CHAIN CONTRACTION APPROACH TO (CO)HOMOLOGY COMPUTATION

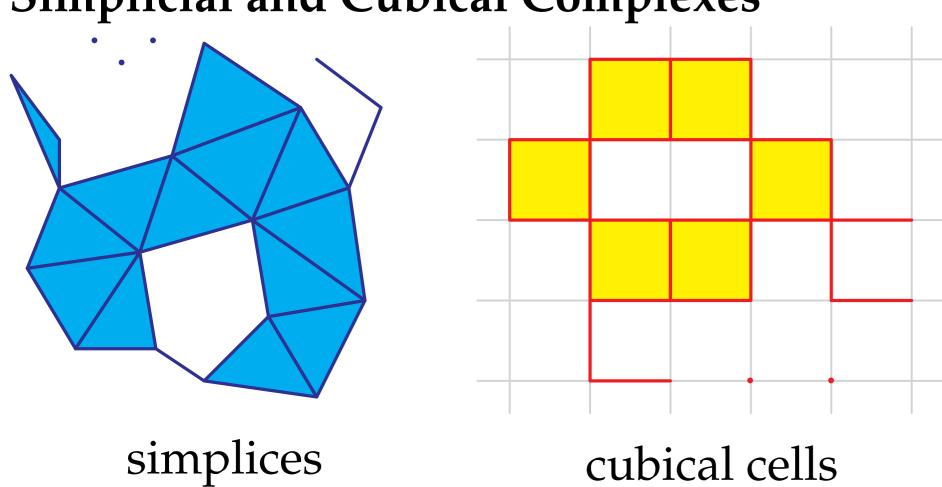
IST AUSTRIA

Paweł Pilarczyk, a Marie Curie Postdoctoral Fellow at IST Austria

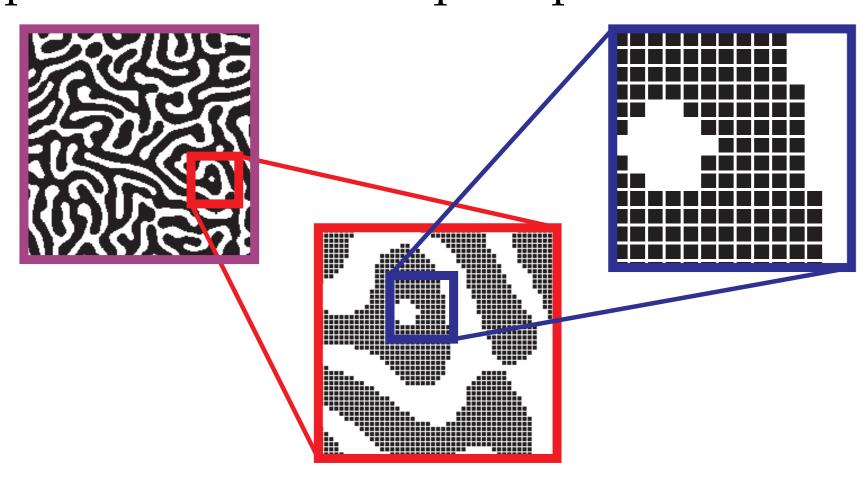
 $Institute\ of\ Science\ and\ Technology$

1. INTRODUCTION

Simplicial and Cubical Complexes



Cubical complexes appear naturally in many applications. For example, a bitmap image of a pattern consists of square pixels:

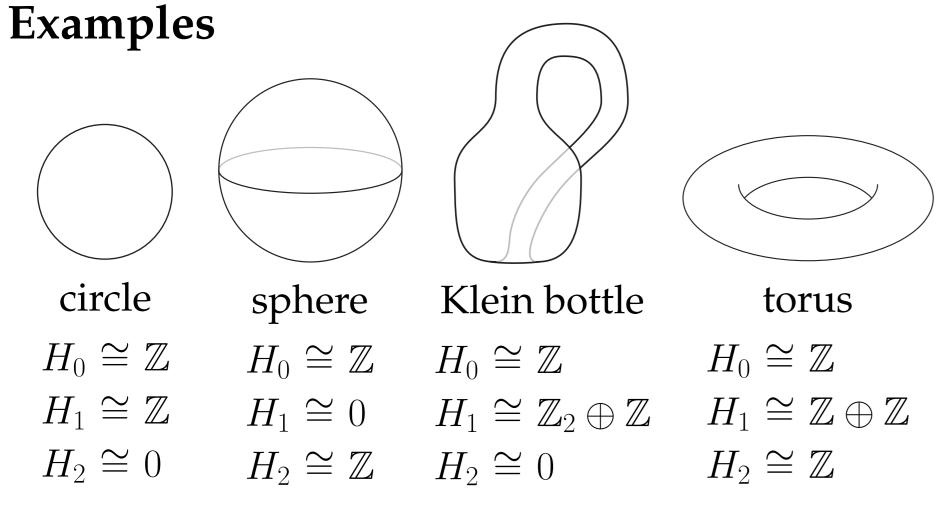


Homology and Cohomology

 $C_k :=$ the group of k-dimensional chains $\partial_k : C_k \to C_{k-1}$ — the boundary operator $B_k := \operatorname{im} \partial_{k+1} \subset C_k$ — the group of boundaries $Z_k := \ker \partial_k \subset C_k$ — the group of cycles Assume that $\partial \circ \partial \cong 0$. Then $B_k \subset Z_k$. $H_k := Z_k/B_k$ — the k-th homology group

Dual concepts lead to cohomology:

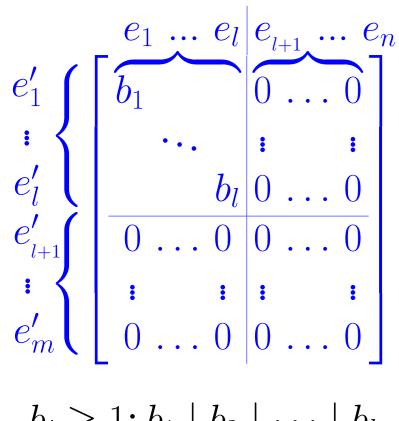
 $C^q(K) := \operatorname{Hom}(C_q(K); R)$ — cochains $\left(\delta^q(c)\right)(a) := c\left(\partial_{q+1}(a)\right)$ — coboundary $H^k := Z^k/B^k$ — the k-th cohomology group



a double-winding circle map: $f_0 = id_{H_0}$, $f_1(x) = 2x$

Homology Computation via SNF

Change the bases of each C_q to make the matrices D_q of ∂_q in Smith Normal Form:



 $b_i > 1$: torsion of H_{p-1} Betti numbers:

Betti numbers: $b_i \geq 1$; $b_1 \mid b_2 \mid \cdots \mid b_l$ $\beta_p = \operatorname{rank} Z_p - \operatorname{rank} W_p$

Differential vs. Integral Approach

(a) Differential approach: *reducing* the topological information to a minimal system that describes the degree of connectivity

(b) Integral approach: *representing* the chain contraction of the entire chain complex to a complex that represents its homology

2. MAIN RESULTS

Chain Contraction

A *chain contraction* from C_* to C'_* is a triple (f,g,ϕ) of chain maps:

 $f: C_* \to C'_*$ (projection),

 $g\colon C'_*\to C_*$ (inclusion),

 $\phi\colon C_*\to C_{*+1}$ (chain homotopy)

that satisfy the following conditions:

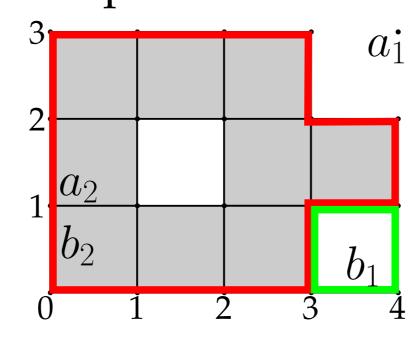
$$\mathrm{Id}_C - gf = \partial \phi + \phi \partial; \qquad fg = \mathrm{Id}_{C'};$$
 $f\phi = 0; \qquad \phi g = 0; \qquad \phi \phi = 0.$

A homology integral chain contraction is a chain contraction in which $\partial \phi \partial = \partial$ and $\phi \partial \phi = \phi$.

Algebraic-Topological Model (AT Model)

An AT model of a cell complex K is a homology integral chain contraction from $(C_*(K), \partial)$ to a free chain complex $(M_*, 0)$.

Example:



A basis of M_* : $a_1 = [4] \times [3]$ $a_2 = [0] \times [1]$ $b_1 = [3, 4] \times [0]$ $b_2 = [0] \times [0, 1]$

Algebraic Minimal Model (AM Model)

An $AM \bmod el$ of a cell complex K is a chain contraction from $(C_*(K), \partial)$ to a chain complex (M, d) such that each M_q is a free R-module and all the non-zero elements in the SNF of each d_q are non-invertible in R.

Algorithms

AT Model: An incremental algorithm (based on: Delfinado, Edelsbrunner, 1993/1995). AM Model: Computing the SNF of ∂_q for $q=n,\ldots,1$, and using the change-of-basis matrices to define the chain contraction.

Alexander-Whitney Diagonal (Coproduct)

For a simplex $\sigma = (v_0, \dots, v_n)$:

$$AW(\sigma) = \sum_{k=0}^{n} \sigma_0^k \otimes \sigma_k^n,$$

 $\sigma_i^j = (v_i, \dots, v_j)$, and \otimes is the tensor product. For a cubical cell $\sigma \in C^n(K)$:

$$AW(\sigma) = \sum_{J \subset \{1, \dots, n\}} \rho_{J, J'}(\lambda_{J'}^0 \sigma \otimes \lambda_J^1 \sigma),$$

where: $J' = \{1, \ldots, n\} \setminus J$, $\rho_{J,J'} = (-1)^{\nu}$, where ν is the number of pairs $(i,j) \in J \times J'$ such that j < i, and $\lambda_J^m \sigma$ is obtained from σ by replacing nondegenerate intervals indexed by J with left

(m = 0) or right (m = 1) endpoints. Cup Product in Cohomology

Let (f, g, ϕ, M_*, d) be an AM model of a cell complex K, or an AT model if d = 0. Then the cup product of two cochains $c: M_i \to R$ and $c': M_j \to R$ is the cochain $c \smile c': M_{i+j} \to R$:

$$(c \smile c')(\sigma_{i+j}) = (\mu \circ (c \otimes c') \circ (f \otimes f) \circ AW \circ g)(\sigma_{i+j}),$$

where $\sigma_{i+j} \in M_{i+j}$, μ is the multiplication in R, and \otimes is the tensor product of homomorphisms: $(h_1 \otimes h_2)(x_1 \otimes x_2) = h_1(x_1) \otimes h_2(x_2)$.

3. SOFTWARE & EXAMPLES

Software Implementation

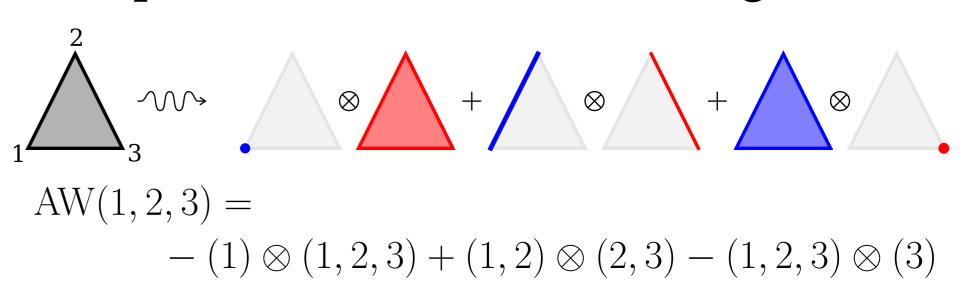
Generic programming in C++: Templates of algorithms that work for arbitrary cell complexes (simplicial, cubical, etc.) and for arbitrary rings of coefficients (\mathbb{Z} , \mathbb{Z}_p , etc.)

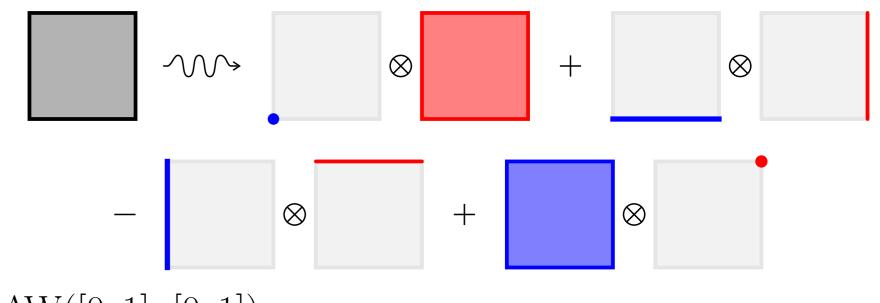
Configurable additional features: periodic boundary conditions, reduced (co)homology ($\emptyset \in K$), relative (co)homology (for pairs).

Programming library interface + executable programs working with text data formats: computing AT models and AM models, computing the cohomology ring,

for simplicial and cubical complexes, with coefficients in \mathbb{Z} and \mathbb{Z}_p . License: GNU GPL version 3.

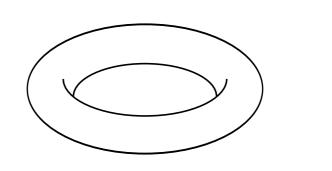
http://www.pawelpilarczyk.com/chaincon/ Example: 2-dimensional A-W Diagonal

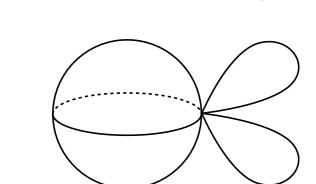


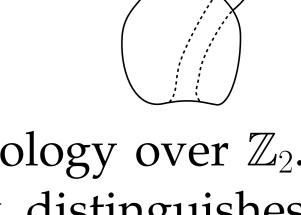


 $AW([0, 1] \times [0, 1]) = [0] \times [0] \otimes [0, 1] \times [0, 1] + [0, 1] \times [0] \otimes [1] \times [0, 1] - [0] \times [0, 1] \otimes [0, 1] \times [1] + [0, 1] \times [0, 1] \otimes [1] \times [1]$

Example: Different Topological Spaces







All have isomorphic (co)homology over \mathbb{Z}_2 . Cup product in cohomology distinguishes them. A-W coproduct of 2D homology generators restricted to 1-dimensional chains:

torus: $AW(c_1) = b_1 \otimes b_2 + b_2 \otimes b_1$; sphere with two circles: $AW(c_1) = 0$; Klein bottle: $AW(c_1) = b_1 \otimes b_2 + b_2 \otimes b_1 + b_2 \otimes b_2$

Reference

P. Pilarczyk, P. Real, Computation of cubical homology, cohomology, and (co)homological operations via chain contraction, *Adv. Comput. Math.*, DOI: 10.1007/s10444-014-9356-1.

Acknowledgments

Joint work with Pedro Real (Univ Seville, Spain).

Supported in part from:

- -Portuguese FCT (Scinece and Technology Foundation), project PTDC/MAT/098871/2008,
- ESF Research Networking Programme on "Applied and Computational Algebraic Topology" (ACAT),
- -European Union's 7th Framework Programme (FP7/2007-2013) under REA grant agreement no. 622033.

