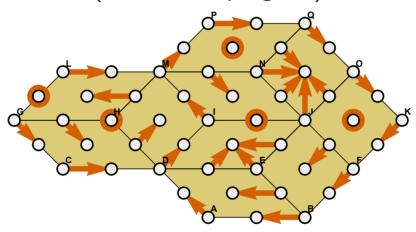
Discrete, Computational and Algebraic Topology Copenhagen, 12th November 2014

Morse-Forman-Conley theory for combinatorial multivector fields

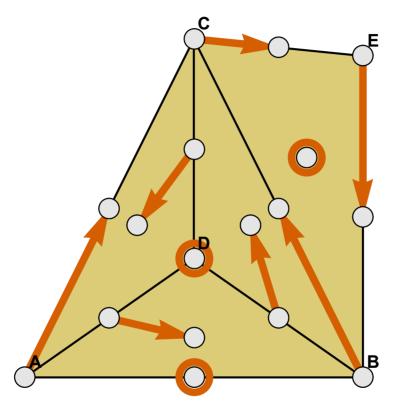
(research in progress)



Marian Mrozek

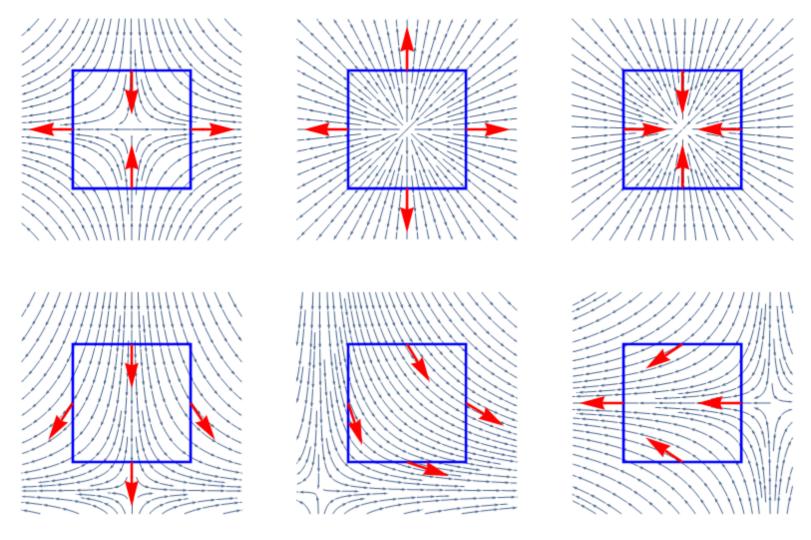
Jagiellonian University, Kraków, Poland

Goals 2



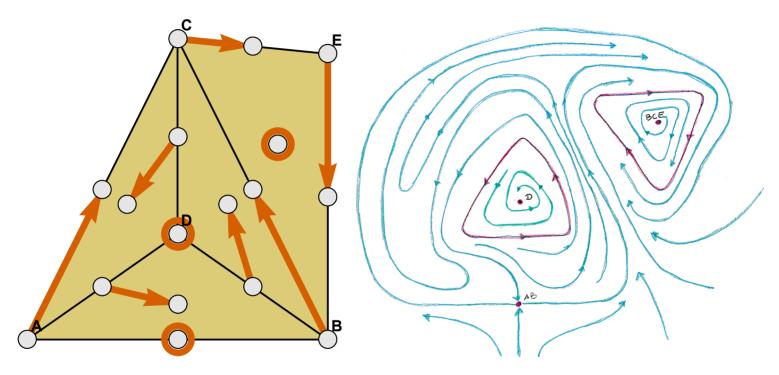
1) Bring Forman's combinatorial vector fields into the framework of classical topological dynamics.

Goals 3



2) Extend the theory to combinatorial multivector fields.

Goals 4



3) Construct bridges between the combinatorial dynamics on the family of cells of CW complexes and continuous dynamics on the topological space of the complex.

Outline 5

- Topology of finite sets and Lefschetz complexes
- Combinatorial multivector fields and the associated dynamics
- Isolated invariant sets and the Conley index
- Morse decompositions
- Relation to classical dynamics (joint with T. Kaczynski and Th. Wanner)

Topology of finite sets. 6

Theorem. (P.S. Alexandroff, 1937) There is a one-to-one correspondence between T_0 topologies and partial orders on a finite set X.

$$\operatorname{cl} A := \{ x \in X \mid \exists_{y \in A} \ x \le y \}$$
$$x \le y : \Leftrightarrow x \in \operatorname{cl}\{y\}$$

The order complex of a finite poset (X, \leq) is the abstract simplicial complex consisting of linearly ordered subsets of X.

Theorem. (M.C. McCord, 1966) Each finite topological space X is weakly homotopy equivalent to its order complex.

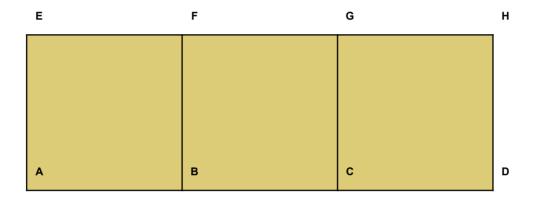
Theorem. (J.A. Barmak, 2011) Each h-regular CW complex K is weakly homotopy equivalent to the order complex of the collection of its cells.

Lefschetz complexes 7

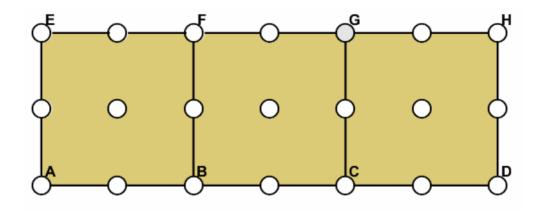
- $\bullet X = (X_q)_{q \in \mathbb{Z}}$ a finite set with gradation
- $\kappa: X \times X \to R$ s.t. $\kappa(s,t) \neq 0$ implies $s \in X_q, t \in X_{q-1}$
- ullet $\partial^{\kappa}:R(X)\to R(X)$ given by $\partial^{\kappa}(s):=\sum_{t\in X}\bar{\kappa(s,t)}t$
- Lefschetz complex a pair (X, κ) s.t. $(R(X), \partial^{\kappa})$ is a free chain complex.
- \bullet $H^{\kappa}(X)$ homology of $(R(X), \partial^{\kappa})$
- $\bullet\ t \prec_{\kappa} s : \Leftrightarrow \ \kappa(s,t) \neq 0 \text{ induces } \leq_{\kappa} \text{the Lefschetz partial order}$
- \bullet T_0 Lefschetz topology on X given by \leq_{κ}

Homology of Lefschetz complexes₈

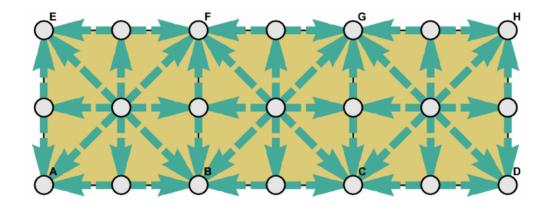
Homology of Lefschetz complexes 9



Homology of Lefschetz complexes 10



Homology of Lefschetz complexes 11

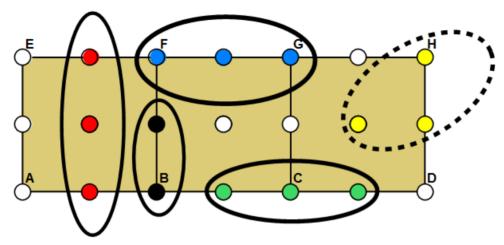


κ -subcomplexes 12

- ullet $A\subset X$ is a κ -subcomplex of X if $(A,\kappa_{|A\times A})$ is a Lefschetz complex.
- ullet mo $A:=\operatorname{cl} A\setminus A$ mouth of A
- \bullet A is proper if mo A is closed.

Proposition. Every proper subset of X is a κ -subcomplex. In particular open and closed sets (in the Lefschetz topology) are κ -subcomplexes.

κ -subcomplexes 13

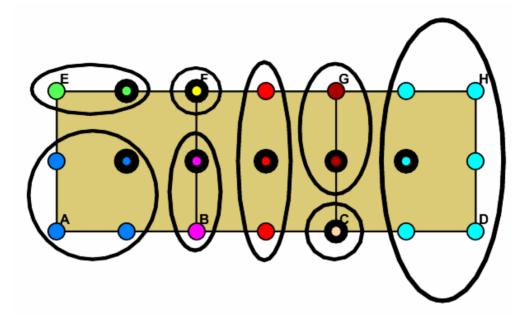


- $A \subset X$ is a κ -subcomplex of X if $(A, \kappa_{|A \times A})$ is a Lefschetz complex.
- ullet mo $A:=\operatorname{cl} A\setminus A$ mouth of A
- \bullet A is proper if mo A is closed.

Proposition. Every proper subset of X is a κ -subcomplex. In particular open and closed sets (in the Lefschetz topology) are subcomplexes.

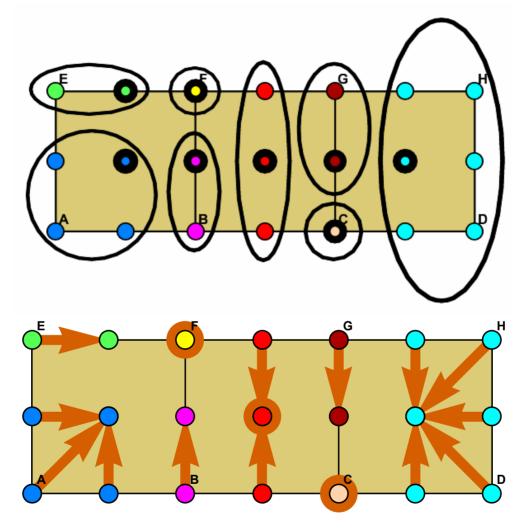
A proper $A \subset X$ is a zero space if $H^{\kappa}(A) = 0$.

Combinatorial multivector fields 14



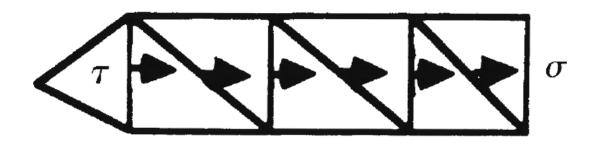
- ullet A multivector is a proper $V\subset X$ with a unique maximal element.
- ullet A multivector field is a partition ${\mathcal V}$ of X into multivectors.
- ullet V is regular if V is a zero space. Otherwise it is critical.

Combinatorial multivector fields 15



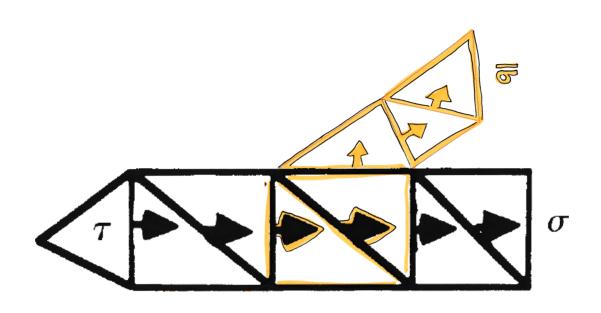
- ullet A multivector is a proper $V\subset X$ with a unique maximal element.
- ullet A multivector field is a partition ${\mathcal V}$ of X into multivectors.
- ullet V is regular if V is a zero space. Otherwise it is critical.

Forman's paths 16



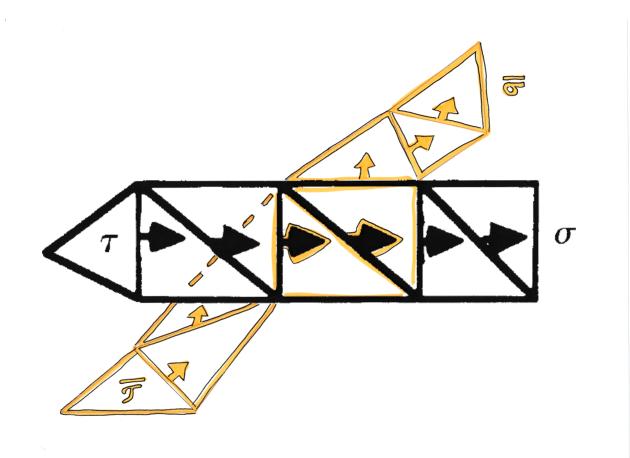
- \bullet Forman's path: a sequence of $\mathcal V\text{-arrows }x=(x_i^-,x_i^+)_{i=1}^n$ such that $x_i^+\succ x_{i+1}^-$
- ullet A path is closed if $x_n^+ = x_1^-$

Forman's paths 17



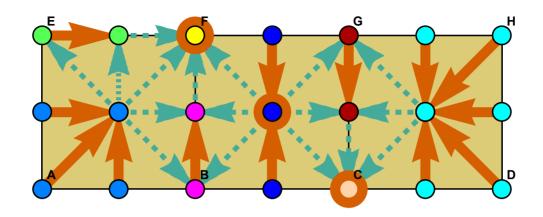
- \bullet Forman's path: a sequence of $\mathcal V\text{-arrows }x=(x_i^-,x_i^+)_{i=1}^n$ such that $x_i^+\succ x_{i+1}^-$
- ullet A path is closed if $x_n^+ = x_1^-$

Forman's paths 18



- \bullet Forman's path: a sequence of $\mathcal V$ -arrows $x=(x_i^-,x_i^+)_{i=1}^n$ such that $x_i^+\succ x_{i+1}^-$
- ullet A path is closed if $x_n^+ = x_1^-$

Combinatorial multivalued map 19



$$x^+ := \max[x]_{\mathcal{V}}$$

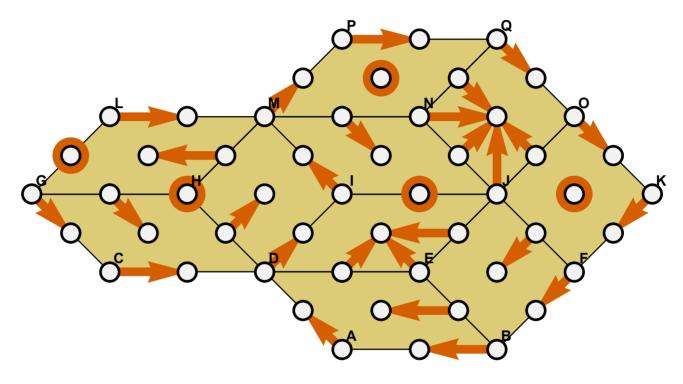
$$\langle x \rangle_{\mathcal{V}} := \begin{cases} [x]_{\mathcal{V}} & \text{if } [x]_{\mathcal{V}} \text{ is regular,} \\ [x]_{\mathcal{V}} \setminus \{x^+\} & \text{otherwise.} \end{cases}$$

Definition. The multivalued map $\Pi_{\mathcal{V}}: X \stackrel{\longrightarrow}{\to} X$ given by

$$\Pi_{\mathcal{V}}(x) = \begin{cases} \{x^+\} & \text{if } x < x^+, \\ \operatorname{cl} x \setminus \langle x \rangle_{\mathcal{V}} & \text{otherwise.} \end{cases}$$

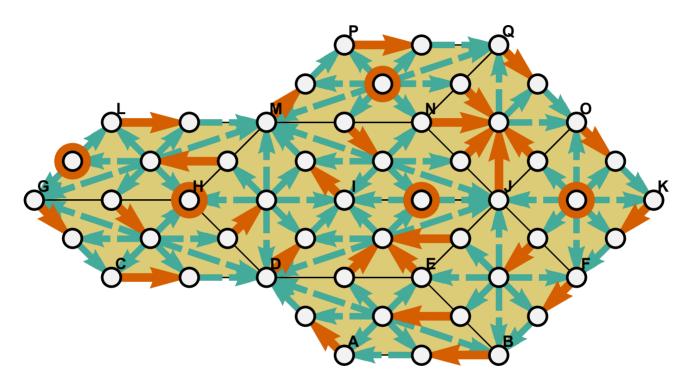
is the combinatorial multivalued map associated with \mathcal{V} .

Solutions and paths 20



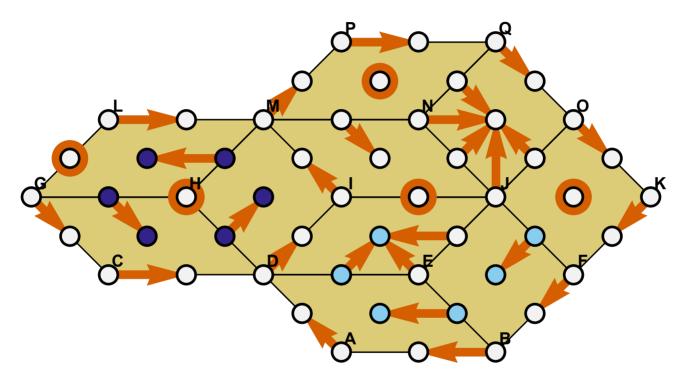
• A partial map $\gamma: \mathbb{Z} \longrightarrow X$ is a solution of \mathcal{V} if $\gamma(i+1) \in \Pi_{\mathcal{V}}(\gamma(i))$ for $i, i+1 \in \text{dom } \gamma$.

Solutions and paths 21



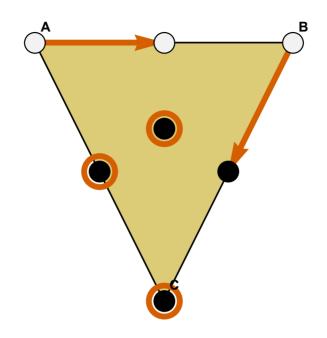
• A partial map $\gamma: \mathbb{Z} \longrightarrow X$ is a solution of \mathcal{V} if $\gamma(i+1) \in \Pi_{\mathcal{V}}(\gamma(i))$ for $i, i+1 \in \text{dom } \gamma$.

Solutions and paths 22



• A partial map $\gamma: \mathbb{Z} \longrightarrow X$ is a solution of \mathcal{V} if $\gamma(i+1) \in \Pi_{\mathcal{V}}(\gamma(i))$ for $i, i+1 \in \text{dom } \gamma$.

Invariant sets and V-compatibility 23

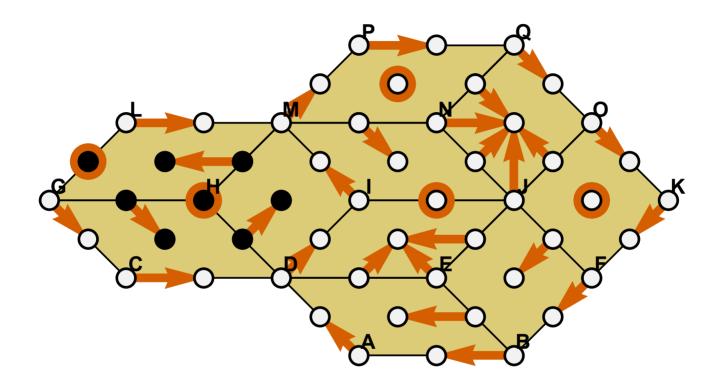


 $\operatorname{Inv} A:=\{\,x\in A\mid \,\exists\,\,\varrho:\mathbb{Z}\to A \text{ a solution s.t. }\varrho(0)=x.\,\}$ Let $S\subset X.$

Definition. S is \mathcal{V} -invariant if $\operatorname{Inv} S = S$.

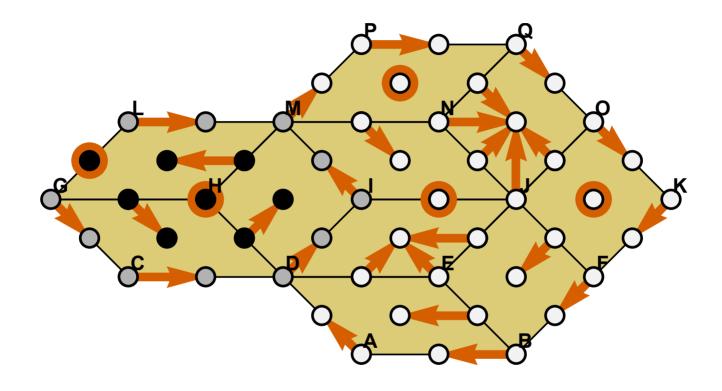
Definition. $A \subset X$ is \mathcal{V} -compatible iff $x \in A \Rightarrow [x]_{\mathcal{V}} \subset A$

Isolated invariant sets 24



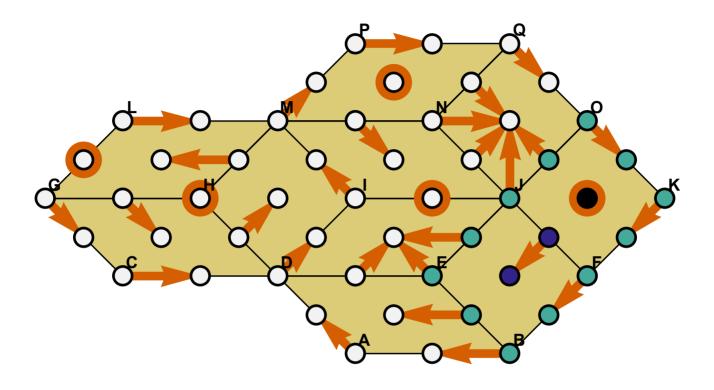
Definition. S is an isolated invariant set of $\mathcal V$ if it is invariant, $\mathcal V$ -compatible and $\operatorname{mo} S$ is closed.

Isolated invariant sets 25



Definition. S is an isolated invariant set of $\mathcal V$ if it is invariant, $\mathcal V$ -compatible and $\operatorname{mo} S$ is closed.

Index pairs 26



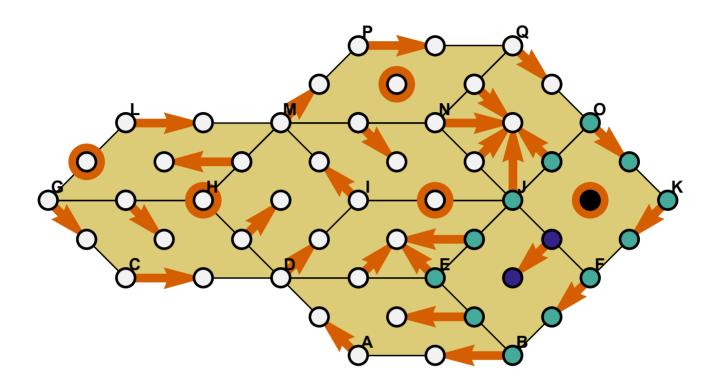
Definition. A pair $\mathcal{P}=(\mathcal{P}_1,\mathcal{P}_2)$ of closed subsets of \mathcal{X} is an index pair for \mathcal{S} iff

(i)
$$x \in \mathcal{P}_2, y \in \mathcal{P}_1 \cap \Pi_{\mathcal{V}}(x) \Rightarrow y \in \mathcal{P}_2$$
,

(ii)
$$x \in \mathcal{P}_1$$
, $\Pi_{\mathcal{V}}(x) \setminus \mathcal{P}_1 \neq \emptyset \implies x \in \mathcal{P}_2$,

(iii)
$$S = Inv(\mathcal{P}_1 \setminus \mathcal{P}_2)$$
.

Conley index 27



Theorem.

- ullet For every S an isolated invariant set $(\operatorname{cl} S, \operatorname{mo} S)$ is an index pair for S.
- ullet If P and Q are index pairs for S, then $H^{\kappa}(P_1\setminus P_2)$ and $H^{\kappa}(Q_1\setminus Q_2)$ are isomorphic .

Conley index 28

Definition. The Conley index of S is the homology

$$H^{\kappa}(P_1 \setminus P_2) = H^{\kappa}(P_1, P_2)$$

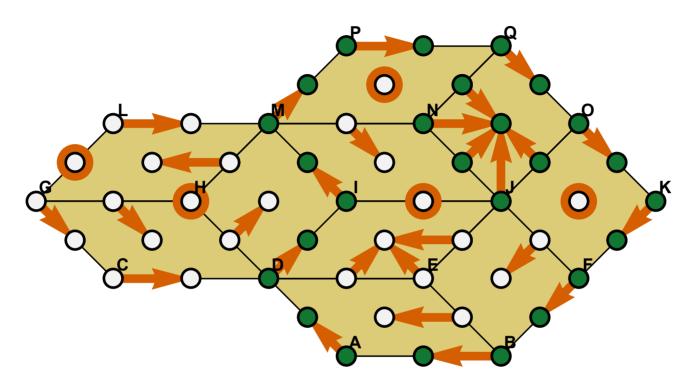
for any index pair P of S.

The Conley polynomial of S is

$$p_S(t) := \sum_{i=0}^{\infty} \beta_i(S) t^i,$$

where $\beta_i(S) := \operatorname{rank} H_i(P_1, P_2)$.

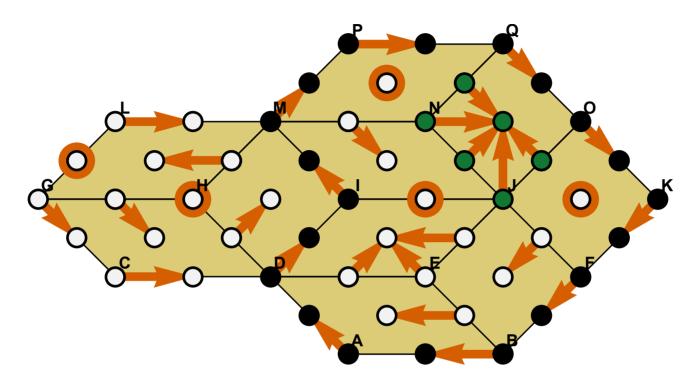
Attractors 29



Let $S \subset X$ be isolated invariant.

- $N \subset S$ is a trapping region if for every solution $\gamma : \mathbb{Z}^+ \to S$ condition $\gamma(0) \in N$ implies im $\gamma \subset N$.
- ullet A is an attractor in S if iff there is a trapping region N such that $A = \operatorname{Inv} N$.

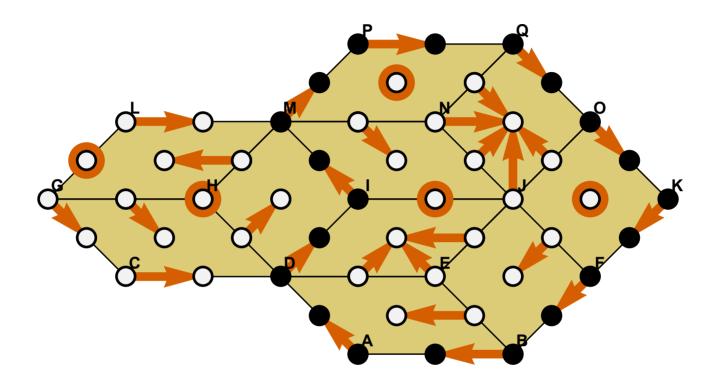
Attractors 30



Let $S \subset X$ be isolated invariant.

- $N \subset S$ is a trapping region if for every solution $\gamma : \mathbb{Z}^+ \to S$ condition $\gamma(0) \in N$ implies im $\gamma \subset N$.
- ullet A is an attractor in S if iff there is a trapping region N such that $A = \operatorname{Inv} N$.

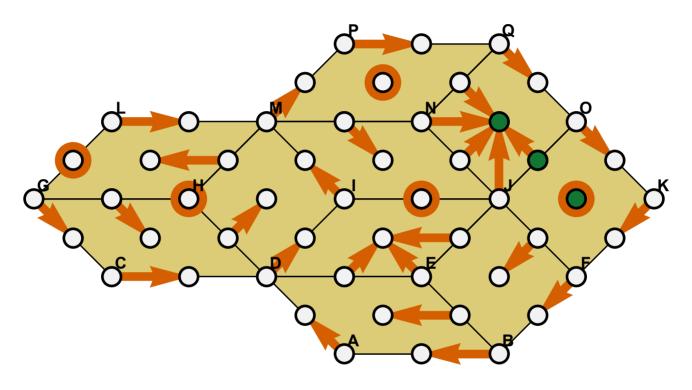
Attractors 31



Theorem. The following conditions are equivalent:

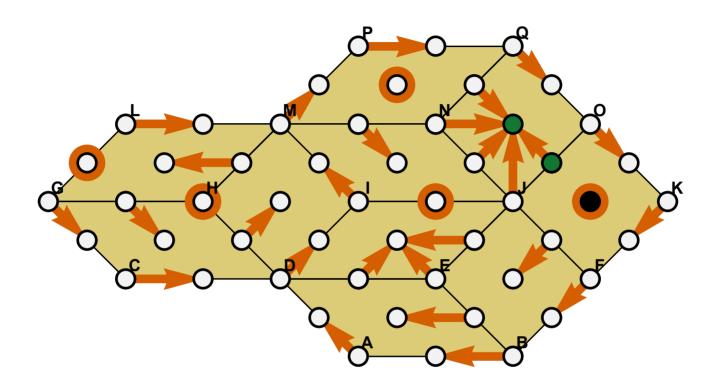
- (i) A is an attractor,
- (ii) A is invariant and closed in S,
- (iii) A is isolated invariant and closed in S.

Repellers 32



- $N \subset S$ is a backward trapping region if N is \mathcal{V} -compatible and for every solution $\gamma: \mathbb{Z}^- \to S$ condition $\gamma(0) \in N$ implies $\operatorname{im} \gamma \subset N$.
- ullet R is an repeller in S if iff there is a backward trapping region N such that $R = \operatorname{Inv} N$.

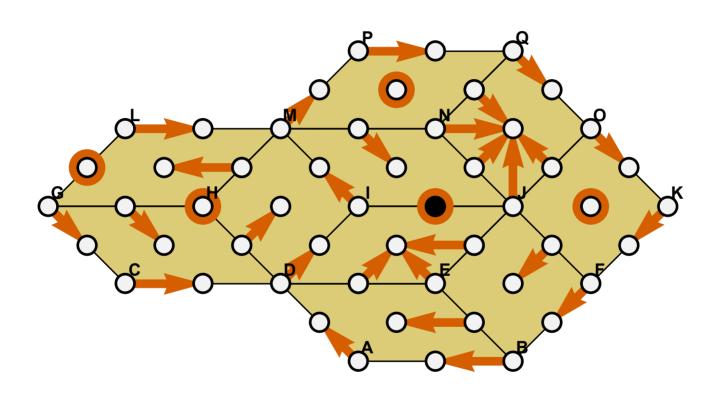
Repellers 33



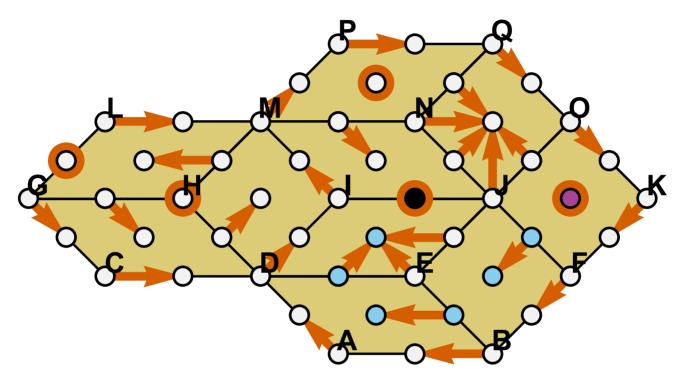
Theorem. The following conditions are equivalent:

- (i) R is a repeller,
- (ii) R is isolated invariant and open in S.

Hyperbolic fixed point 34



α and ω limit sets 35

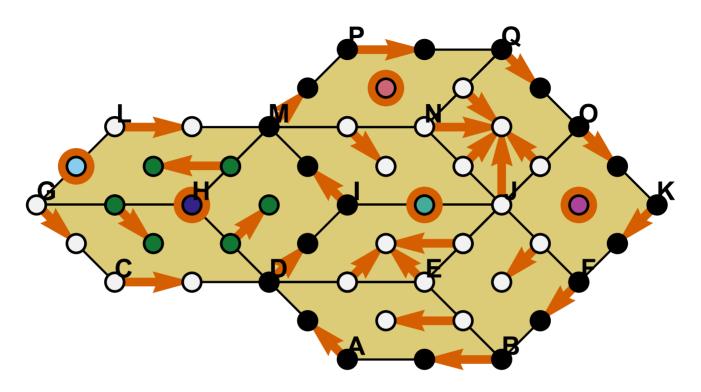


 $\varrho:\mathbb{Z}\to S$ - a full solution. The α and ω limit sets of ϱ are

 $\alpha(\varrho) := \text{Inv im } \varrho_{\mathbb{Z}^-},$

 $\omega(\varrho) := \operatorname{Invim} \varrho_{\mathbb{Z}^+}.$

Morse decompositions 36

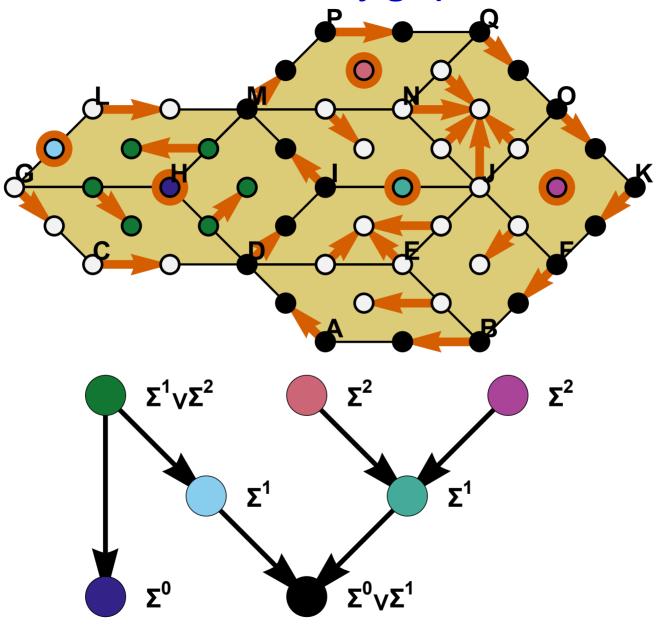


Definition. The collection $M=\{M_p\mid p\in P\}$ is a Morse decomposition of S if M is a family of mutually disjoint invariant subsets of S and for every solution ϱ such that

$$\varrho(0) \in S \setminus \bigcup_{p \in P} M_p$$

there exists $p, p' \in P$ such that p < p', $\alpha(\varrho) \subset S_1$, $\omega(\varrho) \subset S_2$.

Morse-Conley graph 37

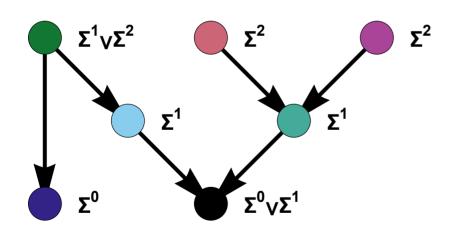


Morse inequalities 38

Theorem. Given a Morse decomposition $M=\{M_{\iota} \mid \iota \in P\}$ of an isolated invariant set S we have

$$\sum_{\iota \in P} p_{M_{\iota}}(t) = p_{S}(t) + (1+t)q(t)$$

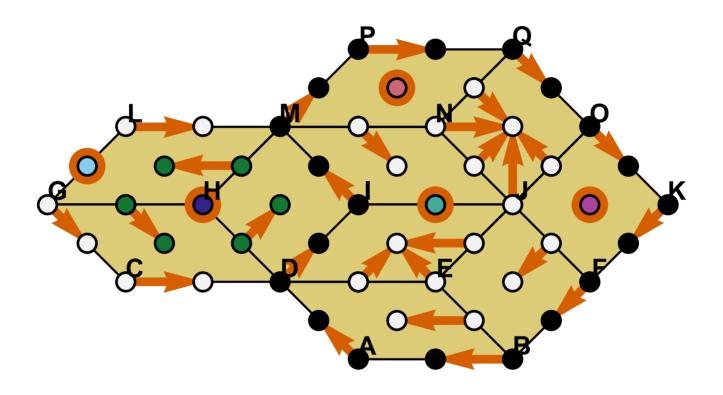
for some non-negative polynomial q.



$$p_1(t) = 1$$
 $p_2(t) = 1 + t$
 $p_3(t) = t$
 $p_4(t) = t$
 $p_5(t) = t + t^2$
 $p_6(t) = t^2$
 $p_7(t) = t^2$

$$\sum_{\iota \in P} p_{M_{\iota}}(t) = 2 + 4t + 3t^2 = 1 + (1+t)(1+3t) = p_{S}(t) + (1+t)q(t)$$

Concise Morse decomposition 39



In the setting of CW complexes: the cells not in a Morse set may be quotiented out.

Relation to classical theory 40

 \mathcal{X} - the collection of cells of a CW complex $X = \bigcup \mathcal{X}$.

Conjecture. Given a Morse decomposition

$$\mathcal{M} = \{ \mathcal{M}_p \mid p \in P \}$$

of \mathcal{X} , there exists a flow φ on X and a Morse decomposition $M = \{ M_p \mid p \in P \}$ of φ such that for any interval I in P the Conley indexes of $\mathcal{M}(I)$ and M(I) coincide.

Theorem. (T. Kaczynski, MM, Th. Wanner) Assume \mathcal{X} is the collection of cells of a simplicial complex $X = \bigcup \mathcal{X}$. Given a Morse decomposition $\mathcal{M} = \{ \mathcal{M}_p \mid p \in P \}$ of \mathcal{X} , there exists an usc, acyclic valued, homotopic to identity, multivalued map $F: X \rightrightarrows X$ and a Morse decomposition $M = \{ M_p \mid p \in P \}$ of the induced multivalued dynamical system such that for any interval I in P the Conley indexes of $\mathcal{M}(I)$ and M(I) coincide.

Conclusion and future work 41

- Morse-Conley theory for combinatorial multivector fields may be constructed.
- It resembles in many, but not all aspects the classical theory.
- It provides a very concise description of dynamics.
- isolating neighborhoods?
- properties of the Conley index
- connection matrix theory
- concise approximation of classical dynamics
- time-discrete dynamical systems