# Structure and classification of free Araki-Woods factors

Symposium: The mathematical legacy of Uffe Haagerup Copenhagen, 24-26 June 2016



Stefaan Vaes\*

Joint work with C. Houdayer and D. Shlyakhtenko R. Boutonnet and C. Houdayer

<sup>\*</sup> Supported by ERC Consolidator Grant 614195

# Shlyakhtenko's free Araki-Woods factors

- ▶ Orthogonal representation  $(U_t)_{t \in \mathbb{R}}$ von Neumann algebra  $(M, \varphi)$  with faithful normal state.
- ▶ Direct sum  $(U_t \oplus V_t)_{t \in \mathbb{R}}$  free product  $(M, \varphi) * (N, \psi)$ .
- Intertwiner T between U and V with  $||T|| \le 1$  state preserving completely positive  $\theta: (M, \varphi) \to (N, \psi)$ .
- A free probability analog of the CAR, generalizing Voiculescu's free Gaussian functor.
- ▶ Open problem: classify these von Neumann algebras M in terms of  $(U_t)_{t \in \mathbb{R}}$ .

## Construction: full Fock space

▶ Given a Hilbert space *H*, construct the full Fock space

$$\mathcal{F}(H) = \mathbb{C}\Omega \oplus \bigoplus_{n=1}^{\infty} H^{\otimes n}$$

- ► For  $\xi \in H$ , left creation operator  $\ell(\xi) : \mathcal{F}(H) \to \mathcal{F}(H)$  given by  $\ell(\xi)\Omega = \xi$  and  $\ell(\xi)(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n$ .
- ▶ Vacuum state  $\varphi(T) = \langle T\Omega, \Omega \rangle$ .

#### Theorem (Voiculescu, 1983)

- ► The operator  $s(\xi) = \ell(\xi) + \ell(\xi)^*$  has Wigner's semicircular distribution with radius  $2 \|\xi\|$  w.r.t.  $\varphi$ .
- ▶ If  $\xi \perp \eta$ , then  $s(\xi)$  and  $s(\eta)$  are \*-free w.r.t.  $\varphi$ .
- ▶ For  $H = \mathbb{C}^n$ , we have  $L(\mathbb{F}_n) \cong \{\ell(e_i) + \ell(e_i)^* \mid i = 1, ..., n\}''$ .

## **Construction:** free Araki-Woods factors

Let H be a Hilbert space and  $K_{\mathbb{R}} \subset H$  a real subspace satisfying

- $\blacktriangleright K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$
- ▶  $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$  is dense.

#### Definition (Shlyakhtenko, 1996)

Define 
$$\Gamma(K_{\mathbb{R}} \subset H)'' = \{\ell(\xi) + \ell(\xi)^* \mid \xi \in K_{\mathbb{R}}\}''$$
 acting on  $\mathcal{F}(H)$ .

The vacuum state  $\varphi(T) = \langle T\Omega, \Omega \rangle$  is faithful and called the **free** quasi-free state.

**Basic question:** classify  $\Gamma(K_{\mathbb{R}} \subset H)''$  in terms of  $K_{\mathbb{R}} \subset H$ ;

# An equivalent point of view

Let  $(U_t)_{t\in\mathbb{R}}$  be an orthogonal representation on the real Hilbert space  $H_{\mathbb{R}}$ .

- Put  $H = H_{\mathbb{R}} + iH_{\mathbb{R}}$ and  $J: H \to H: J(\xi + i\eta) = \xi - i\eta$  for all  $\xi, \eta \in H_{\mathbb{R}}$ .
- ▶ Define  $\triangle$  on H such that  $\triangle^{it} = U_t$ .
- ▶ Put  $S = J\Delta^{1/2}$  and  $K_{\mathbb{R}} = \{\xi \in D(S) \mid S(\xi) = \xi\}.$
- ▶ Then,  $K_{\mathbb{R}} \cap iK_{\mathbb{R}} = \{0\}$  and  $K_{\mathbb{R}} + iK_{\mathbb{R}} \subset H$  is dense.
- $\longrightarrow$  Every such  $K_{\mathbb{R}} \subset H$  arises in this way.
- $\longrightarrow \text{ Write } \Gamma(U,H_{\mathbb{R}})'' = \Gamma(K_{\mathbb{R}} \subset H)'' = \{\ell(\xi) + \ell(S(\xi))^* \mid \xi \in D(S)\}''.$

**Note:** conversely  $S(\xi + i\eta) = \xi - i\eta$  for all  $\xi, \eta \in K_{\mathbb{R}}$  and then  $S = J\Delta^{1/2}$ .

## Connes' invariants for free Araki-Woods factors

Write  $M = \Gamma(U, H_{\mathbb{R}})''$  with free quasi-free state  $\varphi$ .

Generators:  $s(\xi) = \ell(\xi) + \ell(S(\xi))^*$  with  $\sigma_t^{\varphi}(s(\xi)) = s(U_t \xi)$ .

### Theorem (Shlyakhtenko, 1996-1998)

Unless  $H_{\mathbb{R}} = \mathbb{R}$  and  $U_t = id$ , we have that M is a factor

- ▶ of type  $II_1$  iff  $U_t = id$  for all  $t \in \mathbb{R}$ ,
- of type III $_{\lambda}$  iff U is periodic with period  $2\pi/|\log \lambda|$ ,
- of type III<sub>1</sub> iff *U* is not periodic,
- ▶ that is full:  $Inn(M) \subset Aut(M)$  is closed,
- with Connes'  $\tau$ -invariant, i.e. the topology on  $\mathbb{R}$  induced by  $\mathbb{R} \to \operatorname{Out}(M): t \mapsto \sigma_t^{\varphi}$ , equal to the topology induced by  $t \mapsto U_t$ ,
- ▶ that is almost periodic iff *U* is almost periodic, in which case

Sd(M) = Sd(U) :=subgroup of  $\mathbb{R}_+^*$  generated by the eigenvalues of U.

# Almost periodic free Araki-Woods factors

A full factor M is called **almost periodic** if it admits a faithful normal state  $\varphi$  such that  $(\sigma_t^{\varphi})_{t \in \mathbb{R}}$  is almost periodic.

Then,  $\operatorname{Sd}(M) \subset \mathbb{R}_+^*$  is defined such that the compactification given by  $t \mapsto \sigma_t^{\varphi} \in \operatorname{Out}(M)$  corresponds to  $\mathbb{R} \subset \widehat{\operatorname{Sd}(M)}$ .

## Theorem (Shlyakhtenko, 1996)

The almost periodic free Araki-Woods factors M are fully classified by their Sd invariant  $Sd(M) \subset \mathbb{R}^*_{\perp}$ .

So, for almost periodic orthogonal representations U and V, we have  $\Gamma(U)''\cong\Gamma(V)''$  if and only if Sd(U)=Sd(V).

**Attention:** only the "non trivial" case, because  $\Gamma(\operatorname{id}, H_{\mathbb{R}})'' \cong L(\mathbb{F}_{\dim(H_{\mathbb{R}})})$ .

**Isomorphisms** through Shlyakhtenko's matrix models.

**Note:** unique free Araki-Woods factor of type  $III_{\lambda}$ ,  $\lambda \in (0,1)$ .

# Beyond the almost periodic case

Until now: no new quantitative invariants for free Araki-Woods factors.

But: a number of **qualitative** results, mostly based on the Connes-Takesaki **continuous core**  $core(M) = M \rtimes_{\varphi} \mathbb{R}$ .

Write  $M = \Gamma(U, H_{\mathbb{R}})''$ .

- ▶ Shlyakhtenko (1997). When U is a multiple of the regular representation, then  $\operatorname{core}(M) \cong L(\mathbb{F}_{\infty}) \overline{\otimes} B(K)$ .
  - When all tensor powers  $U_t \otimes \cdots \otimes U_t$  are disjoint from the regular representation, then  $\operatorname{core}(M) \not\cong L(\mathbb{F}_t) \overline{\otimes} B(K)$ .
- ▶ Shlyakhtenko (2002): two **non isomorphic** free Araki-Woods factors having the same  $\tau$  invariant.
- ▶ Houdayer (2008): when U is mixing, then core(M) is solid.
- ▶ Hayes (2015): when U is disjoint from the regular representation, then  $\operatorname{core}(M) \not\cong L(\mathbb{F}_t) \overline{\otimes} B(K)$ .

# Classification of orthogonal representations

Given a Borel measure  $\mu$  on  $\mathbb R$  that is symmetric, i.e.  $\mu(X) = \mu(-X)$ ,

put 
$$H_{\mathbb{R}} = \{ \xi \in L^2(\mathbb{R}, \mu) \mid \xi(-x) = \overline{\xi(x)} \}$$
 with  $(U_t \xi)(x) = \exp(\mathrm{i} tx) \xi(x)$ .

- ▶ Every orthogonal representation of  $\mathbb{R}$  is orthogonally isomorphic with a direct sum of such  $(U, H_{\mathbb{R}})$ .
- Orthogonal representations of  $\mathbb R$  are thus fully classified by a symmetric measure  $\mu$  on  $\mathbb R$  and a symmetric **multiplicity function**  $m: \mathbb R \to \mathbb N \cup \{+\infty\}$  (that we always assume to satisfy  $m(x) \geq 1$  for  $\mu$  a.e. x)
- ▶ Two such  $(\mu_i, m_i)$  define the same rep iff  $\mu_1 \sim \mu_2$  and  $m_1 = m_2$  a.e.
- We write  $\Gamma(\mu, m)''$  for the free Araki-Woods factor.

**Note:** the spectral measure of  $U \otimes V$  is  $\mu_U * \mu_V$ .

**Note:** almost periodic = atomic measure  $\mu$ .

## Non almost periodic free Araki-Woods factors

Consider the set  $\mathbb{S}(\mathbb{R})$  of symmetric probability measures  $\mu$  on  $\mathbb{R}$  such that

- writing  $\mu = \mu_c + \mu_a$ ,
- we have  $\mu_c * \mu_c \prec \mu_c$ ,
- $\blacktriangleright \mu_a$  is not concentrated on  $\{0\}$ .

Write  $\Lambda(\mu_a) = \text{subgroup of } \mathbb{R}$  generated by the atoms of  $\mu_a$ .

## Theorem (Houdayer-Shlyakhtenko-V, 2016)

For  $\mu \in \mathcal{S}(\mathbb{R})$ , the free Araki-Woods factors  $\Gamma(\mu, m)''$  are exactly classified by the subgroup  $\Lambda(\mu_a) \subset \mathbb{R}$  and the measure class of  $\mu_c * \delta_{\Lambda(\mu_a)}$ .

Here:  $\delta_{\Lambda}$  is any atomic probability measure with set of atoms  $\Lambda$ .

#### Source of many examples:

Start with  $\mu_0$  and a non trivial  $\mu_a$ . Take  $\mu = \mu_a \vee \bigvee_{n \geq 0} \mu_0^{*n}$ .

In particular: many non isomorphic  $\Gamma(\mu, m)''$  with the same  $\tau$  invariant.

## States with non amenable centralizer

**Recall:**  $M^{\psi} = \{x \in M \mid \forall y \in M : \psi(xy) = \psi(yx)\}.$ 

## Theorem (Houdayer-Shlyakhtenko-V, 2016)

Let  $M = \Gamma(\mu, m)''$  be a free Araki-Woods factor with free quasi-free state  $\varphi$ . If  $\psi$  is any faithful normal state on M such that  $M^{\psi}$  is non amenable, then

- ▶ there exist non zero projections  $p \in M^{\varphi}$  and  $q \in M^{\psi}$ ,
- ▶ and a partial isometry  $v \in M$  with  $v^*v = p$  and  $vv^* = q$ , such that

$$\psi(x) = \lambda \varphi(v^*xv)$$
 for all  $x \in qMq$ , with  $\lambda = \psi(q)/\varphi(p)$ .

#### Main consequence:

if  $\Gamma(\mu, m)'' \cong \Gamma(\nu, n)''$  and if  $\mu(t) > 0$  for some  $t \neq 0$ , there also exists an isomorphism preserving the free quasi-free states.

And then the measure class of  $\bigvee_{n\geq 1} \mu^{*n}$  becomes an invariant.

# The bicentralizer problem

- ► Connes' question: does every III₁ factor have a trivial bicentralizer ?
- ► Haagerup: yes for the hyperfinite III<sub>1</sub> factor !
- ▶ Haagerup's reformulation: trivial bicentralizer iff there exists a faithful normal state  $\psi$  such that  $(M^{\psi})' \cap M = \mathbb{C}1$ , iff the set of such  $\psi$  is dense among all normal states on M.
- $\longrightarrow$  Often,  $M^{\psi}$  is a II<sub>1</sub> factor. **But:**

## Theorem (Houdayer-Shlyakhtenko-V, 2016)

Let  $M = \Gamma(\mu, m)''$  with  $\mu$  continuous. For every faithful normal state  $\psi$  on M, we have that  $M^{\psi}$  is amenable.

Houdayer (2008): free Araki-Woods factors have a trivial bicentralizer.

# Dependence on the multiplicity function

To start with:  $\Gamma(\delta_0, m)'' \cong L(\mathbb{F}_{m(0)})$ .

- Let  $\lambda$  be the Lebesgue measure. Then,  $\Gamma(\lambda + \delta_0, 1)'' \not\cong \Gamma(\lambda + \delta_0, 2)''$ . Reason: one has all centralizers amenable and the other not.
- ▶ All  $\Gamma((\lambda, +\infty) + (\delta_0, m))''$  with  $2 \le m < +\infty$  are isomorphic, but whether they are isomorphic with  $m = +\infty$  is equivalent with the question  $L(\mathbb{F}_m) \cong L(\mathbb{F}_\infty)$ .

#### Intriguing open cases:

- ▶ Does  $\Gamma(\lambda|_{[-a,a]}, m)''$  depend on a > 0 and/or  $m \in \mathbb{N}$  ?
- Are  $\Gamma(\lambda, 1)''$  and  $\Gamma(\lambda + \delta_0, 1)''$  isomorphic ? Both have all centralizers amenable and core  $L(\mathbb{F}_{\infty}) \overline{\otimes} B(K)$ .

The free quasi-free state has trivial centralizer, resp. diffuse abelian centralizer.

# Deformation/rigidity and the conjugacy of states

Let  $\varphi$  and  $\psi$  be faithful normal states on a von Neumann algebra M.

We say that a corner of arphi is conjugate to a corner of  $\psi$  if

- ▶ there exist non zero projections  $p \in M^{\varphi}$  and  $q \in M^{\psi}$ ,
- ▶ and a partial isometry  $v \in M$  with  $v^*v = p$  and  $vv^* = q$ , such that

$$\psi(x) = \lambda \varphi(v^*xv)$$
 for all  $x \in qMq$ , with  $\lambda = \psi(q)/\varphi(p)$ .

- ▶ Two realizations of core(M): as  $M \rtimes_{\varphi} \mathbb{R}$  and as  $M \rtimes_{\psi} \mathbb{R}$ .
- ▶ In this way,  $L_{\varphi}(\mathbb{R}) \subset \operatorname{core}(M)$  and  $L_{\psi}(\mathbb{R}) \subset \operatorname{core}(M)$ .

## Theorem (Houdayer-Shlyakhtenko-V, 2016)

A corner of  $\varphi$  is conjugate to a corner of  $\psi$  if and only if  $L_{\varphi}(\mathbb{R}) \prec L_{\psi}(\mathbb{R})$  inside  $\operatorname{core}(M)$  in the sense of Popa's intertwining-by-bimodules.

# Further applications: free products

Let  $\mu$  be a continuous symmetric probability measure.

Define  $M = \Gamma(\mu, +\infty)''$  with its free quasi-free state  $\varphi$ .

## Theorem (Houdayer-Shlyakhtenko-V, 2016)

If  $(A, \tau)$  and  $(B, \tau)$  are nonamenable  $II_1$  factors with their trace, then  $(M, \varphi) * (A, \tau)$  is isomorphic with  $(M, \varphi) * (B, \tau)$  if and only if there exists t > 0 such that  $A \cong B^t$ .

Note: isomorphisms are not assumed to be state preserving.

But again: up to corners and ..., there then exists a state preserving isomorphism.

**Further applications:** many free products of amenable von Neumann algebras are **not** isomorphic to free Araki-Woods factors.

# **Strong solidity**

Free Araki-Woods factors really are "type III free group factors".

Free group factors  $M = L(\mathbb{F}_n)$ 

- ▶ (Voiculescu, 1995) have no Cartan subalgebra,
- ▶ (Ozawa, 2003) are solid:  $A' \cap M$  is amenable whenever  $A \subset M$  diffuse,
- ► (Ozawa–Popa, 2007) are strongly solid:  $\mathcal{N}_M(A)''$  is amenable whenever  $A \subset M$  is diffuse and amenable.

Free Araki-Woods factors  $M = \Gamma(\mu, m)''$ 

- ► (Shlyakhtenko, 2003) are solid,
- ► (Houdayer–Ricard, 2010) have no Cartan subalgebra.

**Note:** only consider subalgebras that are the range of a faithful normal conditional expectation.

# Strong solidity for free Araki-Woods factors

## Theorem (Boutonnet-Houdayer-V, 2015)

All free Araki-Woods factors are strongly solid.

- Let  $M = \Gamma(\mu, m)''$  be a free Araki-Woods factor with its free quasi-free state φ.
- ► Finite corners *p* core(*M*) *p* of the continuous core fall under the Ozawa-Popa theorem: tracial von Neumann algebras with Haagerup's CMAP and good deformation properties.
- ▶ But: the normalizer of  $A \subset M$  induces a **generalized** (groupoid/pseudogroup type) normalizer of core(A) inside core(M).
- Extend the Ozawa-Popa theorem to cover as well these generalized normalizers:
  - we prove that tracial von Neumann algebras with CMAP and a malleable deformation in the sense of Popa are **stably strongly solid**.