
Discrete Morse functions on infinite
complexes

Neža Mramor Kosta
joint work with

Rafael Ayala, Gregor Jerše, José Antonio Vilches

University of Ljubljana, Slovenia

Discrete, Computational and Algebraic Topology,
Copenhagen 2014



Discrete Morse functions

M regular locally finite cell complex (simplicial, cubical, . . . )

A discrete Morse function F on M is a labelling of the cells with
labels t ∈ R that is monotone increasing with respect to
dimension, with at most one exception on each cell.

That is, for each cell σ(k) one of the following is true
I F (τ) ≥ F (σ) for exactly one face τ (k−1) < σ

I F (σ) ≥ F (ν) for exactly one coface ν(k+1) > σ

I F (τ) < F (σ) < F (ν) for all faces τ and cofaces ν.

There is an alternative nice definition due to Benedetti . . .



Discrete Morse functions

M regular locally finite cell complex (simplicial, cubical, . . . )

A discrete Morse function F on M is a labelling of the cells with
labels t ∈ R that is monotone increasing with respect to
dimension, with at most one exception on each cell.

That is, for each cell σ(k) one of the following is true
I F (τ) ≥ F (σ) for exactly one face τ (k−1) < σ

I F (σ) ≥ F (ν) for exactly one coface ν(k+1) > σ

I F (τ) < F (σ) < F (ν) for all faces τ and cofaces ν.

There is an alternative nice definition due to Benedetti . . .



Discrete Morse functions

M regular locally finite cell complex (simplicial, cubical, . . . )

A discrete Morse function F on M is a labelling of the cells with
labels t ∈ R that is monotone increasing with respect to
dimension, with at most one exception on each cell.

That is, for each cell σ(k) one of the following is true
I F (τ) ≥ F (σ) for exactly one face τ (k−1) < σ

I F (σ) ≥ F (ν) for exactly one coface ν(k+1) > σ

I F (τ) < F (σ) < F (ν) for all faces τ and cofaces ν.

There is an alternative nice definition due to Benedetti . . .



Discrete Morse functions

M regular locally finite cell complex (simplicial, cubical, . . . )

A discrete Morse function F on M is a labelling of the cells with
labels t ∈ R that is monotone increasing with respect to
dimension, with at most one exception on each cell.

That is, for each cell σ(k) one of the following is true
I F (τ) ≥ F (σ) for exactly one face τ (k−1) < σ

I F (σ) ≥ F (ν) for exactly one coface ν(k+1) > σ

I F (τ) < F (σ) < F (ν) for all faces τ and cofaces ν.

There is an alternative nice definition due to Benedetti . . .



The gradient vector field

A discrete Morse function F on M induces a partial pairing V
on the cells of M.

It consisting of pairs of cells such that

V = {(τ (k−1), σ(k)) | τ < σ,F (τ) ≥ F (σ)}.

We call V the discrete gradient vector field of F and denote it
by arrows pointing from a face to its paired coface.

Cells that appear in V are reguar and cells that do not are
critical.
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Example 1

Here is an example of a discrete Morse function and the
induced gradient vector field on a torus:

A discrete Morse function on a finite cell complex has at least
one critical vertex, at the minimal value.
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Example 2

Here is an example on an infninite strip:

On an infinite complex a discrete Morse function can have no
critical cells.
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Gradient paths

A sequences of adjoining arrows forms a gradient path or a
V-path.
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This is a discrete vector field on a genus 2 surface with many
V -paths.
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Discrete vector fields

A discrete vector field on M is a partial pairing on the cells of M

W = {(τ (k−1), σ(k)) | τ < σ}

with every cell of M in at most one pair of W .
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Integrability

A discrete vector field on a finite complex is the gradient field of
a discrete Morse function if and only if it is acyclic (Forman).

Algorithm for assigning values:
I on critical cells, the value is the dimension
I along V -paths of dimension k assign decreasing values

from k towards k − 1, in case of a comflict (where V -paths
merge) the lowest value wins.

This gives a selfindexing discrete Morse function.

It works also for infinite locally finite complexes.
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Morse inequalities on finite complexes

The following result is well known:

Theorem (Forman)
If F is a discrete Morse function on M with ck critical cells of
dimension k and bk is the k-th Betti number of M,
k = 0,1, . . . ,n (n is the dimension of M). Then:

1. ck ≥ bk for all k,
2. ck − ck−1 + · · · ± c0 ≥ bk − bk−1 + · · · ± b0, for all k,
3. c0 − c1 + · · ·+ (−1)ncn = b0 − b1 + · · ·+ (−1)nbn = χ(M).

Even more: the discrete gradient vector field gives an algorithm
for computing the homology of M.

Example 2 above shows that Mores inequalities do not hold in
general on infinite complexes.
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Rays

V a discrete vector field.

A k -ray in V is an infinite sequence

τ
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0 < σ
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(k)
1 , . . .

with τi 6= τi+1 for all i = 0,1, . . ..

Two rays are equivalent if they coincide from some common
cell on.
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Descending and ascending rays

A k-ray is

I descending if the arrows go from τi to σi for all i and

I ascending, if the arrows go from τi , σi−1 for all i i .

A descending ray is an infinite gradient path.
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Critical elements

Theorem (Ayala, Fernándes, Vilches)
If F is a discrete Morse function on an infinite locally finite
regular cell complex M with ck critical cells and dk equivalence
classes of descending rays, and if bk is the k-th Betti number of
M, k = 0,1, . . . ,n (n is the dimension of M). Then:

1. (ck+dk )−(ck−1+dk−1)+· · ·±(c0+d0) ≥ bk−bk−1+· · ·±b0
for all k = 0,1, . . . ,n − 1,

2. ck + dk ≥ bk for all k = 0,1, . . . ,n,
3. (c0 + d0)− (c1 + d1) + · · ·+ (−1)ncn =

b0 − b1 + · · ·+ (−1)nbn = χ(M).

So, define the critical elements of a discrete Morse function on
an infinite locally finite regular cell complex to be the critical
cells and equivalence classes of maximal descending rays.

ci and di are all finite in the above theorem.
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Reversing rays

The proof of this is based on the idea of reversing rays:

Let r be a descending k -ray, pick a cell τ k−1 in r , and reverse
all arrows from there on:

The descending ray is replaced by the critical cell τ and an
ascending ray.
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Multirays

Reversing rays is permissible only when no cycles are
generated.

A cycle is generated if arrows are reversed on a ray where a
bypass exists:

Kukieła (in the more general context of Morse matchings on
posets) defined the concept of a multiray, which is a ray along
which there are infinitely many bypasses, and showed that
multirays induces an infinite number of equivalence classes of
rays.
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Sublevel complexes
The sublevel complex of F at a is

M(a) =
⋃

F (σ)≤a

⋃
τ≤σ

τ

 .

Theorem (Forman’s Main theorem)
If M is finite, then

I if F−1([a,b]) contains no critical cells of F then M(b)
collapses onto M(a),

I if F−1([a,b]) contains one critical cell of dimension k then
M(b) is homotopy equivalent to M(a) with a k-cell attached
along its boundary.

In particular, M has the homotopy type of a CW complex with
one cell of dimension k for each critical cell of F of dimension k .
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Example

M = M(2)

F has no critical cells, in particular no critical cell in F−1([1,2]),
but M(1) is not homotopy eqivalent to M(2).

M(1)



Proper discrete Morse functions

The discrete Morse function F is proper if F−1([a,b]) contains
at most finitely many cells for any interval [a,b]. In this case
Forman’s main theorem easily generalizes:

For a proper discrete Morse function Forman’s Main theorem is
valid.



Existence of proper integrals

Which discrete vector fields have proper integrals?

No V -loops does not suffice:

For any interval [−a,a], F−1([−a,a]) is infinite.



Incident rays

The descending region of a k-cell σ consists of all k
dimensional V -paths beginning in the boundary of σ. In
addition, we add recursively all regular pairs (τ, ν) of lower
dimension in the boundary of their union with all cofaces of τ
except ν already included.

The descending region of a ray is the union of the descending
regions of its cells.

A ray r1 of dimension d1 is incident to a ray r2 of dimension
d2 > d1 when D(r1) ∩ D(r2) contains infinitely many cells.



Classification theorem

A forbidden configuration is a descending ray with an incident
ascending ray of lower dimension in the boundary of its
descending region.

Theorem (Ayala, Jerše, M, Vilches)
A discrete vector field on a locally finite infinite regular cell
complex M with finitely many critical elements admits a proper
integral if and only if it has no forbidden configurations.

On complexes of dimension 1 (graphs) no V -loops suffices.



Proof

The proof is an algorithm for constructing such an integral:
1. all critical cells are given the value equal to their dimension,
2. M is expressed as the union M = ∪∞i=0Ki of an increasing

sequence of finite sub complexes with the property, that
each Ki intersects any ray in only one component, and that
it includes the whole closed descending region of a cell
that does not belong to any ray,

3. F is defined on K0 essentially by carefully assigning
decreasing values along V -paths,

4. F is inductively extended from Ki to Ki+1 in the same way.



Homology

Theorem (Kukieła)
If M is a regular cell complex (not necessarily locally finite) with
an acyclic discrete gradient field V that has a finite number of
equivalence classes of maximal descending rays then there
exists an acyclic gradient field V ′ with no descending rays, with
one critical cell of dimension k for each critical cell of V of the
same dimension and in addition a critical cell of dimension k for
each descending k-ray of V .

This discrete vector field gives a Morse chain complex with
homology isomorphic to the homology of K .

Actually the theorem is proved in the more general setting of
matchings on posets.
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At the very end: an attempt at motivation

There are many interesting topological objects which can be
represented as infinite regular cell complexes.

My example: the grope, the classifying space of the grope
group π

π is a countably generated locally free group which is not free.

It follows from the Stallings-Swan theorem its cohomological
dimension is 2, so there exists a nontrivial 2-cocycle
a ∈ H2(π;M) for some π-module M.

Dranishnikov and Rudyak: the cup product b ∪ b ∈ H2(π; I ⊗ I)
of 2 copies of the Berstein class b is nontrivial.

The Berstein class b is an element of H1(G; I), where
I = kerZ[G]→ Z is the augmentation ideal.
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The grope (by Aleš Vavpetič)
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(X0

ι0−→ X1
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A discrete vector field on the grope

The homology groups H1 and H2 are trivial but . . .

a discrete vector field on the grope has infinitely many
descending rays.

Could we obtain a nontrivial dimension two cohomology
element from (some version of) discrete Morse theory?

Thank you!
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