An introduction to the Universal Coefficient Theorem

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

October 2nd, 2017

Content

Classical

2 Modern

Outline

Classical

2 Modern

Vol. 55, No. 2

DUKE MATHEMATICAL JOURNAL ©

June 1987

THE KÜNNETH THEOREM AND THE UNIVERSAL COEFFICIENT THEOREM FOR KASPAROV'S GENERALIZED K-FUNCTOR

JONATHAN ROSENBERG AND CLAUDE SCHOCHET

difficulties, WE HENCEFORTH ASSUME THAT A IS SEPARABLE NUCLEAR AND THAT B HAS A COUNTABLE APPROXIMATE UNIT THROUGHOUT THE PAPER unless stated otherwise.

[RS] p. 439

Universal Coefficient Theorem (UCT) 1.17. Let $A \in \mathcal{N}$. Then there is a short exact sequence

 $0 \to \operatorname{Ext}^1_{\mathbf Z}(K_*(A), K_*(B)) \overset{\delta}{\to} KK_*(A, B) \overset{\gamma}{\to} \operatorname{Hom}(K_*(A), K_*(B)) \to 0$ which is natural in each variable. The map γ has degree 0 and the map δ has degree 1.

Brown's UCT

$$0 \to \operatorname{Ext}^1_{\mathbb{Z}}(K^0(X),\mathbb{Z}) \to \operatorname{Ext}(C(X)) \to \operatorname{Hom}(K^1(X),\mathbb{Z}) \to 0$$

Here are our principal theorems. Let $\mathcal N$ be the smallest full subcategory of the separable nuclear C^* -algebras which contains the separable Type I C^* -algebras and is closed under strong Morita equivalence (by [7], this is the same as stable isomorphism), inductive limits, extensions, and crossed products by $\mathbf R$ and by $\mathbf Z$. We may also require that if J is an ideal in A and J and A are in $\mathcal N$ then so is A/J, and if A and A/J are in $\mathcal N$ then so is J. As pointed out by Skandalis [39],

[RS] p. 439

Universal Coefficient Theorem (UCT) 1.17. Let $A \in \mathcal{N}$. Then there is a short exact sequence

 $0 \to \operatorname{Ext}^1_{\mathbf{Z}}(K_*(A), K_*(B)) \stackrel{\$}{\to} KK_*(A, B) \stackrel{\gamma}{\to} \operatorname{Hom}(K_*(A), K_*(B)) \to 0$ which is natural in each variable. The map γ has degree 0 and the map δ has degree 1.

[RS] proof, first steps

We consider

$$\gamma(A,B): KK_*(A,B) \to \operatorname{Hom}(K_*(A),K_*(B))$$

- If $K_*(B)$ is injective, $I \lhd A$, and two out of $\gamma(I,B)$, $\gamma(A,B)$, $\gamma(A/I,B)$ are isomorphisms, so is the last.
- If $K_*(B)$ is injective, $A = \lim_{\longrightarrow} A_i$, and all $\gamma(A_i, B)$ are isomorphisms, so is $\gamma(A, B)$.
- If $K_*(B)$ is injective then $\gamma(C_0(X),B)$ is an isomorphism.
- If $K_*(B)$ is injective and A is type I then $\gamma(A,B)$ is an isomorphism.

[RS] proof, last steps

- If $K_*(B)$ is injective, and $A \in \mathcal{N}$, then $\gamma(A,B)$ is an isomorphism.
- For any σ -unital B there is $\varphi: B \to D$ with $K_*(D)$ injective and $\varphi_*: K_*(B) \to K_*(D)$ injective.

It is quite possible that the UCT (1.17) holds for completely arbitrary separable C^* -algebras A. (This is assuming B has a countable approximate unit.

[RS] p. 456

An interesting open problem is to determine whether the UCT might in fact hold for *all* separable C^* -algebras. The argument of Corollary 7.5 shows that this is equivalent to the question: is every separable C^* -algebra KK-equivalent to a commutative C^* -algebra?* To obtain still another formulation, let A be any

(Added May, 1986) Recent work of G. Skandalis now shows this is not the case, though this may be true for nuclear separable C-algebras.

Proposition [RS]

If $A \in \mathcal{N}$, then A is KK-equivalent to some $C_0(X)$.

Theorem [Skandalis]

The following are equivalent for a separable A (non necessarily nuclear!)

- lacktriangle The UCT holds for A and any B
- ② A is KK-equivalent to some $C_0(X)$
- **3** If $K_*(B) = 0$, then KK(A, B) = 0

and there is a non-nuclear \boldsymbol{A} for which they are false.

Outline

Classical

2 Modern

Theorem [Elliott]

For A and B AT-algebras of real rank zero, we have

$$A\otimes \mathbb{K}\cong B\otimes \mathbb{K} \Longleftrightarrow (K_*(A),K_*(A)_+)\cong (K_*(B),K_*(B)_+)$$

The UMCT [Dadarlat-Loring]

For $A \in \mathcal{N}$ we have

$$\operatorname{Pext}(K_*(A),K_*(B)) \\ KK(A,B) \\ \operatorname{Ext}(K_*(A),K_*(B)) \\ \operatorname{Hom}_{\Lambda}(\underline{K}(A),\underline{K}(B))$$

Theorem [Dadarlat-Loring]

For A and B AD-algebras of real rank zero, we have

$$A\otimes \mathbb{K}\cong B\otimes \mathbb{K} \Longleftrightarrow (\underline{K}(A),\underline{K}(A)_+)\cong (\underline{K}(B),\underline{K}(B)_+)$$

Theorem [Kirchberg-Phillips]

Suppose A and B are simple, separable, nuclear, purely infinite C^* -algebras. If A and B are KK-equivalent, then $A\otimes \mathbb{K} \cong B\otimes \mathbb{K}$.

Theorem [Kirchberg-Phillips]

Suppose A and B are simple, separable, nuclear, purely infinite C^* -algebras with $A,B\in\mathcal{N}.$ Then

$$A \otimes \mathbb{K} \cong B \otimes \mathbb{K} \iff K_*(A) \cong K_*(B)$$

Outline

Classical

2 Modern

Theorem [Tikuisis-White-Winter]

If A is separable, nuclear and satisfies the UCT, then any amenable trace on A is quasidiagonal.

Theorem [Dadarlat]

If A is separable, exact, residually finite-dimensional and satisfies the UCT, then A is AF-embeddable

New classes

A satisfies the UCT when

- $A = C^*(G)$ for certain amenable groupoids G (Tu)
- ullet A may be locally approximated with UCT subalgebras (Dadarlat)
- ullet $A=C^*_\pi(G)$ for a nilpotent group (Eckhart-Gillaspy)
- A has a Cartan subalgebra (Barlak-Li)

Localizations

The UCT holds for all nuclear C^* -algebras if \mathcal{O}_2 is unique with $K_*(\mathcal{O}_2)=0$ among the purely infinite, nuclear C^* -algebras [Kirchberg].

Theorem [Kirchberg]

Suppose A and B are separable, nuclear, purely infinite C^{\ast} -algebras with

$$Prim(A) \cong X \cong Prim(B)$$

If A and B are KK(X)-equivalent, then $A \otimes \mathbb{K} \cong B \otimes \mathbb{K}$.

Theorem [Meyer-Nest,Bentmann-Köhler]

Suppose A and B are separable, nuclear, purely infinite $C^*\text{-algebras}$ with $A,B\in\mathcal{N}$ and

$$Prim(A) \cong X \cong Prim(B)$$

with X a finite accordion space. Then

$$A \otimes \mathbb{K} \cong B \otimes \mathbb{K} \iff K_*(X, A) \cong K_*(X, B)$$