to $\oplus \colon \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee}B\mathcal{V}, *, \psi_*)$ is not a Hopf algebra.

- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee}B\mathcal{V}$ and on $K_0B\mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee}B\mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- ▶ We can grade everything with $GL_d(F)$ in degree d; then |a*b| = |a| + |b|.
- ▶ $K_0B\mathcal{V}$ embeds in $K_0B\overline{\mathcal{V}} = K_0[K_0BGL_1(\overline{F})]$, which is polynomial under *; so $K_0B\mathcal{V}$ has no *-nilpotents. If $K_0B\mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0B\mathcal{V}$ and $E_0^{\vee}B\mathcal{V}$ are polynomial under *.
- ▶ The diagonal $\delta: \mathcal{V} \to \mathcal{V}^2$ gives a coproduct $[V] \mapsto [V] \otimes [V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ► There is another coproduct, induced by the transfer associated to $\oplus \colon \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee}B\mathcal{V}, *, \psi_*)$ is not a Hopf algebra.

- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee}B\mathcal{V}$ and on $K_0B\mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee}B\mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- ▶ We can grade everything with $GL_d(F)$ in degree d; then |a*b| = |a| + |b|.
- ▶ $K_0B\mathcal{V}$ embeds in $K_0B\overline{\mathcal{V}} = K_0[K_0BGL_1(\overline{F})]$, which is polynomial under *; so $K_0B\mathcal{V}$ has no *-nilpotents. If $K_0B\mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0B\mathcal{V}$ and $E_0^{\vee}B\mathcal{V}$ are polynomial under *.
- ▶ The diagonal $\delta: \mathcal{V} \to \mathcal{V}^2$ gives a coproduct $[V] \mapsto [V] \otimes [V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus \colon \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee}B\mathcal{V}, *, \psi_*)$ is not a Hopf algebra.

- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee}B\mathcal{V}$ and on $K_0B\mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee}B\mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- ▶ We can grade everything with $GL_d(F)$ in degree d; then |a*b| = |a| + |b|.
- ▶ $K_0B\mathcal{V}$ embeds in $K_0B\overline{\mathcal{V}} = K_0[K_0BGL_1(\overline{F})]$, which is polynomial under *; so $K_0B\mathcal{V}$ has no *-nilpotents. If $K_0B\mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0B\mathcal{V}$ and $E_0^{\vee}B\mathcal{V}$ are polynomial under *.
- ▶ The diagonal $\delta \colon \mathcal{V} \to \mathcal{V}^2$ gives a coproduct $[V] \mapsto [V] \otimes [V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- There is another coproduct, induced by the transfer associated to $\oplus \colon \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V = U \oplus W} [U] \otimes [W]$.
- Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee}B\mathcal{V}, *, \psi_*)$ is not a Hopf algebra.

- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee}B\mathcal{V}$ and on $K_0B\mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee}B\mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- ▶ We can grade everything with $GL_d(F)$ in degree d; then |a*b| = |a| + |b|.
- ▶ $K_0B\mathcal{V}$ embeds in $K_0B\overline{\mathcal{V}} = K_0[K_0BGL_1(\overline{F})]$, which is polynomial under *; so $K_0B\mathcal{V}$ has no *-nilpotents. If $K_0B\mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0B\mathcal{V}$ and $E_0^{\vee}B\mathcal{V}$ are polynomial under *.
- ▶ The diagonal $\delta \colon \mathcal{V} \to \mathcal{V}^2$ gives a coproduct $[V] \mapsto [V] \otimes [V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to $\oplus \colon \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V=U \oplus W} [U] \otimes [W]$.
- Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee}B\mathcal{V}, *, \psi_*)$ is not a Hopf algebra.

- ▶ The functors \oplus , \otimes : $\mathcal{V}^2 \to \mathcal{V}$ give products on $E_0^{\vee}B\mathcal{V}$ and on $K_0B\mathcal{V}$ and on $L \otimes_{E^0} E_0^{\vee}B\mathcal{V} = L\{\text{Rep}(\Theta^*, F)\}.$
- ▶ These are just $[U] * [W] = [U \oplus W]$ and $[U] \circ [W] = [U \otimes W]$.
- ▶ We can grade everything with $GL_d(F)$ in degree d; then |a*b| = |a| + |b|.
- ▶ $K_0B\mathcal{V}$ embeds in $K_0B\overline{\mathcal{V}} = K_0[K_0BGL_1(\overline{F})]$, which is polynomial under *; so $K_0B\mathcal{V}$ has no *-nilpotents. If $K_0B\mathcal{V}$ had a coproduct that interacted correctly with the product and grading, we could conclude that $K_0B\mathcal{V}$ and $E_0^{\vee}B\mathcal{V}$ are polynomial under *.
- ▶ The diagonal $\delta \colon \mathcal{V} \to \mathcal{V}^2$ gives a coproduct $[V] \mapsto [V] \otimes [V]$. This is compatible with the two products, giving a Hopf ring. But it does not interact correctly with the grading.
- ▶ There is another coproduct, induced by the transfer associated to $\oplus \colon \mathcal{V}^2 \to \mathcal{V}$. This is $\psi_*([V]) = \sum_{V=U \oplus W} [U] \otimes [W]$.
- Not every splitting of $V_1 \oplus V_2$ comes from splittings of V_1 and V_2 ; so ψ_* is not a homomorphism for *, and $(E_0^{\vee}B\mathcal{V}, *, \psi_*)$ is not a Hopf algebra.

- ▶ A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_i \times GL_j$. ("Harish Chandra induction").
- ► This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W,U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so
$$(E_0^{\vee}B\mathcal{V},\times)\simeq (E_0^{\vee}B\mathcal{V},*).$$

- ▶ A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_i \times GL_j$. ("Harish Chandra induction").
- ► This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W,U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so $(E_0^{\vee}BV,\times)\simeq (E_0^{\vee}BV,*)$

- ▶ A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_i \times GL_j$. ("Harish Chandra induction").
- ▶ This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W,U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

- ▶ A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_i \times GL_j$. ("Harish Chandra induction").
- ▶ This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W,U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so
$$(E_0^{\vee}B\mathcal{V}, \times) \simeq (E_0^{\vee}B\mathcal{V}, *).$$

- ▶ A variant: instead of using the transfer for $GL_i \times GL_j \rightarrow GL_{i+j}$, use the parabolic subgroup P_{ij} , the projection $P_{ij} \rightarrow GL_i \times GL_j$ and the inclusion $P_{ij} \rightarrow GL_i \times GL_j$. ("Harish Chandra induction").
- ▶ This gives another product $[U] \times [W] = |\operatorname{Hom}_{\Theta^*}(W,U)|^{-1}[U \oplus W]$ and coproduct $\psi_{\times}([V]) = \sum_{U \leq V} [U] \otimes [V/U]$. These still do not give a Hopf algebra structure.
- ▶ One can find $e \in E^0 BV$ with character values $e(U) = |\operatorname{End}_{\Theta^*}(U)|$. This is 1 mod the maximal ideal in $E^0 BV_d$, and p > 2, so it has a square root. This satisfies

$$(\sqrt{e(U)}[U]) \times (\sqrt{e(W)}[W]) = \sqrt{e(U \oplus W)}[U \oplus W],$$

so
$$(E_0^{\vee}B\mathcal{V},\times)\simeq (E_0^{\vee}B\mathcal{V},*).$$

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_{x} L_x]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- ► (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_{x} L_{x}]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_{x} L_x]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- ► (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_{x} L_{x}]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- ▶ (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_{x} L_{x}]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- ▶ (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_{x} L_{x}]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_x L_x]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- ▶ (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- ▶ $[\Theta^*, \mathcal{L}]$ is the set of isomorphism classes of pairs (X, L), where X is a finite Θ^* -set, and L is a Θ^* -equivariant F-linear line bundle over X.
- ▶ The functor $\pi: \mathcal{L} \to \mathcal{V}$ induces $[X, L] \mapsto [\bigoplus_{x} L_{x}]$.
- ▶ Alternatively: a *trellis* in a Θ^* -representation V is an unordered set T of one-dimensional subspaces, which are permuted by the action of Θ^* , and whose direct sum is V.
- ▶ Then $[\Theta^*, \mathcal{L}]$ is the category of representations equipped with a trellis.
- ▶ In this picture, $\pi[V, T] = [V]$ and $\pi^![V] = \sum_{\text{trellises } T} [V, T]$.
- Note that $\pi^![U \oplus W] \neq \pi^![U]\pi^![W]$, so $\pi^!$ is not a ring map.
- ▶ Can we give a ring map $E_0^{\vee}BV \to E_0^{\vee}B\mathcal{L}$ which is a section of π ?
- ▶ (It is known that $E_0^{\vee}B\mathcal{L}$ is polynomial; a section as above would give another proof that $E_0^{\vee}B\mathcal{V}$ is polynomial.)

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(\mathcal{BV})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \operatorname{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\operatorname{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- ▶ Let W be an irreducible F-linear representation of Θ^* .
 - Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(\mathcal{BV})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- ▶ Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p'\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \operatorname{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\operatorname{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(\mathcal{BV})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \mathrm{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\mathrm{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(\mathcal{BV})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p'\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \operatorname{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\operatorname{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \operatorname{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\operatorname{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ▶ These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p'\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \operatorname{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\operatorname{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ▶ These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p^r\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \mathrm{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\mathrm{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ▶ These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p'\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \mathrm{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\mathrm{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p'\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \operatorname{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\operatorname{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- Let W be an irreducible F-linear representation of Θ^* . Then $\operatorname{End}_{F[\Theta^*]}(W)$ is a field (by Schur's Lemma) and a finite extension of F, so we can choose an embedding in \overline{F} , unique up to the action of Γ .
- Let $\omega \colon \Theta^* \to \overline{F}^{\times}$ be a continuous homomorphism. Then the set $W = \operatorname{span}_F(\omega(\Theta^*))$ is a finite subfield of \overline{F} , and we can use ω to give an action of Θ^* on W, making it an irreducible representation.
- ► These constructions give a bijection $Irr(\Theta^*; F) \simeq Hom(\Theta^*, \overline{F}^{\times})/\Gamma = \Phi/\Gamma$.
- ► This in turn gives $\operatorname{Rep}(\Theta^*; F) = \operatorname{Div}^+(\Phi)^\Gamma$, meshing nicely with Tanabe's $(B\mathcal{V})_E = \operatorname{Div}^+(\mathbb{H})^\Gamma$.
- For m > 0, the irreducibles of dimension p^m correspond to orbits $\Gamma \phi = \phi + p^r \mathbb{Z}_p \phi$ where ϕ has order precisely p^{m+r} .
- Irreducibles of dimension one correspond to singleton orbits $\{\phi\}$ with $p'\phi=0$. There are no other irreducibles.
- ▶ Problem: find a closed subscheme of $E^0BGL_{p^m}(F) = \operatorname{Div}_{p^m}^+(\mathbb{H})^\Gamma$ that corresponds to $\operatorname{Irr}_{p^m}(\Theta^*; F)$ in generalised character theory.

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group $\operatorname{ann}(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p'C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- If we put $C = \{$ all cosets like this $\}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B \mathcal{L}) = L\{C\}.$
- ▶ The generators of $L \otimes_{E^0} E_0^{\vee} B \mathcal{V}$ correspond to Galois orbits in Θ . The orbit of α is a coset for the cyclic group generated by $p'\alpha$. This gives a ring map $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} \to L \otimes_{E^0} E_0^{\vee} B \mathcal{L}$ splitting π .
- ▶ Does this send $E_0^{\vee}B\mathcal{V}$ to $E_0^{\vee}B\mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^G \neq \mathbb{Z}[X^G]$.
- ▶ A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

$$\{(A,C)\mid A \text{ is a finite subgroup of }\mathbb{H},\ C\in\mathbb{H}/A,\ p^rC=0_{\mathbb{H}/A}\}$$

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- ▶ Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group $\operatorname{ann}(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p'C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- If we put $C = \{$ all cosets like this $\}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B \mathcal{L}) = L\{C\}.$
- ▶ The generators of $L \otimes_{E^0} E_0^{\vee} B \mathcal{V}$ correspond to Galois orbits in Θ . The orbit of α is a coset for the cyclic group generated by $p'\alpha$. This gives a ring map $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} \to L \otimes_{E^0} E_0^{\vee} B \mathcal{L}$ splitting π .
- ▶ Does this send $E_0^{\vee}B\mathcal{V}$ to $E_0^{\vee}B\mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^G \neq \mathbb{Z}[X^G]$.
- ▶ A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

$$\{(A,C)\mid A \text{ is a finite subgroup of }\mathbb{H},\ C\in\mathbb{H}/A,\ p^rC=0_{\mathbb{H}/A}\}.$$

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- ▶ Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group ann $(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p^r C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{$ all cosets like this $\}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B \mathcal{L}) = L\{C\}.$
- ▶ The generators of $L \otimes_{E^0} E_0^{\vee} BV$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p'\alpha$. This gives a ring map $L \otimes_{E^0} E_0^{\vee} BV \to L \otimes_{E^0} E_0^{\vee} B\mathcal{L}$ splitting π .
- ▶ Does this send $E_0^{\vee}B\mathcal{V}$ to $E_0^{\vee}B\mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^G \neq \mathbb{Z}[X^G]$.
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

$$\{(A,C)\mid A \text{ is a finite subgroup of }\mathbb{H},\ C\in\mathbb{H}/A,\ p^rC=0_{\mathbb{H}/A}\}.$$

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- ▶ Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group ann $(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p'C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $C = \{$ all cosets like this $\}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B \mathcal{L}) = L\{C\}.$
- ▶ The generators of $L \otimes_{E^0} E_0^{\vee} BV$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p'\alpha$. This gives a ring map $L \otimes_{E^0} E_0^{\vee} BV \to L \otimes_{E^0} E_0^{\vee} B\mathcal{L}$ splitting π .
- ▶ Does this send $E_0^{\vee}B\mathcal{V}$ to $E_0^{\vee}B\mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^G \neq \mathbb{Z}[X^G]$.
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

$$\{(A,C)\mid A \text{ is a finite subgroup of }\mathbb{H},\ C\in\mathbb{H}/A,\ p^rC=0_{\mathbb{H}/A}\}.$$

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- ▶ Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group ann $(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p'C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $\mathcal{C} = \{$ all cosets like this $\}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B\mathcal{L}) = L\{\mathcal{C}\}.$
- ▶ The generators of $L \otimes_{E^0} E_0^{\vee} B \mathcal{V}$ correspond to Galois orbits in Θ . The orbit of α is a coset for the cyclic group generated by $p'\alpha$. This gives a ring map $L \otimes_{E^0} E_0^{\vee} B \mathcal{V} \to L \otimes_{E^0} E_0^{\vee} B \mathcal{L}$ splitting π .
- ▶ Does this send $E_0^{\vee}B\mathcal{V}$ to $E_0^{\vee}B\mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^G \neq \mathbb{Z}[X^G]$.
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

$$\{(A,C)\mid A \text{ is a finite subgroup of }\mathbb{H},\ C\in\mathbb{H}/A,\ p^rC=0_{\mathbb{H}/A}\}.$$

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- ▶ Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group ann $(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p'C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $\mathcal{C} = \{$ all cosets like this $\}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B \mathcal{L}) = L\{\mathcal{C}\}.$
- ▶ The generators of $L \otimes_{E^0} E_0^{\vee} BV$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p'\alpha$. This gives a ring map $L \otimes_{E^0} E_0^{\vee} BV \to L \otimes_{E^0} E_0^{\vee} B\mathcal{L}$ splitting π .
- ▶ Does this send $E_0^{\vee}B\mathcal{V}$ to $E_0^{\vee}B\mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^G \neq \mathbb{Z}[X^G]$.
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

$$\{(A,C)\mid A \text{ is a finite subgroup of }\mathbb{H},\ C\in\mathbb{H}/A,\ p^rC=0_{\mathbb{H}/A}\}.$$

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- ▶ Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group ann $(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p'C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $\mathcal{C} = \{$ all cosets like this $\}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B\mathcal{L}) = L\{\mathcal{C}\}.$
- ▶ The generators of $L \otimes_{E^0} E_0^{\vee} BV$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p'\alpha$. This gives a ring map $L \otimes_{E^0} E_0^{\vee} BV \to L \otimes_{E^0} E_0^{\vee} B\mathcal{L}$ splitting π .
- ▶ Does this send $E_0^{\vee}B\mathcal{V}$ to $E_0^{\vee}B\mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^G \neq \mathbb{Z}[X^G]$.
- A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

 $\{(A,C)\mid A \text{ is a finite subgroup of }\mathbb{H},\ C\in\mathbb{H}/A,\ p^rC=0_{\mathbb{H}/A}\}$

- ▶ Let A be a finite subgroup of $\Theta \simeq (\mathbb{Z}/p^{\infty})^n$, and let $C \subset \Theta$ be a coset with $p^r C \subseteq A$.
- ▶ Now A^* is a finite set with action of Θ^* , and C gives a character of the stabiliser group ann $(A) \leq \Theta^*$ and thus a line bundle over A^* .
- ▶ The condition $p'C \subseteq A$ ensures that this is defined over F, not just \overline{F} .
- ▶ If we put $\mathcal{C} = \{$ all cosets like this $\}$, then we get $\operatorname{Ind}(L \otimes_{E^0} E_0^{\vee} B\mathcal{L}) = L\{\mathcal{C}\}.$
- ▶ The generators of $L \otimes_{E^0} E_0^{\vee} BV$ correspond to Galois orbits in Θ. The orbit of α is a coset for the cyclic group generated by $p'\alpha$. This gives a ring map $L \otimes_{E^0} E_0^{\vee} BV \to L \otimes_{E^0} E_0^{\vee} B\mathcal{L}$ splitting π .
- ▶ Does this send $E_0^{\vee}B\mathcal{V}$ to $E_0^{\vee}B\mathcal{L}$? Perhaps. This is related to the explicit Artin induction formula of Boltje, Snaith and Symonds, but the most obvious adaptation is not useful because of $\mathbb{Z}[X]^G \neq \mathbb{Z}[X^G]$.
- ▶ A schematic version: $spf(E^0B\mathcal{L}/transfers)$ is

$$\{(A,C)\mid A \text{ is a finite subgroup of } \mathbb{H},\ C\in\mathbb{H}/A,\ p'C=0_{\mathbb{H}/A}\}.$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $F^0BU_m \sim F^0\mathbb{I}[x]/[p^{m+r}](x)$

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[\![x]\!]/g_m(x)$

This still has an action of Γ , and we put $\Lambda_m = \operatorname{Spr}(D_m)$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$

We also put

$$u = \prod \{\Gamma - \text{orbit of } x\} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^\Gamma.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i \colon U_m \to \mathcal{V}$ sending the unique object to F_{ρ^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^{2}(b), \dots, a \phi^{p^{m}-1}(b))$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[\![x]\!]/g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^\Gamma)$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$

We also put

$$y=\prod \{\Gamma- ext{orbit of }x\}=\prod_{i=0}^{p^m-1}[q^i](x)\in D_m^\Gamma$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F}\otimes_F F_{p^m} o\prod_{i=0}^{p^m-1}\overline{F}$ given by

$$a \otimes b \mapsto (ab, a\phi(b), a\phi^2(b), \ldots, a\phi^{p^m-1}(b))$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[x]/g_m(x)$.

This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^{\Gamma})$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$

We also put

$$y=\prod \{\Gamma- ext{orbit of }x\}=\prod_{i=0}^{p^m-1}[q^i](x)\in D_m^\Gamma.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F}\otimes_F F_{p^m} o\prod_{i=0}^{p^m-1}\overline{F}$ given by

$$a \otimes b \mapsto (ab, a\phi(b), a\phi^2(b), \dots, a\phi^{p^m-1}(b))$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}]\![x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[x]/g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^{\Gamma})$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$

We also put

$$u = \prod \{\Gamma - \text{orbit of } x\} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^\Gamma.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a\phi(b), a\phi^2(b), \dots, a\phi^{p^m-1}(b)).$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[\![x]\!]/g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^\Gamma)$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put $y=\prod \{\Gamma-\text{orbit of }x\}=\prod_{i=0}^{p^m-1}[q^i](x)\in D_m^\Gamma$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a\phi(b), a\phi^2(b), \dots, a\phi^{p^m-1}(b)).$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[\![x]\!]/g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^\Gamma)$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put

$$y = \prod \{\Gamma - \text{orbit of } x\} = \prod_{i=0}^{p^m-1} [q^i](x) \in \mathcal{D}_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a\phi(b), a\phi^2(b), \dots, a\phi^{p^m-1}(b)).$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[x]/g_m(x)$.

This still has an action of Γ , and we put $X_m = \text{spf}(D_m^{\Gamma})$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put

$$y = \prod \{\Gamma - \text{orbit of } x\} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i: U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a\phi(b), a\phi^2(b), \dots, a\phi^{p^m-1}(b)).$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}]\![x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[x]/g_m(x)$.

This still has an action of Γ , and we put $X_m = \text{spf}(D_m^{\Gamma})$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put

$$y = \prod \{\Gamma - \text{orbit of } x\} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i \colon U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $F\otimes_F F_{p^m} o \prod_{i=0}^{p^m-1} F$ given by

$$a \otimes b \mapsto (ab, a\phi(b), a\phi^{2}(b), \dots, a\phi^{p^{m}-1}(b))$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[x]/g_m(x)$.

This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^{\Gamma})$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put

$$y = \prod \{\Gamma - \text{orbit of } x\} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i \colon U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^2(b), \dots, a \phi^{p^m-1}(b)).$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[x]/g_m(x)$.

This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^{\Gamma})$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*,\mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*,\mathbb{G})/\Gamma$.

We also put

$$y = \prod \{\Gamma - \text{orbit of } x\} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i \colon U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^{2}(b), \dots, a \phi^{p^{m}-1}(b)).$$

There is a cyclic subgroup $U_m \leq GL_{p^m}(F)$ of order p^{m+r} , so $E^0BU_m \simeq E^0[\![x]\!]/[p^{m+r}](x)$.

Now $[p^{m+r}](x)$ factors as $g_m(x)[p^{m+r-1}](x)$, and we put $D_m = E^0[x]/g_m(x)$. This still has an action of Γ , and we put $X_m = \operatorname{spf}(D_m^r)$.

In a different language: $\operatorname{spf}(D_m) = \operatorname{Level}(U_m^*, \mathbb{G})$ and $X_m = \operatorname{Level}(U_m^*, \mathbb{G})/\Gamma$.

We also put

$$y = \prod \{\Gamma - \text{orbit of } x\} = \prod_{i=0}^{p^m-1} [q^i](x) \in D_m^{\Gamma}.$$

One can check that the set $\{y^i \mid 0 \le i < p^{(m+r-1)n-m}(p^n-1)\}$ is a basis for D_m^Γ over E^0 , and that D_m^Γ is a regular local ring.

We can regard U_m as a groupoid with one object, and there is an evident functor $i \colon U_m \to \mathcal{V}$ sending the unique object to F_{p^m} .

There is an isomorphism $\overline{F} \otimes_F F_{p^m} \to \prod_{i=0}^{p^m-1} \overline{F}$ given by

$$a \otimes b \mapsto (ab, a \phi(b), a \phi^{2}(b), \ldots, a \phi^{p^{m}-1}(b)).$$

The semiring Rep⁺(Θ^* , F) is a set (not a formal scheme), and it splits as

$$\operatorname{\mathsf{Rep}}^+(\Theta^*;F) = \operatorname{\mathsf{Irr}}(\Theta^*;F) \coprod \operatorname{\mathsf{Red}}(\Theta^*;F) = \coprod_m \operatorname{\mathsf{Irr}}(\Theta^*;F)^m/\Sigma_m.$$

$$\operatorname{\mathsf{Rep}}^+_{p^m}(\Theta^*;F) = \operatorname{\mathsf{Irr}}_{p^m}(\Theta^*;F) \coprod \operatorname{\mathsf{Red}}_{p^m}(\Theta^*;F) = \operatorname{\mathsf{Mon}}(U^*_m,\Theta) \coprod \operatorname{\mathsf{Red}}_{p^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E=X_m\coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F)=D_m^\Gamma imes C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $Rep^+(\Theta^*, F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \coprod \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{p^m}(\Theta^*;F) = \mathsf{Irr}_{p^m}(\Theta^*;F) \coprod \mathsf{Red}_{p^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \coprod \mathsf{Red}_{p^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E=X_m\coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F)=D_m^\Gamma imes C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product lt does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*,F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \amalg \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{\rho^m}(\Theta^*;F) = \mathsf{Irr}_{\rho^m}(\Theta^*;F) \coprod \mathsf{Red}_{\rho^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \coprod \mathsf{Red}_{\rho^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F) = D_m^\Gamma \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*,F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \amalg \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{p^m}(\Theta^*;F) = \mathsf{Irr}_{p^m}(\Theta^*;F) \amalg \mathsf{Red}_{p^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \amalg \mathsf{Red}_{p^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F) = D_m^\Gamma \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*,F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \amalg \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{p^m}(\Theta^*;F) = \mathsf{Irr}_{p^m}(\Theta^*;F) \amalg \mathsf{Red}_{p^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \amalg \mathsf{Red}_{p^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F) = D_m^\Gamma \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*,F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \coprod \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{\rho^m}(\Theta^*;F) = \mathsf{Irr}_{\rho^m}(\Theta^*;F) \coprod \mathsf{Red}_{\rho^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \coprod \mathsf{Red}_{\rho^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F) = D_m^\Gamma \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*,F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \coprod \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{p^m}(\Theta^*;F) = \mathsf{Irr}_{p^m}(\Theta^*;F) \amalg \mathsf{Red}_{p^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \amalg \mathsf{Red}_{p^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F) = D_m^\Gamma \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra. Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module. In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*,F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \coprod \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{p^m}(\Theta^*;F) = \mathsf{Irr}_{p^m}(\Theta^*;F) \amalg \mathsf{Red}_{p^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \amalg \mathsf{Red}_{p^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F) = D_m^\Gamma \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*,F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \coprod \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{p^m}(\Theta^*;F) = \mathsf{Irr}_{p^m}(\Theta^*;F) \amalg \mathsf{Red}_{p^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \amalg \mathsf{Red}_{p^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F) = D_m^\Gamma \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

The semiring $\operatorname{Rep}^+(\Theta^*,F)$ is a set (not a formal scheme), and it splits as

$$\mathsf{Rep}^+(\Theta^*;F) = \mathsf{Irr}(\Theta^*;F) \coprod \mathsf{Red}(\Theta^*;F) = \coprod_m \mathsf{Irr}(\Theta^*;F)^m/\Sigma_m.$$

$$\mathsf{Rep}^+_{\rho^m}(\Theta^*;F) = \mathsf{Irr}_{\rho^m}(\Theta^*;F) \coprod \mathsf{Red}_{\rho^m}(\Theta^*;F) = \mathsf{Mon}(U_m^*,\Theta) \coprod \mathsf{Red}_{\rho^m}(\Theta^*;F).$$

Question: is there an analogous splitting

$$BGL_{p^m}(F)_E = X_m \coprod W_m$$
 of formal schemes, or $E^0BGL_{p^m}(F) = D_m^\Gamma \times C_m$ of rings?

Answer: no, $E^0BGL_{p^m}(F)$ is a local ring, and does not split as a product. It does split after rationalising, by HKR.

This is a common phenomenon in this kind of algebra.Instead of splittings $A = B \times C$, we often have B = A/I and C = A/J with $I = \operatorname{ann}(J)$ and $J = \operatorname{ann}(I)$, which makes I a C-module and J a B-module.In the best cases I will be free of rank one over C and/or J will be free of rank one over B.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr} \colon E^0(BGL_{p^{m-1}}(F)^p) \to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0BV)=D_m^\Gamma$.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_p(\psi^p(\mathsf{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J = \operatorname{img}(\operatorname{tr} \colon E^{0}(BGL_{p^{m-1}}(F)^{p}) \to E^{0}(BGL_{p^{m}}(F))),$$

so $\operatorname{Ind}_{P^m}(E^0BV)=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J=\operatorname{img}(\operatorname{tr}\colon E^0(BGL_{p^m-1}(F)^p) o E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0BV)=D_m^{\Gamma}.$

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J=\operatorname{img}(\operatorname{tr}\colon E^0(BGL_{p^m-1}(F)^p) o E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{P^m}(E^0BV)=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}BV$ is polynomial, and it follows by self-duality that E^0BV is polynomial under the transfer product, and we have

$$J=\operatorname{img}(\operatorname{tr}\colon E^0(BGL_{p^m-1}(F)^p) o E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{P^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J=\mathsf{img}(\mathsf{tr}\colon E^0(BGL_{p^m-1}(F)^p)\to E^0(BGL_{p^m}(F))),$$

so
$$\operatorname{Ind}_{p^m}(E^0B\mathcal{V})=D_m^\Gamma$$
.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J=\mathsf{img}(\mathsf{tr}\colon E^0(BGL_{p^m-1}(F)^p)\to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J=\mathsf{img}(\mathsf{tr}\colon E^0(BGL_{p^m-1}(F)^p)\to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_p(\psi^p(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J=\mathsf{img}(\mathsf{tr}\colon E^0(BGL_{p^m-1}(F)^p)\to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V})=D_m^{\Gamma}$.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_{\rho}(\psi^{\rho}(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

We have seen that D_m^{Γ} is the quotient of the ring $A=E^0BGL_{p^m}(F)$ by an ideal J say. Here A and D^{Γ} are both Frobenius algebras over E^0 . From this it follows automatically that J and $\operatorname{ann}(J)$ are both E^0 -module summands in A, and that $\operatorname{ann}^2(J)=J$. Moreover, $\operatorname{ann}(J)$ is a free module of rank one over D_m^{Γ} .

We know that $E_0^{\vee}B\mathcal{V}$ is polynomial, and it follows by self-duality that $E^0B\mathcal{V}$ is polynomial under the transfer product, and we have

$$J=\mathsf{img}(\mathsf{tr}\colon E^0(BGL_{p^m-1}(F)^p)\to E^0(BGL_{p^m}(F))),$$

so $\operatorname{Ind}_{p^m}(E^0B\mathcal{V})=D_m^\Gamma$.

Problem: find an explicit generator for ann(J).

In the case m=1, the element $c_{\rho}(\psi^{\rho}(\text{Taut}))$ is the required generator, but the proof is elaborate. We do not know whether a similar formula works for m>1.

Consider instead the ideals
$$I=\ker(E^0BGL_d(F)\to E^0(BGL_{d-1}(F)))$$
 and
$$J=\operatorname{img}(\operatorname{tr}\colon E^0(BGL_{d-1}(F))\to E^0(BGL_d(F))),$$

Both I and J are E^0 -module summands, and they are annihilators of each other.

I is generated by the Euler class euler $= c_d$

Consider instead the ideals $I=\ker(E^0BGL_d(F)\to E^0(BGL_{d-1}(F)))$ and $J=\operatorname{img}(\operatorname{tr}\colon E^0(BGL_{d-1}(F))\to E^0(BGL_d(F))),$

Both I and J are E^0 -module summands, and they are annihilators of each other.

I is generated by the Euler class euler = c_d

Consider instead the ideals $I=\ker(E^0BGL_d(F)\to E^0(BGL_{d-1}(F)))$ and $J=\operatorname{img}(\operatorname{tr}\colon E^0(BGL_{d-1}(F))\to E^0(BGL_d(F))),$

Both I and J are E^0 -module summands, and they are annihilators of each other. I is generated by the Euler class euler $= c_d$.

Consider instead the ideals $I=\ker(E^0BGL_d(F)\to E^0(BGL_{d-1}(F)))$ and $J=\operatorname{img}(\operatorname{tr}\colon E^0(BGL_{d-1}(F))\to E^0(BGL_d(F))),$

Both I and J are E^0 -module summands, and they are annihilators of each other.

I is generated by the Euler class euler = c_d .