Sidon sets in bounded orthonormal systems

Gilles Pisier
Texas A&M University and IMJ-UPMC

The mathematical legacy of **UFFE HAAGERUP**Copenhagen, June 2016

Sidon sets Classical definitions:

 $\Lambda \subset \mathbb{Z}$ is Sidon if

$$\sum_{n\in\Lambda}a_ne^{int}\in C(\mathsf{T})\Rightarrow\sum_{n\in\Lambda}|a_n|<\infty$$

 $\Lambda \subset \mathbb{Z}$ is randomly Sidon if

$$\sum_{n\in\Lambda}\pm a_ne^{int}\in \mathit{C}(\mathsf{T})\ \mathit{a.s.}\Rightarrow \sum_{n\in\Lambda}|a_n|<\infty$$

 $\Lambda \subset \mathbb{Z}$ is subGaussian if

$$\sum_{n\in\Lambda}|a_n|^2<\infty\Rightarrow\int\exp|\sum_{n\in\Lambda}a_ne^{int}|^2<\infty.$$

They are all equivalent!

Obviously Sidon \Rightarrow randomly Sidon

Rudin (1961): Sidon \Rightarrow subGaussian

 $\mathsf{Rider}\ (1975):\,\mathsf{Sidon}\ \Leftrightarrow\,\mathsf{randomly}\ \mathsf{Sidon}$

P(1978): Sidon \Leftrightarrow subGaussian

Results hold more generally for any subset $\Lambda \subset \widehat{G}$ when G is any compact Abelian group

They are all equivalent!

```
Obviously Sidon \Rightarrow randomly Sidon
```

```
Rudin (1961): Sidon \Rightarrow subGaussian
```

Rider (1975) : Sidon \Leftrightarrow randomly Sidon

(Note: This refines Drury's celebrated 1970 union Theorem)

P(1978): Sidon \Leftrightarrow subGaussian

Results hold more generally for any subset $\Lambda \subset \widehat{G}$ when G is any compact Abelian group

Examples

Hadamard lacunary sequences

$$n_1 < n_2 < \cdots < n_k, \cdots$$

such that

$$\inf_{k} \frac{n_{k+1}}{n_k} > 1$$

Explicit example

$$n_k = 2^k$$

Basic Example: Quasi-independent sets

 Λ is quasi-independent if all the sums

$$\{\sum_{n\in A} n\mid A\subset \Lambda, |A|<\infty\}$$

are distinct numbers

quasi-independent ⇒ Sidon

The recent rebirth

Bourgain and Lewko (arxiv 2015) wondered whether a group environment is needed for all the preceding

Question

What remains valid if $\Lambda \subset \widehat{G}$ is replaced by a *uniformly bounded* orthonormal system ?

Let $\Lambda = \{\varphi_n\} \subset L_{\infty}(T, m)$ orthonormal in $L_2(T, m)$ ((T, m) any probability space)

(i) We say that (φ_n) is Sidon with constant C if for any n and any complex sequence (a_k) we have

$$\sum_{1}^{n}|a_{k}|\leq C\|\sum_{1}^{n}a_{k}\varphi_{k}\|_{\infty}.$$

(ii) We say that (φ_n) is randomly Sidon with constant C if for any n and any complex sequence (a_k) we have

$$\sum\nolimits_1^n |a_k| \leq C \mathsf{Average}_{\pm 1} \| \sum\nolimits_1^n \pm a_k \varphi_k \|_{\infty},$$

(iii) Let $k \geq 1$. We say that (φ_n) is \otimes^k -Sidon with constant C if the system $\{\varphi_n(t_1)\cdots\varphi_n(t_k)\}$ (or equivalently $\{\varphi_n^{\otimes k}\}$) is Sidon with constant C in $L_{\infty}(T^k, m^{\otimes k})$.

Now assume merely that $\{\varphi_n\} \subset L_2(T, m)$.

(iv) We say that (φ_n) is subGaussian with constant C (or C-subGaussian) if for any n and any complex sequence (a_k) we have

$$\|\sum_{1}^{n} a_k \varphi_k\|_{\psi_2} \leq C(\sum |a_k|^2)^{1/2}.$$

Here

$$\psi_2(x) = \exp x^2 - 1$$

and $\|f\|_{\psi_2}$ is the norm in associated Orlicz space

Again: We say that $\{\varphi_n\} \subset L_2(T,m)$ is subGaussian with constant C (or C-subGaussian) if for any n and any complex sequence (a_k) we have

$$\|\sum_{1}^{n} a_{k} \varphi_{k}\|_{\psi_{2}} \leq C(\sum |a_{k}|^{2})^{1/2}.$$

Equivalently, assuming w.l.o.g. $\int \varphi_k = 0, \forall k \exists C$ such that $\forall (a_k)$

$$\int \exp Re(\sum_{1}^{n} a_{k} \varphi_{k}) \leq \exp C^{2} \sum |a_{k}|^{2}$$

Important remark: Standard i.i.d. (real or complex) Gaussian random variables are subGaussian (Fundamental example!)

Easy Observation : $Sidon \not\Rightarrow subGaussian$

By a much more delicate example Bourgain and Lewko proved:

However, they proved

Theorem

$$subGaussian \Rightarrow \otimes^5 - Sidon$$

Recall \otimes^5 – Sidon means

$$\sum_{1}^{n} |a_{k}| \leq C \| \sum_{1}^{n} a_{k} \varphi_{k}(t_{1}) \cdots \varphi_{k}(t_{5}) \|_{L_{\infty}(T^{5})}.$$

This generalizes my 1978 result that subGaussian implies Sidon for characters $(\varphi_k(t_1)\cdots\varphi_k(t_5)=\varphi_k(t_1\cdots t_5)!)$

They asked whether 5 can be replaced by 2 which would be optimal

Indeed, it is so.

Theorem

For bounded orthonormal systems

$$subGaussian \Rightarrow \otimes^2 - Sidon$$

Recall \otimes^2 – Sidon means

$$\sum_{1}^{n} |a_k| \leq C \|\sum_{1}^{n} a_k \varphi_k(t_1) \varphi_k(t_2)\|_{L_{\infty}(\mathcal{T}^2)}.$$

Actually, we have more generally:

Theorem (1)

Let (ψ_n^1) , (ψ_n^2) be systems biorthogonal respectively to (φ_n^1) , (φ_n^2) on probability spaces (T_1, m_1) , (T_2, m_2) resp. and uniformly bounded respectively by C_1' , C_2' , If (φ_n^2) , (φ_n^2) are subGaussian with constants C_1 , C_2 then

$$\sum |a_n| \leq \alpha \ \mathrm{ess} \, \mathrm{sup}_{(t_1,t_2) \in \mathcal{T}_1 \times \mathcal{T}_2} | \sum a_n \psi_n^1(t_1) \psi_n^2(t_2)|,$$

where α is a constant depending only on C_1 , C_2 , C'_1 , C'_2 .

To illustrate by a concrete (but trivial) example: take $\varphi_n^1 = \varphi_n^2 = g_n$ and $\psi_n^1 = \psi_n^2 = \text{sign}(g_n)$

The key new ingredient is a corollary of a powerful result due to **Talagrand Acta (1985)** (combined with a soft Hahn-Banach argument)

Let (g_n) be an i.i.d. sequence of standard (real or complex) Gaussian random variables

Theorem

Let (φ_n) be C-subGaussian in $L_1(T,m)$. Then $\exists T: L_1(\Omega,\mathbb{P}) \to L_1(T,m)$ with $\|T\| \leq KC$ (K a numerical constant) such that

$$\forall n \quad T(g_n) = \varphi_n$$

Let $T \in L_1(m_1) \otimes L_1(m_2)$ (algebraic \otimes) say $T = \sum x_j \otimes y_j$ then the

projective and injective tensor product norm denoted respectively by $\|\cdot\|_{\wedge}$ and $\|\cdot\|_{\vee}$ are very explicitly described by

$$||T||_{\wedge} = \int |\sum x_j(t_1)y_j(t_2)|dm_1(t_1)dm_2(t_2)$$

$$\|T\|_{\vee}=\sup\{|\sum\langle x_j,\psi_1\rangle\langle y_j,\psi_2\rangle|\mid \|\psi_1\|_{\infty}\leq 1, \|\psi_2\|_{\infty}\}.$$

$\mathsf{Theorem}$

Let (φ_n^1) and (φ_n^2) $(1 \le n \le N)$ are subGaussian with constants C_1, C_2 . Then for any $0 < \delta < 1$ there is a decomposition in $L_1(m_1) \otimes L_1(m_2)$ of the form

$$\sum_{1}^{N} \varphi_{n}^{1} \otimes \varphi_{n}^{2} = t + r$$

satisfying

$$||t||_{\wedge} \leq w(\delta)$$

$$||r||_{\vee} \leq \delta$$
,

where $w(\delta)$ depends only on δ and C_1 , C_2 .

Moreover

$$w(\delta) = O(\log((C_1C_2)/\delta)$$

Proof reduces to the case $\varphi_n^1 = \varphi_n^2 = g_n$

Proof of Theorem (1)

Let
$$f = \sum_{n} a_n \psi_n^1(t_1) \psi_n^2(t_2)$$

 $|a_n| = s_n a_n$

Note: (φ_n) subGaussian \Rightarrow $(s_n\varphi_n)$ subGaussian (same constant)

$$S = \sum_{n=1}^{N} s_n \varphi_n^1 \otimes \varphi_n^2 = t + r$$

$$\langle f, S \rangle = \sum |a_n|$$

Therefore

$$\sum |a_n| = \langle f, t+r \rangle \le |\langle f, t \rangle| + |\langle f, r \rangle|$$

$$\leq w(\delta)\|f\|_{\infty} + \sum |a_n||\langle \psi_n^1 \otimes \psi_n^2, r \rangle| \leq w(\delta)\|f\|_{\infty} + (\delta C_1' C_2') \sum |a_n|$$

and hence

$$\sum |a_n| \le (1 - \delta C_1' C_2')^{-1} w(\delta) ||f||_{\infty}$$

About Randomly Sidon

Bourgain and Lewko noticed that Slepian's classical comparison Lemma for Gaussian processes implies that randomly \otimes^k -Sidon and randomly Sidon are the same property, not implying Sidon. However, we could prove that this implies \otimes^4 -Sidon:

Theorem (2)

Let (φ_n, ψ_n) be biorthogonal systems both bounded in L_{∞} . The following are equivalent:

- (i) The system (ψ_n) is randomly Sidon.
- (ii) The system (ψ_n) is \otimes^4 -Sidon.
- (iii) The system (ψ_n) is \otimes^k -Sidon for all $k \geq 4$.
- (iv) The system (ψ_n) is \otimes^k -Sidon for some $k \geq 4$.

This generalizes Rider's result that randomly Sidon implies Sidon for characters

Open question: What about k = 2 or k = 3?

Non-commutative case

G compact non-commutative group

 \widehat{G} the set of distinct irreps, $d_{\pi}=\dim(H_{\pi})$

 $\Lambda \subset \widehat{G}$ is called Sidon if $\exists C$ such that for any finitely supported family (a_{π}) with $a_{\pi} \in M_{d_{\pi}}$ $(\pi \in \Lambda)$ we have

$$\sum_{\pi\in\Lambda} d_{\pi} \operatorname{tr} |a_{\pi}| \leq C \|\sum_{\pi\in\Lambda} d_{\pi} \operatorname{tr} (\pi a_{\pi})\|_{\infty}.$$

 $\Lambda \subset \widehat{G}$ is called randomly Sidon if $\exists C$ such that for any finitely supported family (a_{π}) with $a_{\pi} \in M_{d_{\pi}}$ $(\pi \in \Lambda)$ we have

$$\sum\nolimits_{\pi \in \Lambda} d_{\pi} \mathrm{tr} |a_{\pi}| \leq C \mathbb{E} \| \sum\nolimits_{\pi \in \Lambda} d_{\pi} \mathrm{tr} (\varepsilon_{\pi} \pi a_{\pi}) \|_{\infty}$$

where (ε_{π}) are an independent family such that each ε_{π} is uniformly distributed over $O(d_{\pi})$.

Important Remark (easy proof) Equivalent definitions:

- ullet unitary matrices (u_π) uniformly distributed over $U(d_\pi)$
- Gaussian random matrices (g_{π}) normalized so that $\mathbb{E}||g_{\pi}|| \approx 2$ $(\{d_{\pi}^{1/2}g_{\pi} \mid \pi \in \Lambda, 1 \leq i, j \leq d_{\pi}\})$ forms a standard Gaussian (real or complex) i.i.d. family

Fundamental example

$$G=\prod_{n\geq 1}U(d_n)$$

$$\Lambda = \{\pi_n \mid n \ge 1\}$$

 $\pi_n: G \to U(d_n)$ *n*-th coordinate

$$C=1: \ \sum\nolimits_{n\geq 1} d_n \mathrm{tr} |a_n| = \| \sum\nolimits_{n\geq 1} d_n \mathrm{tr} (\pi_n a_n) \|_{\infty}.$$

Rider (1975) extended all results previously mentioned to arbitrary compact groups

Note however that the details of his proof that randomly Sidon implies Sidon (solving the non-commutative union problem) never appeared

I plan to remedy this on arxiv soon

General matricial systems

Assume given a sequence of finite dimensions d_n . For each n let (φ_n) be a random matrix of size $d_n \times d_n$ on (T, m). We call this a "matricial system".

Let g_n be an independent sequence of random $d_n \times d_n$ -matrices, such that $\{d_n^{1/2}g_n(i,j) \mid 1 \leq i,j \leq d_n\}$ are i.i.d. normalized \mathbb{C} -valued Gaussian random variables. Note $\|g_n(i,j)\|_2 = d_n^{-1/2}$.

The **subGaussian condition** becomes: for any N and $y_n \in M_{d_n}$ $(n \le N)$ we have

$$\|\sum d_n \operatorname{tr}(y_n \varphi_n)\|_{\psi_2} \leq C(\sum d_n \operatorname{tr}|y_n|^2)^{1/2} = \|\sum d_n \operatorname{tr}(y_n g_n)\|_2.$$
(1)

In other words, $\{d_n^{1/2}\varphi_n(i,j)\mid n\geq 1, 1\leq i,j\leq d_n\}$ is a subGaussian system of functions.

The uniform boundedness condition becomes

$$\exists C' \ \forall n \quad \|\varphi_n\|_{L_{\infty}(M_{d_n})} \le C'. \tag{2}$$

As for the orthonormality condition it becomes

$$\int \varphi_n(i,j)\overline{\varphi_{n'}(k,\ell)} = d_n^{-1}\delta_{n,n'}\delta_{i,k}\delta_{j,\ell}.$$
 (3)

In other words, $\{d_n^{1/2}\varphi_n(i,j)\mid n\geq 1, 1\leq i,j\leq d_n\}$ is an orthonormal system.

The definition of \otimes^k -**Sidon** it now means that the family of *matrix* products $(\varphi_n(t_1)\cdots\varphi_n(t_k))$ is Sidon on $(T,m)^{\otimes^k}$

Theorem (3)

Theorems (1) and (2) are still valid with the corresponding assumptions:

- subGaussian implies ⊗²-Sidon
- randomly subGaussian implies ⊗⁴-Sidon

Example of application

Let $\chi \geq 1$ be a constant. Let T_n be the set of $n \times n$ -matrices $a = [a_{ij}]$ with $a_{ij} = \pm 1/\sqrt{n}$. Let

$$A_n^{\chi} = \{ a \in T_n \mid ||a|| \le \chi \}.$$

This set includes the famous Hadamard matrices. We have then

Corollary

There is a numerical $\chi \geq 1$ such that for some C we have

$$\forall n \geq 1 \ \forall x \in M_n \quad \operatorname{tr}|x| \leq C \sup_{a',a'' \in A_n^X} |\operatorname{tr}(xa'a'')|.$$

Equivalently, denoting $A_n^{\chi}A_n^{\chi}=\{a'a''\mid a',a''\in A_n^{\chi}\}$ its absolutely convex hull satisfies

$$(\chi)^2$$
absconv $[A_n^{\chi}A_n^{\chi}] \subset B_{M_n} \subset C$ absconv $[A_n^{\chi}A_n^{\chi}]$

Curiously, even the case when $|\Lambda|=1$ (only a single irrep) is interesting

The simplest (and prototypical) example of this situation with $|\Lambda_n|=1$ is the case when $G_n=U(n)$ the group of unitary $n\times n$ -matrices, and Λ_n is the singleton formed of the irreducible representation (in short irrep) defining U(n) as acting on \mathbb{C}^n . Sets of this kind and various generalizations were tackled early on by Rider under the name "local lacunary sets"

The next Theorem of course is significant only if $\dim(\pi_n) \to \infty$

Theorem (Characterizing SubGaussian characters)

Let G_n be compact groups, let $\pi_n \in \widehat{G_n}$ be nontrivial irreps, let $\chi_n = \chi_{\pi_n}$ as well as $d_n = d_{\pi_n}$. The following are equivalent.

(i) $\exists C$ such that the singletons $\{\pi_n\} \subset \widehat{G}_n$ are Sidon with constant C, i.e. we have

$$\forall n \ \forall a \in M_{d_n} \quad \operatorname{tr}|a| \leq C \sup_{g \in G} |\operatorname{tr}(a\pi_n(g))|.$$

- (ii) $\exists C$ such that $\forall n \ \|\chi_n\|_{\psi_2} \leq C$.
- (iii) For each (or some) $0 < \delta < 1$ there is $0 < \theta < 1$ such that

$$\forall n \quad m_{G_n}\{Re(\chi_n) > \delta d_n\} \leq e\theta^{d_n^2}.$$

(iv) $\exists C$ such that $\forall n \quad d_n \leq C \int_{U(d_n)} \sup_{g \in G_n} |\operatorname{tr}(u\pi_n(g))| m_{U(d_n)}(du).$

Although I never had a concrete example, I believed naively for many years that this Theorem could be applied to finite groups. To my surprise, Emmanuel Breuillard showed me that it is not so. By a Theorem of Jordan, any finite group $\Gamma \subset U(d)$ (Breuillard extended this to amenable subgroups of U(d)) has an Abelian subgroup of index at most (d+1)!

This implies for any representation $\pi: G \to U(d)$ with **finite** range

$$\int_{U(d)} \sup_{g \in G} |\mathrm{tr}(u\pi(g))| m_{U(d)}(du) \le c(d\log(d))^{1/2} << d$$

and also

$$\|\chi_\pi\|_{\psi_2} \ge c\sqrt{d/\log(d)} >> 1.$$