Statistical Topological Data Analysis

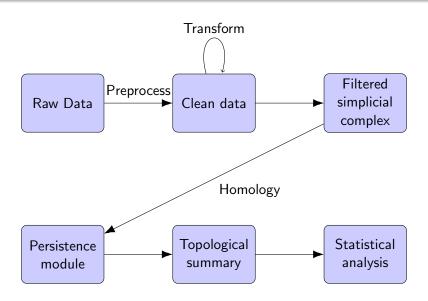
Peter Bubenik

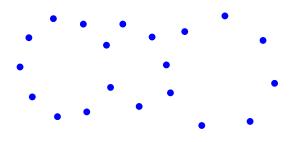
Cleveland State University / University of Florida

November 10, 2014

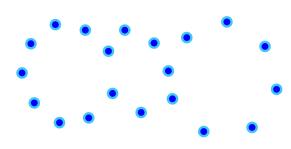
Discrete, Computational and Algebraic Topology University of Copenhagen

Topological Data Analysis

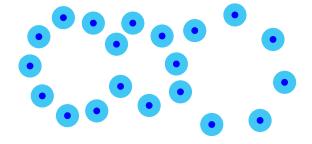




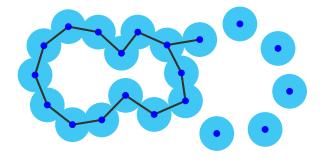
radius = 0



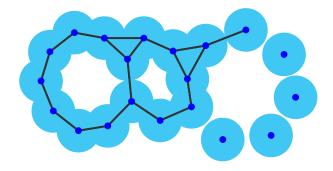
radius = 1



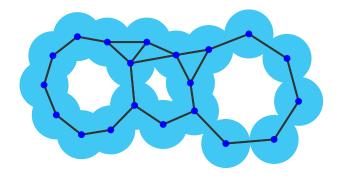
$$radius = 2$$



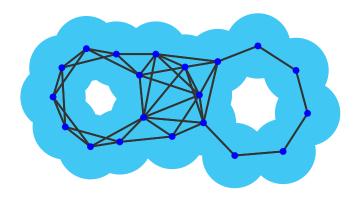
radius = 3



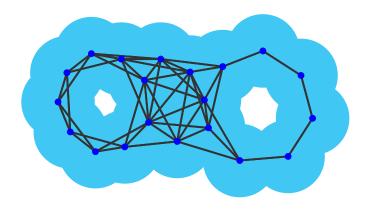
radius = 4



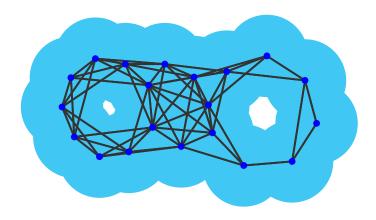
$$radius = 5$$



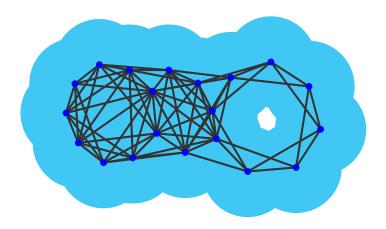
radius = 6



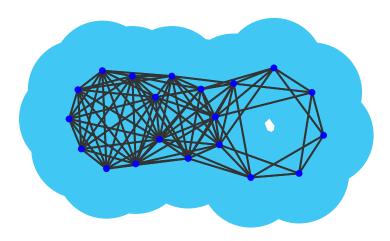
$$radius = 7$$



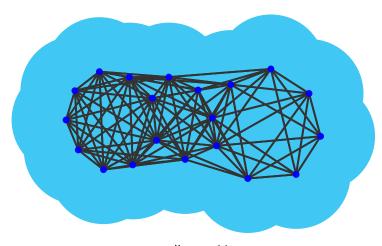
radius = 8



$$radius = 9$$



radius = 10



radius = 11

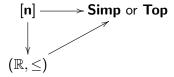
Filtered simplicial complexes

Discrete: simplicial complexes, $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n$

- Continuous: simplicial complexes $\{X_t\}_{t\in\mathbb{R}}$
 - inclusions $X_t \subseteq X_{t'}$, for $t \le t'$

Discrete to continuous: $X_t := X_{\lfloor t \rfloor}$

Abstract: Let $[\mathbf{n}]$ denote the category $0 \to 1 \to 2 \to \cdots \to n$.



Example: Given $f: X \to \mathbb{R}$ define $X_t = f^{-1}(-\infty, t]$.

Persistence modules

Apply $H_k(-; \mathbb{F})$.

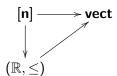
Discrete: vector sp and linear maps $V_0 o V_1 o V_2 o \cdots o V_n$

Continuous: • vector spaces V_t

ullet linear maps $V_t o V_{t'}$

Discrete to continuous: $V_t := V_{|t|}$

Abstract:



Example: Given $f: X \to \mathbb{R}$ define $X_t = H(f^{-1}(-\infty, t])$.

Mathematics

Let $M = (M_t)_{t \in \mathbb{R}}$ be a persistence module.

Let $I \subseteq \mathbb{R}$ be an interval.

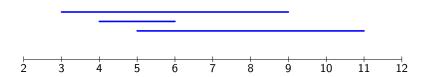
The indecomposable persistence modules are interval modules:

$$(A_I)_t = \begin{cases} \mathbb{F} & \text{if } t \in I \\ 0 & \text{if } t \notin I. \end{cases}$$

Theorem (Gabriel, Zomorodian-Carlsson, Crawley-Boevey)

M is a direct sum of interval modules, $M \cong \bigoplus_i A_{I_i}$.

The set of intervals $\{I_i\}$ is called a barcode.



Statistical viewpoint

The barcode is a random variable; it is a summary statistic.

Challenges

For example:

- calculate averages
- understand variances
- test hypotheses
- cluster and classify

Statistics with barcodes/persistence diagrams

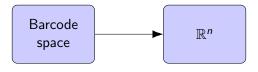
Easy:

- clustering
- doing permutation tests

Hard:

- calculating averages
- understanding variances

See work by Bendich, Harer, Mattingly, Mileyko, Mukherjee, Munch, Turner.



Some constructions:

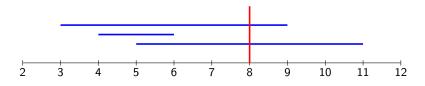
- lengths of the longest *N* bars
- coordinates of the longest N bars
- ullet values of the functionals au_{ij}
- the persistence landscape

Advantages of the persistence landscape:

- doesn't lose information
- is stable
- has a continuous version

Persistence landscape

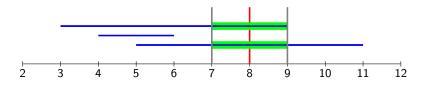
Continuous: $\lambda : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ or $\lambda_k : \mathbb{R} \to \mathbb{R}$, k = 1, 2, 3, ...



$$\lambda_2(8) = ?$$

Persistence landscape

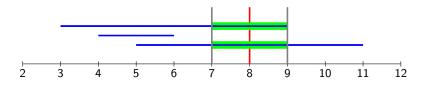
Continuous: $\lambda : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ or $\lambda_k : \mathbb{R} \to \mathbb{R}$, k = 1, 2, 3, ...



$$\lambda_2(8) = 1$$

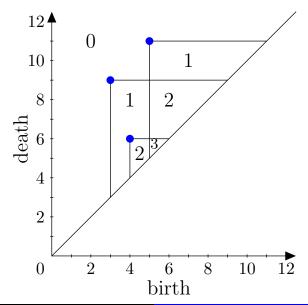
Persistence landscape

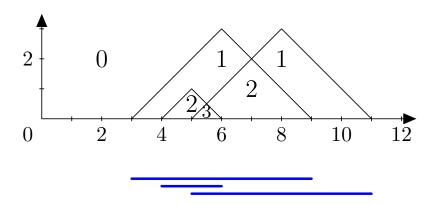
Continuous: $\lambda : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ or $\lambda_k : \mathbb{R} \to \mathbb{R}$, k = 1, 2, 3, ...

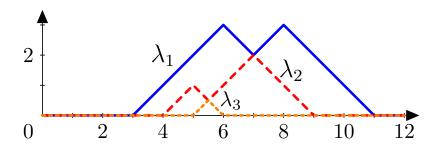


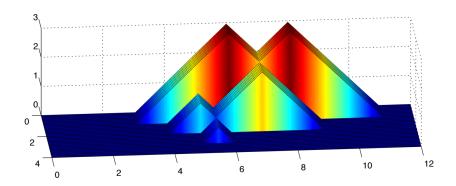
$$\lambda_2(8) = 1$$

Discrete: evaluate λ on a grid







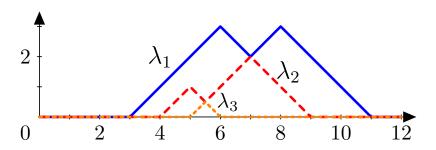


Norms

For a persistence landscape λ , let (b_j, d_j) be the corresponding birth-death pairs.

Lemma

- $\|\lambda\|_1 = \frac{1}{4} \sum_j (d_j b_j)^2.$



Stability

Given $f: X \to \mathbb{R}$, let $\lambda(f)$ the persistence landscape of sublevel sets of f.

Landscape Stability Theorem (B)

Let $f, g: X \to \mathbb{R}$.

$$\|\lambda(f) - \lambda(g)\|_{\infty} \le \|f - g\|_{\infty}.$$

If X is nice and f and g are tame and Lipschitz then

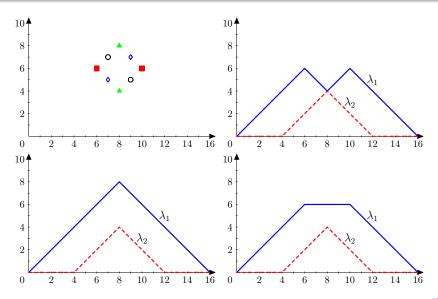
$$\|\lambda(f) - \lambda(g)\|_p^p \le C\|f - g\|_{\infty}^{p-k}.$$

Average landscapes

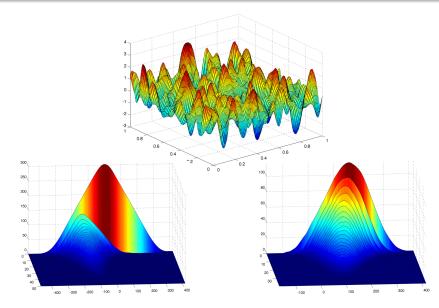
Persistence landscapes, $\lambda^{(1)}, \ldots, \lambda^{(n)}$, have pointwise average,

$$\overline{\lambda}(k,t) = \frac{1}{n} \sum_{i=1}^{n} \lambda^{(i)}(k,t)$$

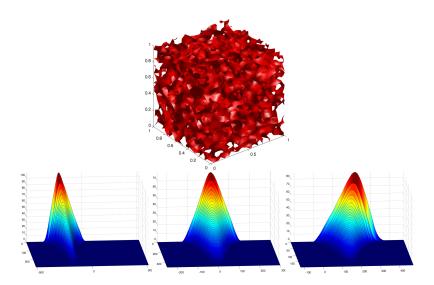
Average diagram vs average landscape



Average landscapes for Gaussian random fields



Average landscapes for Gaussian random fields



Let
$$1 \le p < \infty$$
. Then $\|\lambda\|_p = \left(\sum_k \int \lambda_k^p\right)^{\frac{1}{p}}$.

We assume $\|\lambda\| := \|\lambda\|_p < \infty$. That is, $\lambda \in L^p(\mathbb{N} \times \mathbb{R})$.

So λ is a random variable with values in a Banach space.

Asymptotics for persistence landscapes

 $\lambda \in L^p(\mathbb{N} \times \mathbb{R}), \quad \|\lambda\|$ is a real random variable.

If $E\|\lambda\| < \infty$ then there exists $E(\lambda) \in L^p(\mathbb{N} \times \mathbb{R})$ such that $E(f(\lambda)) = f(E(\lambda))$ for all continuous linear functionals f.

Strong Law of Large Numbers (B)

 $\overline{\lambda}^{(n)} \to E(\lambda)$ almost surely

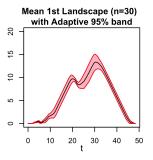
Central Limit Theorem (B)

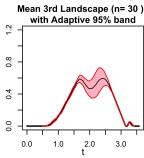
 $\sqrt{n}[\overline{\lambda}^{(n)} - E(\lambda)]$ converges weakly to a Gaussian random variable

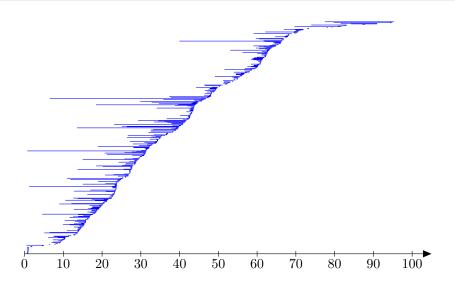
Understanding variance

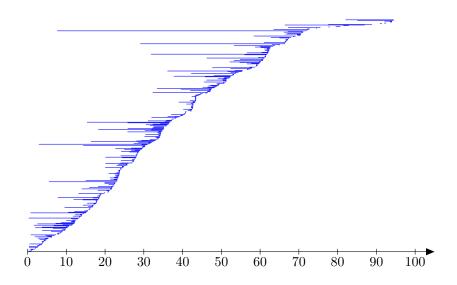
Two approaches:

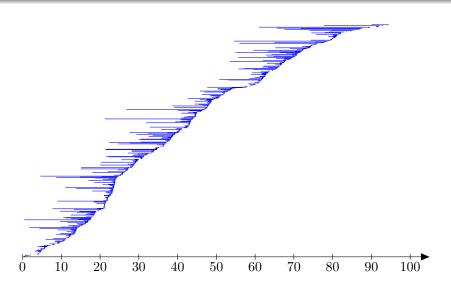
• Bootstrap and confidence intervals for persistence landscapes [Chazal, Fasy, Lecci, Rinaldo, Singh, Wasserman]

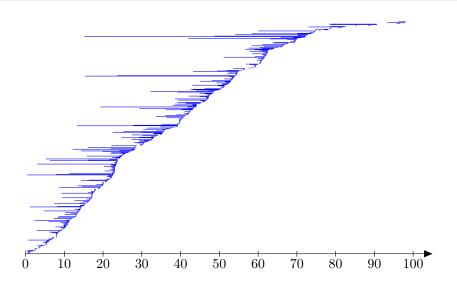


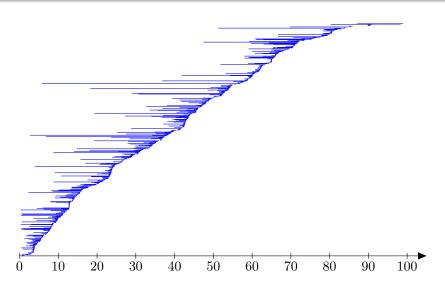


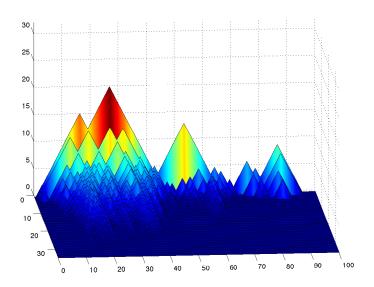


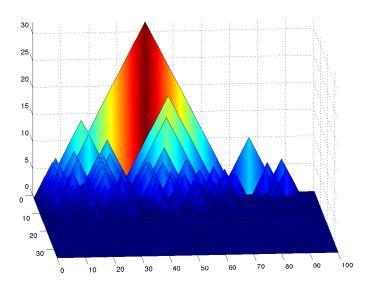


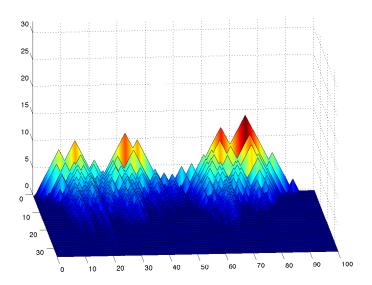


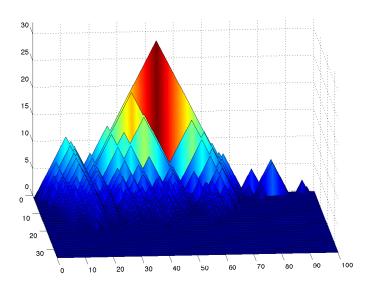


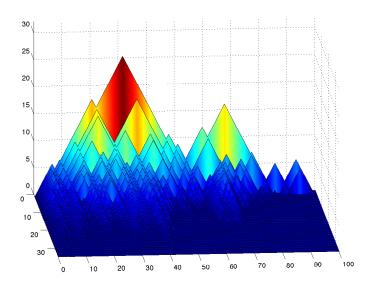




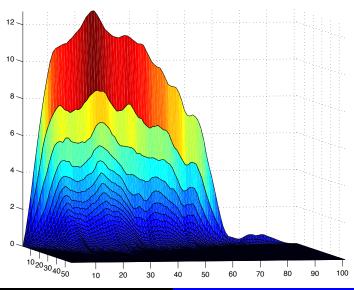


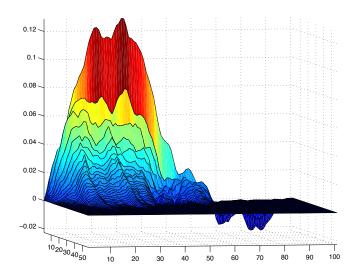


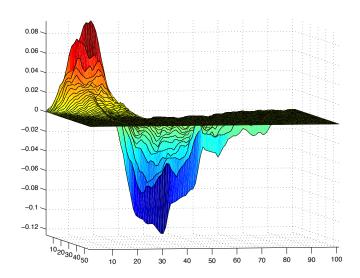


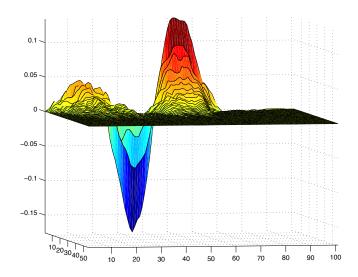


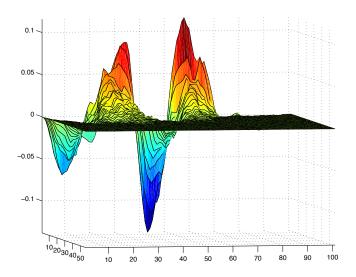
Average landscape for brain arteries

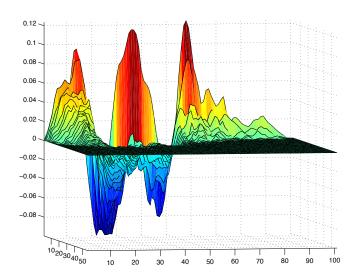


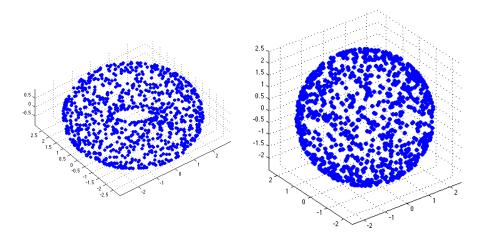




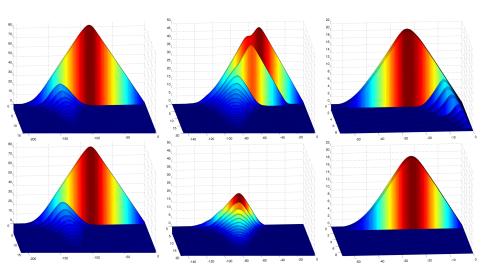








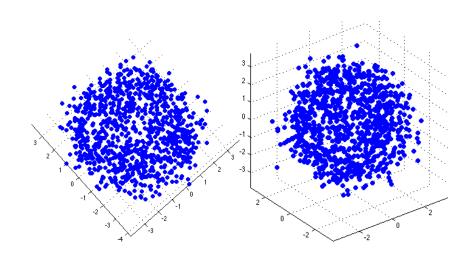
Points \rightarrow kernel density estimator \rightarrow filtered simplicial complex

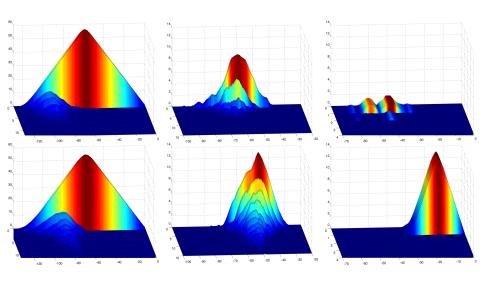


Null hypothesis:
$$\|\overline{\lambda_S}\|_1 = \|\overline{\lambda_T}\|_1$$
.

t-test:

dim	decision	p-value
0	cannot reject	
1	reject	3×10^{-6}
2	cannot reject	

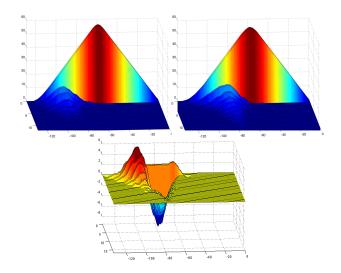


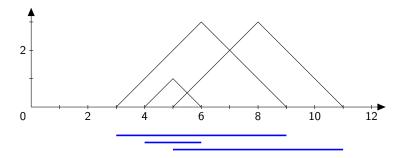


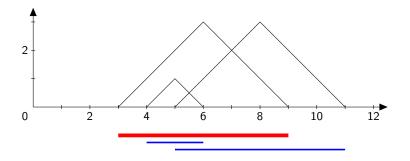
Null hypothesis: $\|\overline{\lambda_S} - \overline{\lambda_T}\|_2 = 0$.

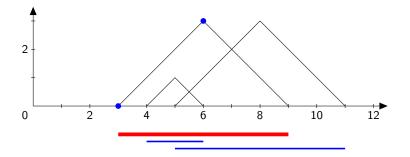
Permutation test:

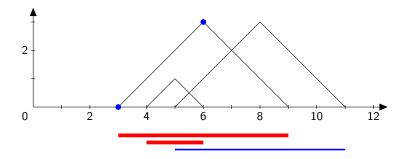
dim	decision	p-value
0	reject	0.0111
1	reject	0.0000
2	reject	0.0000

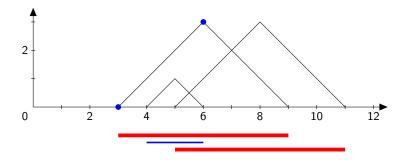


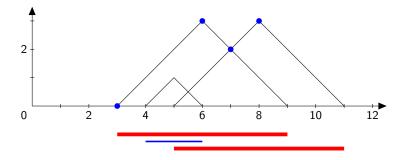


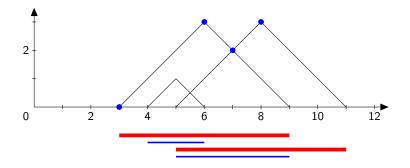


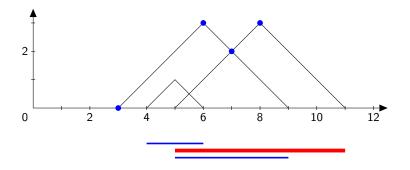


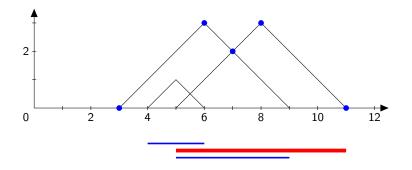


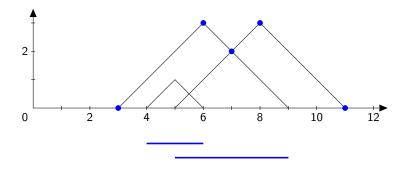


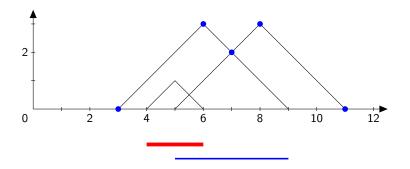


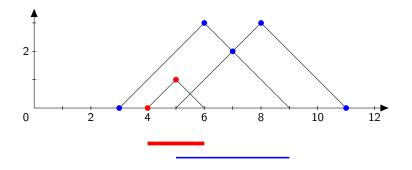


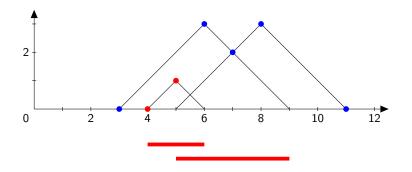


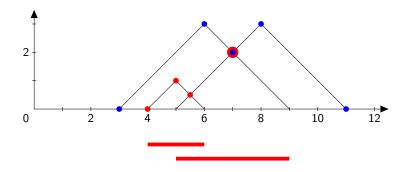


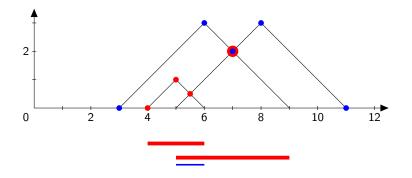


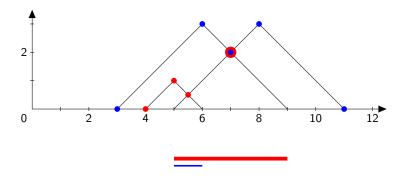


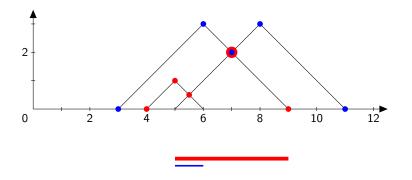


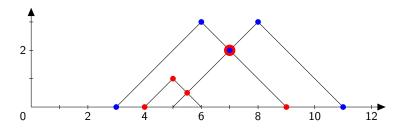


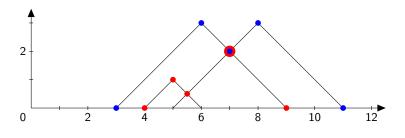


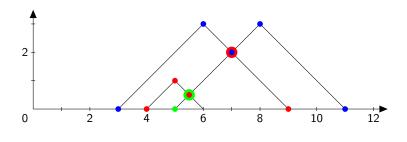


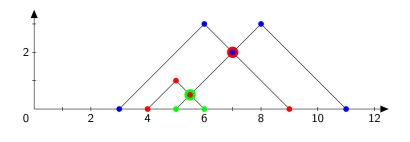


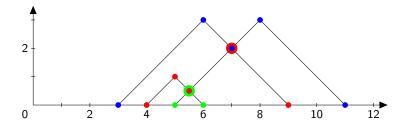


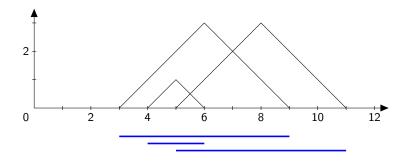


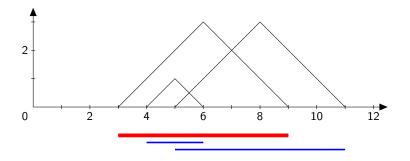


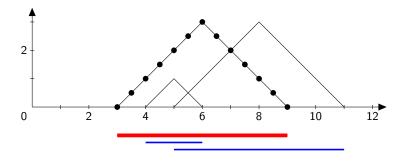


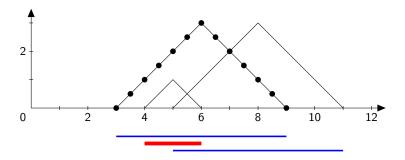


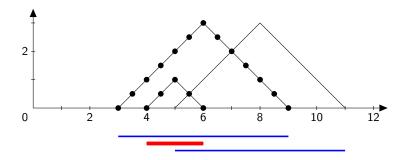


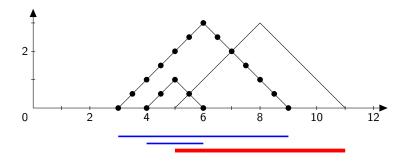


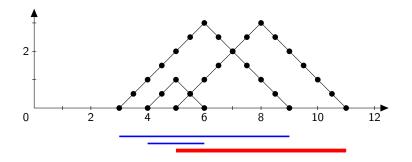


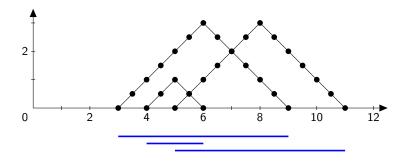


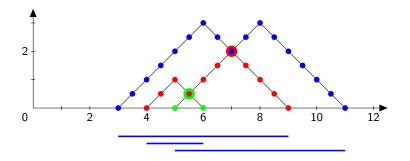












Computational complexity

Starting with *n* birth-death pairs

	no grid	grid
Construct persistence landscape	$O(n^2)$	$O(n \log n)$
Distance between two landscapes	$O(n^2)$	<i>O</i> (<i>n</i>)
Average of N landscapes	$O(n^2N^2)$	O(nN)

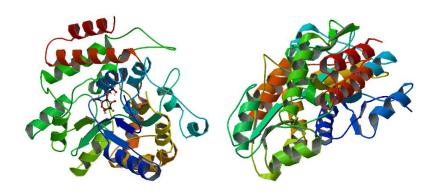
Joint work with Pawel Dlotko.

Computational packages

Code for computing the persistence landscape and associated constructions is available.

- The Persistence Landscape Toolbox, Pawel Dlotko
- the R package TDA, Brittany Fasy, Jisu Kim, Fabrizio Lecci and Clément Maria

Maltose Binding Protein, two 'conformations'

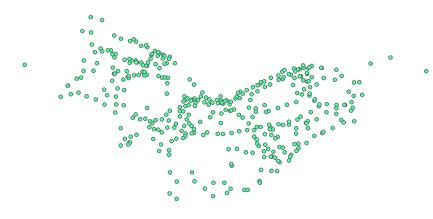


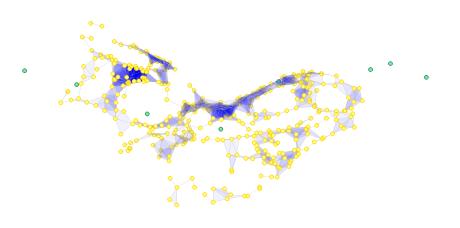
Joint work with Giseon Heo and Violeta Kovacev-Nikolic (Alberta) and Dragan Nikolic (Caltech–JPL)

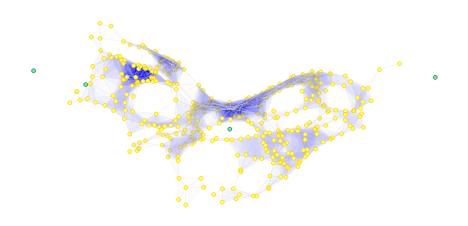
Maltose Binding Protein (MBP)

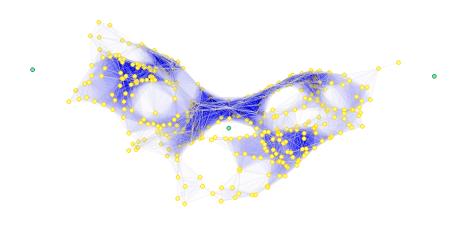
Fourteen MBP structures from the Protein Data Bank (PDB).

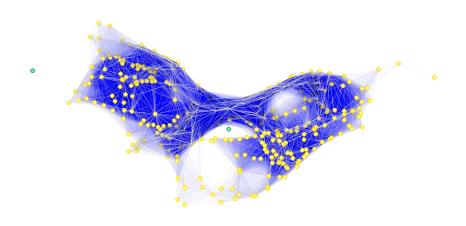
No.	PDB code	Ligand name	Protein structure
1	1ANF	maltose	closed- <i>holo</i>
2	1FQC	maltotriotol	closed- <i>holo</i>
3	1FQD	maltotetraitol	closed- <i>holo</i>
4	1MPD	maltose	closed- <i>holo</i>
5	3HPI	sucrose	closed- <i>holo</i>
6	3MBP	maltotriose	closed- <i>holo</i>
7	4MBP	maltotetraose	closed- <i>holo</i>
8	1EZ9	maltotetraitol	open- <i>holo</i>
9	1FQA	maltotetraitol	open- <i>holo</i>
10	1FQB	maltotetraitol	open- <i>holo</i>
11	1JW4	-	open- <i>apo</i>
12	1JW5	maltose	open- <i>holo</i>
13	1LLS	-	open- <i>apo</i>
14	10MP	-	open- <i>apo</i>



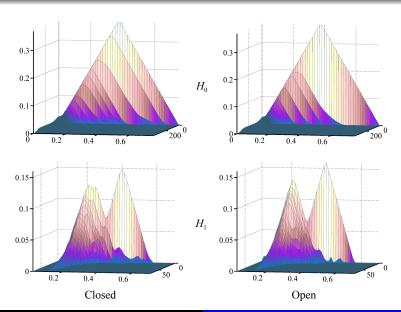


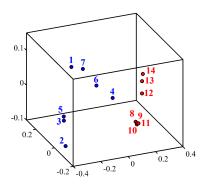


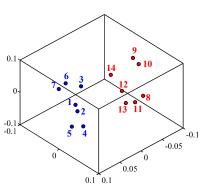




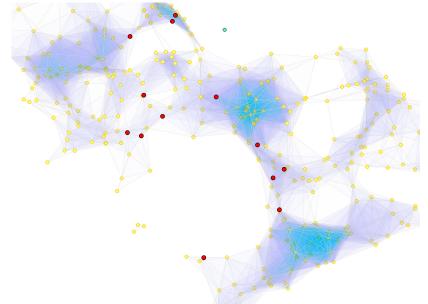
MBP average landscapes







Active sites and the most persistent cycle



Acknowledgments

Collaborators:

- Brain arteries Paul Bendich and Ezra Miller (Duke),
 J.S. Marron and Sean Skwerer (UNC-CH)
- Protein data Giseon Heo and Violeta Kovacev-Nikolic (Alberta) and Dragan Nikolic (Caltech–JPL)
- Algorithms and software Pawel Dlotko (Penn)

Sponsor:

• Air Force Office of Scientific Research (AFOSR)