Exercises for Wednesday

As usual, throughout G will be finite group, k a field of positive characteristic p dividing $|G|$, and $R:=H^{*}(G, k)$, the cohomology ring of G.
(1) Given $r \in R^{\geqslant 1}$, prove that for any $k G$-module M, the $k G$-module $M / / r$ is $\mathcal{V}(r)$-torsion and that

$$
\operatorname{supp}_{G}(M / / r)=\operatorname{supp}_{G} M \cap \mathcal{V}(r)
$$

Extend this to ideals in R.
(2) Use the preceding exercise to prove that any closed subset of $\operatorname{Proj} R$ is the support of some finite dimensional $k G$-module.
(3) For any \mathfrak{p} in Proj R and $k G$-modules M, N, the natural map between cohomology and Tate cohomology induces an isomorphism of $R_{\mathfrak{p}}$-modules

$$
\operatorname{Ext}_{k G}^{*}(M, N)_{\mathfrak{p}} \longrightarrow \widehat{\operatorname{Ext}}_{k G}^{*}(M, N)_{\mathfrak{p}}
$$

This is another reason why it does matter that one works with $H^{*}(G, k)$ action on StMod $k G$ rather than that of the Tate cohomology ring.
(4) Let $E=(\mathbb{Z} / 3)^{2}$, the elementary abelian 3-group of rank 2 , and k a field of characteristic three. Its cohomology is of the form $\wedge_{k}\left(x_{1}, x_{2}\right) \otimes_{k} k\left[y_{1}, y_{2}\right]$, with $\left|x_{i}\right|=1$ and $\left|y_{i}\right|=2$.

Describe $\Omega^{-1} k$ and $\Omega^{-2} k$, and the classes x_{i} and y_{i}. Use this and the recipe outlined in today's first lecture to describe $\Gamma_{(0)} k$.
(5) Let k be a field of characteristic two, and

$$
R:=k[x, y, z] /\left(x^{2}+x y+y^{2}, x^{2} y+x y^{2}\right)
$$

where $|x|=1=|y|$ and $|z|=4$. This is the cohomology of Q_{8}; check this. Verify that Proj R consists of a single point, namely, (x, y).
(6) Let k be a field of odd characteristic and R the ring $k[x, y, z] /\left(x^{2}+y^{2}+z^{2}\right)$. Prove that this is a domain and find a generic point for (0).

