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2 NOTES TAKEN BY RICHARD HEPWORTH

1. DAVID CHATAUR — LOOP PRODUCTS AND CLOSED GEODESICS I

We will talk about how to do some computations of homology of free loop spaces.
I don’t want to give you some motivation on why we compute the homology and
cohomology of free loop spaces — Nancy will give motivation from Riemannian
geometry. For me it is just fun. I don’t think that I will convince you of this by
computing spectral sequences, but I will try.

1) How to compute H∗(LM,R)? First, how to compute H∗(LM,R)? (Before Chas-
Sullivan, it was better to compute cohomology.) At first sight H∗(−) is easier to
compute because of the cup product.

(a). Consider the fibration ΩmM→ LM
ev0−−→M in which ev0 is γ 7→ γ0, and apply the

Serre spectral sequence. Need to know H∗(ΩmM).

Example. H∗(ΩmSn) computed by Serre.

ΩmM→ PmM = {γ : I→M, γ0 = m} ev1−−→M

PmM is contractible. Taking n = 3 we get the following.

• •
[S3]∈H3(S3)

•x2

•x2
2

•2x2[S3]

•

0

×2

For S2n+1 what you get is

H∗(ΩmS2n+1;Z) = Γ(x2n) = Z

[
x2n,

x2
2n
2
, . . . ,

xk
2n
k!

, . . .

]
⊂Q[x2n],

the algebra of divided powers of x2. This is infinitely generated. So you can imagine
what happens if you add cells — you will have lots of divided power algebras. This
phenomenon explains why it is not so easy to compute the cohomology of the based
loop space, and hence of the free loop space.

b). HH∗(−,−), rational homotopy theory, Eilenberg-Moore spectral sequence. We
do not know the algebra structure of H∗(L(CPn#CPn;Q) for n > 3. Thanks to the
work of Pascal Lambrechts (Topology, ’90s) we know the Betti numbers, but not the
algebra structure.

1) Second, the homology H∗(LM;R). Let us look at Serre spectral sequences. We
need to know H∗(ΩmM;R). It is an algebra: product is Pontryagin product given by
composition of loops. Let us play the same game: we want to compute the homology,
and we want to compute it along with the Pontryagin product. Later on we will see
that Morse theory is a good way to do that. Just now we will do it with the James
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construction. The answer is that H∗(ΩmSn)∼=alg T (xn−1). To get this, replace ΩmM
by Moore loops in order to make the product associative.

Ω
M
m M = {γ : [0,T ]→M | T > 0, γ(0) = γ(T )}

This is an associative monoid. Look at the map λ : Sn−1 → ΩM
m Sn, (it sends x to

a based loop that intersects the ‘equator’ once, at the point x) and take the adjoint.
Extend λ to a multiplicative map µ : J(Sn−1)→ ΩM

m Sn where J(−) is the free topo-
logical monoid. Now µ is a weak homotopy equivalence and taking homology of
J(Sn−1) you get T [xn−1].

What is the spectral sequence for ΩS3→ LS3→ S3? (We have to forget that S3 is
a Lie group, because that would make it simpler!)

• •s3

•x2

•x2
2

• s3x2

•

Here we have an algebra in fact. Because if you use Pontrjagin product and intersec-
tion product this thing becomes an algebra. So if we have a product on homology of
free loop space that has a product that combines these two, then here you only need
to compute one differential because then the remainder are determined by the alge-
bra structure. But the differential of s3 is zero because there is a section of LS3→ S3

given by the constant loops. So now you only need to compute the differential of
s3x2.

Now we will see how to compute homology of free loop spaces using the spectral
sequence of Cohen, Jones and Yan.

Chas -Sullivan loop product. It mixes Pontryagin product and intersection prod-
uct. Consider the following maps.

LM Map(∞,M)
∆̃ //

��

compoo LM×LM

ev0×ev0
��

M
∆

// M×M

For finite dimensional closed oriented manifolds you have Gysin maps. Here we
want to do the same thing to ∆̃!.

H∗(LM×LM;R)
∆̃!−−−→ H∗−dim(M)(Map(∞,M);R)

This can be done in several ways. Chas-Sullivan used intersection theory of cycles,
by making cycles transverse to the diagonal and then taking intersections. This can
be made precise, as in a very nice note by Francois Laudenbach. There are other
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techniques involving tubular neighbourhoods. So we get

Hi(LM;R)⊗H j(LM;R) ×−−−−→ Hi+ j(LM×LM;)

∆̃!−−−−→ Hi+ j−dim(M)(Map(∞,M))
comp∗−−−−→ Hi+ j−dim(M)(LM)

and this is the Chas-Sullivan product. In the fibre this product is the Pontrjagin prod-
uct, and in the base it is the intersection product. The product is in fact commutative.

Now from a purely computation point of view if you look at the Serre spectral
sequence, it is compatible with this product.

Theorem (Cohen, Jones, Yan). If M is a closed, simply connected smooth manifold
of dimension d then the Serre spectral sequence

Ep,q =Hp(M;Hq(ΩmM)) =⇒H∗(LM)

of

ΩmM→ LM
ev0−−→M

is multiplicative.
Notation: H∗(M;R) = H∗+d(M;R) and H∗(LM;R) = H∗+d(LM;R).

You have a shift in degree in the product, so you need to shift the degree in the
spectral sequence to make it multiplicative. We shift the homology of the base to
place it in negative degrees. Let’s draw the spectral sequence with the degree-shift.

•a •

•b

•

• u

•v = u2

Differentials out of the bottom row are zero because there is a section. So we only
need to know the differential of u. For odd spheres:

H∗(LSn)∼=alg H∗(ΩmSn)⊗H∗(Sn).

And for even spheres:

H∗(LSn;Z)∼= ΛZ(b)⊗Z[a,v]
(a2,ab,2av)
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where |a|=−n, |b|=−1, |v|= 2n−2., There are two blocks and the pattern repeats
in higher degrees.

•a •

•b

•

• u

•v = u2

These two blocks are explained by Morse theory. It will become clearer with CPn.
First, we can compute H∗(ΩCPn) using the fibration

S1→ S2n+1→ CPn

which gives

ΩS2n+1→ΩCPn� S1.

So as a topological space ΩCPn is homeomorphic to ΩS2n+1×S1, and as an algebra

H∗(ΩCPn;Z)∼= H∗(ΩS2n+1)⊗H∗(S1).

Now we have the spectral sequence (in the case n = 2).

• • •

• • •

• • •

χ(CP2)

c2 c

u

w

uc2

So the algebra is

H∗(LCPn;Z)∼= Λ(w)⊗Z[c,u]
(cn+1,(n+1)cnu,wcn)

.
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where |w| = −1, |c| = −2, |u| = 2n. This breaks into two blocks. It contains these
two blocks.

• • •
• • •

• • •
χ(CP2)

The first block is the homology of CPn which is the constant loops. The second block
is isomorphic to

H∗(U1TCPn;Z)
where U1 denotes the unit tangent bundle. In the second part of the talk I have to
explain why Morse theory is useful here.

2) Morse Theory.

a) Critical points and homology. Let X be a compact manifold, f : X → R smooth.
Given [α] ∈ Hi(X) we define

Cr([α]) = inf{a ∈ R | [α] ∈ Im(Hi(X6a)→ Hi(X))}
where X6a = f−1(]−∞,a]). Alternatively

Cr([α]) = inf(sup( f (β )))

where the infimum is over β ∈Ci(X) such that [β ] = [α].

Theorem (Birkhoff, 1930). Cr([α]) is a critical value of f .

In analysis this is called a min-max principle. What Nancy and Mark Goresky did
in their paper was to use this.

Definition. A critical point p ∈ X is nondegenerate if the Hessian H f ,p (a bilinear
form) is nondegenerate. If every critical point is nondegenerate then we say that f is
Morse.

Lemma (Morse Lemma). Every critical point p has a neighbourhood Up such that
for x ∈Up we have f (x) = f (p)− x2

1−·· ·− x2
k + x2

k+1 + · · ·+ x2
n where n = dim(M)

and k is called the index of p with respect to f .

Let b be a value of f . Then the level homology is

Ȟ∗(X6b,X<b) = lim
ε→0+

H∗(X6b+ε ,X<b).

If b is a regular value then

Ȟ∗(X6b,X<b) = H∗(X6b,X<b) = 0.

If X=b contains exactly one nondegenerate critical point then

Ȟ j(X6b,X<b)∼= H j(X6b,X=b)∼=
{

Z j = k = index(b),
0 j 6= q.
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If you put all this together then you have a Morse spectral sequence. Let us suppose
that the critical values are b0 < · · · < bi < · · · . I suppose that X=bi contains only MG: There are finitely

many if X is compact.nondegenerate critical points. We can filter C∗(X) as

C∗(X6b0)⊂C∗(X6b1)⊂ ·· ·
and then you have a spectral sequence with

E1
i, j
∼=
⊕

H j(X6bi,X<bi)

Morse theory and Poincaré duality. How do you read Poincaré duality in Morse
theory? Here X = M closed oriented and dim(X) = d and f : M→ R a Morse func-
tion.

Theorem.
H∗(X [a,b],X=a)∼=PD Hd−∗(X [a,b],X=b).

Using excision, this is

H∗(X6b,X6a)∼= Hd−∗(X>a,X>b).

Poincaré duality follows by reversing the filtration, or in other words negating f .
Morse theory and loop spaces. M is a Riemannian manifold. If you want to do

Morse theory with free loop spaces, you have a way to avoid analysis, but we won’t
avoid it. We work with

ΛM = H1(S1,M)

which is the completion of the space of piecewise smooth loops with respect to

〈γ,γ ′〉1 =
∫

S1
dg(γ(t),γ ′(t))2dt +

∫
S1
〈γ̇(t), γ̇ ′(t)〉gdt

where dg is the sup-metric on M determined by g. So functions converge in L2 as
well as their derivatives.

Proposition. C∞(S1,M)⊂C∞(S1,M)piecewise ⊂H1(S1,M)⊂C0(S1,M) are all weak
homotopy equivalences.

We take the energy

E : ΛM −→ R, γ 7−→
∫

S1
‖γ̇(t)‖2dt.

Critical points of E are the closed geodesics. We want to do Morse theory with the
square root of the energy. We have finite dimensional models (Milnor / Morse). Let
ρ < injectivity radius of M. Let N be an integer and set a =

√
Nρ .

Ma
N =

{
(x0, . . . ,xN) ∈MN+1 | x0 = xN ,

N

∑
i=1
|xi− xi−1|2 < ρ

2

}
Since between two points xi and xi+1 there is only one geodesic segment, you can do
the following.

Proposition. Define

i : Ma
N −→ Λ

6aM, (x0, . . . ,xN) 7→ ((x0→ ·· · → xN)

Then i is a homotopy equivalence.
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2. RICHARD HEPWORTH — STRING TOPOLOGY FOR STACKS I

Theorem (Preview). Let X be an oriented (Hurewicz) stack of dimension d. Then
H∗(LX) is a non-unital Batalin-Vilkovisky algebra.

• Taking X= M a manifold, H∗(LX) = H∗(LM).
• Taking X= [pt/G], G a connected Lie group, H∗(LX) = H∗(LBG).

Stacks on Diff. Diff is the category of smooth manifolds.

Definition. A category fibred in groupoids over Diff is a functor π : X→ Diff such
that:

• For every diagram
U →V

in Diff, every partial lift
V̄

in f X extends to a lift
Ū → V̄ .

Call such a lift V̄ |U .
• For every diagram

U //

��

W

V

>>

in Diff, every partial lift

Ū // W̄

V̄

??

extends uniquely to a lift

Ū //

��

W̄

V̄

??

Example. Let G be a Lie group. Set X = category of principal G-bundles P→U .
Call it [pt/G].

Example. Let X be a manifold. Set X= category of morphisms U → X . Call it X .

Example. Let G be a Lie group acting smoothly on a manifold X . Set X= category
of pairs (P→U,P→ X) with P→U a principal G-bundle and P→ X equivariant.
Call it [X/G].

[Notation: U , V and W will always denote manifolds, and X and G will always
belong to one of these examples.]

A category X fibred in groupoids over Diff is a stack on Diff if for every U and
every open cover {Ui} of U , we have:

• Given A,B over U , φi : A|Ui→ B|Ui for all i, such that φi|Ui∩U j = φ j|Ui∩U j,
there is a unique φ : A→ B such that φ |Ui = φi for all i.
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• Given
– Ai over Ui for all i;
– φi j : Ai|Ui∩U j→ A j|Ui∩U j for all i, j;
– cocycle condition on triple intersections

there is A over U with λi : A|Ui→ Ai for all i, such that the λi afford the φi j.
The examples above are all stacks.

Stacks, functors over Diff and natural transformations over the identity on Diff
form a strict 2-category. The 2-morphisms are all invertible.

Equivalence, not isomorphism, is the correct notion of sameness for stacks.

Weak pullbacks. Given a diagram X
F−→ Z

G←−Y of stacks, define

X×ZY

to be the category of triples (x,y,θ) where x is an object of X, y is an object of Y,
and θ : F(x)→ G(y) is an isomorphism in Z over an identity of Diff. This fits into a
square

X×ZY //

��

Y

��w�
X // Z

Yoneda. Let X be a stack and X a manifold. Consider:
• X(X) = the fibre of X over X . Here X is being considered as an object of

Diff. It is a groupoid.
• hom(X ,X), the groupoid of morphisms of stacks. Here X is being considered

as a stack.
There is an equivalence of groupoids

hom(X ,X)−→ X(X), F 7−→ F(X =−→ X).

For example:
• hom(X ,Y )∼= Y (X) = {X → Y}.

Stacks are generalised manifolds.
• hom(X , [pt/G])' [pt/G](X) = the groupoid of principal G-bundles on X .

Stacks are ‘moduli spaces’ / ‘classifying spaces’.

Differentiable stacks and Lie groupoids. A stack X on Diff is a differentiable stack
if there is a morphism X → X such that in every diagram

U×X X //

��

U

��w�
X // X

U ×X X is (equivalent to) a manifold and U ×X X →U is a surjective submersion.
We call such an X → X an atlas.

Exercise. If X= X then X =−→ X is an atlas.

Exercise. If X = [pt/G] then pt→ [pt/G] giving trivial bundles is an atlas. Indeed,
given U → [pt/G] classifying a bundle P→U , we have pt×[pt/G]U ' P.
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Given an atlas X → X we obtain:
• a manifold of objects X
• a manifold of morphisms X×X X
• source and target submersions X×X X ⇒ X , (x,y,θ) 7→ x,y.
• a composition map (X ×X X)×X (X ×X X)→ X ×X X , ((x,y,θ),(y,z,φ)) 7→
(x,z,φθ)
• an identities map X → X×X X , x 7→ (x,x,1x)
• an inverses map X×X X → X×X X , (x,y,θ) 7→ (y,x,θ−1).

This is a Lie groupoid. (Exercise: define this notion and check that the above is an
example.)

Every Lie groupoid X= X1⇒ X0 has a stack of torsors (exercise: define it) called
[X0/X1]. There is an atlas X0→ [X0/X1] recovering X. There is an equivalence X '
[X/X×X X ]. This underpins an equivalence between the 2-category of differentiable
stacks and a certain 2-category of Lie groupoids.

Vector bundles. A vector bundle on a stack X is
• a morphism E→ X
• for each U → X, the structure of a vector bundle on U×XE→U

such that, given a triangle
U //

��

X

V

??
��

the induced U×XE→V ×XE is fibrewise a linear isomorphism over U→V . Every
differentiable stack has a tangent stack, but it is not always a vector bundle.

Topological stacks. Replacing Diff by Top, we obtain the theory of topological
stacks, up to the word ‘submersion’, which you can omit, or replace with something
else.

There is a 2-functor

(Diff stacks)−→ (Top stacks)

sending U (a manifold) to U (the underlying space) and preserving pullbacks.

Definition. A classifying space for a topological stack X is a space BX and a mor-
phism BX→X such that for every U→X the induced map BX×XU→U is a weak
equivalence.

Theorem (Noohi). Every topological stack admits a classifying space.

• Let BX→ X, B′X→ X be classifying spaces. We obtain canonical weak
equivalences BX← BX×X B′X→ B′X.
• Given BX→ X and BY→Y classifying spaces, and f : X→Y, we obtain

a zig-zag
BX w.e.←−−− BX×Y BY−→ BY.

We define the homology of a stack X to be H∗(X) := H∗(BX) for any choice of
classifying space. Applying H∗(−) to the previous points, this is well-defined up to
canonical isomorphism. Extend any other weak-homotopy invariant construction to
stacks in an analogous way.
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Example. B[pt/G] = BG.

Example. BX = X .

Bivariant theories. A setting for homology, cohomology, and umkehr maps.
We consider a category C with:
• A class of confined morphisms containing all identity morphisms and closed

under composition.
• A class of independent squares,

X
f //

g
��

Y

g′
��

X ′
f ′
// Y ′

all of them pullbacks, closed under vertical and horizontal pasting, containing
all squares in which a parallel pair of arrows are identities, and such that if f ′

is confined, so is f , and such that if g′ is confined, so is g.
A bivariant theory on C consists of:

• For every morphism f : X → Y , a graded abelian group T (X
f−→ Y ).

• For every X
f−−−−→

confined
Y

g−→ Z a pushforward f∗ : T (g f )→ T ( f ).

• For every independent square above, a pullback g∗ : T ( f ′)→ T ( f ).

• For every X
f−→ Y

g−→ Z a product ◦ : T ( f )⊗T (g)→ T (g f ).

We write a ∈ T (X
f−→ Y ) as X a−→

f
Y . (There should be a circle around a here!) These

data must satisfy a host of axioms that will be omitted here.
A bivariant theory induces:
• Cohomology T ∗(X) = T (X =−→ X),

cup-product (the product),
pullbacks (given by pullback).
• Homology T∗(X) = T−∗(X → pt),

cap-product (the product),
push-forwards by confined morphisms (given by pushforwards).

It also induces Gysin homomorphisms associated to an element θ ∈ T (X
f−→ Y ):

• θ ∗ : T∗(Y )→ T∗(X),
a 7→ θ ◦a.
• θ∗ : T ∗(X)→ T ∗(Y ),

a 7→ f∗(a◦θ).
(Only if f is confined.)

These satisfy many natural properties, again omitted.

Example. Taking C to be closed manifolds with all morphisms confined and all
pullback squares independent.

T (X
f−→ Y ) = H∗+n(Y ×Rn,Y ×Rn− i(X))

where i : X → Y ×Rn is an embedding lifting f .
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3. NANCY HINGSTON — LOOP PRODUCTS AND CLOSED GEODESICS II

This is all joint work with Mark Goresky.
M = simply connected oriented manifold with a metric all of whose geodesics are

closed with the same minimal period. Examples include Sn, CPn, HPn. (Are there ∞

many closed goedesics for any metric?)
Take the square root of the energy as our Morse function on ΛM.
There is a Morse-Bott nondegenerate critical manifold of closed geodesics, and it

is isomorphic to SM, the unit sphere in the tangent bundle. Let λ1 be the index of the
number of closed geodesics. (For the examples we have λ1 equal to n− 1, 1 and 3
respectively.)

H∗(M)

H∗+λ1(SM)

H∗+λ2(SM)

v

v2

Explicit generators for M = Sodd = S3.

• U ∈C0(ΩS3), the constant loop at ∗ ∈M.
• A = {circles great and small beginning at ∗ with velocity v } ∈C2(ΩM), here

v is fixed.
• B = {circles beginning at ∗} ∈C4(ΩM).
• E = {all constant loops} ∈C3(ΛM)
• C = {all circles} ∈C7(ΛM)

Products:

• Pontrjagin product [u] ·PP [A] = [A]. In fact [U ] =unit.
• [A] ·PP [A] 6= 0, H∗(ΩS3) = Z[A].
• [A] non-nilpotent, [A]·PPm 6= 0.

What are the critical levels? For any fixed metric on any M

Cr[X ·PP Y ]6Cr(X)+Cr(Y ).

In the standard metric on S3:

• Cr[A] = 2π .
• Cr[B] = 2π .
• What is Cr[A] ·PP [A]? Exercise: [A] ·PP [A] = [B].

Cr[A]2m−1 =Cr[A2m] = 2mπ .
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So [A] is non-nilpotent. But [A] is level-nilpotent, meaning that Cr[A]k <
kCr[A] for some k.

Chas-Sullivan product:
• [C] ·CS [E] = [C] because [E] is the unit.
• [A] ·CS [A] = 0 because the Chas-Sullivan product H∗(ΩM) ·CS H∗(ΩM) = 0.
• [C] ·CS [U ] = [B]
• [C] ·CS [C] ·CS · · · ·CS [C] 6= 0, non-nilpotent.

A basic property of the Chas-Sullivan product, for any M and any metric, Cr([X ] ·CS
[Y ])6Cr[X ]+Cr[Y ]. So [C] is non-nilpotent and it is also level-non-nilpotent.

Bott, Samelson and Morse knew these generators using broken geodesics.
Geometry and Poincaré duality in ΛM told me that there has to be a product in

H∗(ΛM) of degree n−1, i.e. the Chas-Sullivan product is

Hk(ΛM)⊗H j(ΛM)−→ H j+k−n(ΛM)

and the cohomology product should look like

Hk(ΛM)⊗H j(ΛM)−→ H j+k+n−1(ΛM)

Geometry. What does the Chas-Sullivan product pick up? What does the geometry
look like when the Chas-Sullivan product is nontrivial?

The search for closed geodesics. Given a compact Riemannian manifold. Look for
periodic ‘closed’ geodesics. This search goes back to Poincaré, Birkhoff and Morse.
This is what Morse invented Morse theory for.

Morse theory.
f =
√

E : ΛM −→ R
The critical points of f are exactly the closed geodesics on M.

• H∗(ΛM) corresponds to critical points of f via X 7→Cr(X).
• Hk(ΛM) corresponds to critical points of index k.

Use H∗(ΛM) to get a lower bound for the number of critical points of
√

E, which is
the number of closed geodesics.

We observe that H∗(ΛM) is nontrivial in many dimensions. Does this give us lots
of closed geodesics? No. The difficulty is the iterates.

Iterates. If γ is a closed geodesic on M then so are γ2, γ3 and so on where γm(t) =
γ(mt). So what is only one closed geodesic in fact looks like a whole army inside the
free loop space. Each homology class somehow comes from a closed geodesic and
we want to count closed geodesics by counting homology classes, but we see that
that will give the wrong result.

Question. Is there an algebraic operation on H∗(ΛM) that corresponds to iteration,
γ 7→ γm? The Chas-Sullivan powers [X ], [X ] · [X ] and so on model iteration of closed
geodesics when the index growth is minimal.

Theorem (Bott, 1953?). n = dim(M)

m · Index(γ)− (m−1)(n−1)6 Index(γm)6 m · Index(γ)+(m−1)(n−1)

The index grows approximately linearly. If the second inequality was an equality
then we call it maximal index growth, and minimal index growth is when the second
inequality is an equality.
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Example. The ellipsoid

x2/a2 + y2/b2 +u2/c2 + v2/d2 = 1

with a < b < c < d, all approximately equal to 1. There are
(4

2

)
= 6 ‘short’ closed

geodesics, the intersections with the standard coordinate planes.
Shortest γs has index 2. The indices of its iterates are 2, 6, 10 and so on, which is

maximal growth.
Longest γl has index 6. Its iterates have indices 6, 10, 14, 18 and so on, which is

minimal growth.
In the free loop space these all represent a circle. So the homology classes have

dimension 7, 11, 15, 19, where in dimension 7 the homology class is [C], which is v
in the first diagram.

Chas-Sullivan product models iteration in the case of minimal growth. The coho-
mology product models iteration in the case of maximal growth.

Poincaré Duality on ΛM. Idea of the cohomology product.

H∗(Λ6b,Λ6a)∼= HN−∗(Λ>a,Λ>b).

The right hand side is generated by ‘Morse cochains’. The products are

H j(Λ)⊗Hk(Λ)−→ H j+k+n−1(Λ),

H j(Ω)⊗Hk(Ω)−→ H j+k+n−1(Ω).

The first is Poincaré dual to the Chas-Sullivan product. The second is Poincaré dual
to the Pontrjagin product. Poincaré duality works best for loops of constant speed.

Easier to define the associated coproduct V on the homology of the free loopspace.
It is related to the Goresky-Hingston product ·GH as follows. Let X ∈ H∗(Λ), let
y,z∈H∗(Λ), and write [−,−] for the Kronecker product. Then V X ∈H∗(Λ)⊗H∗(Λ).

[V X ,y⊗ z] = [X ,y ·GH z]

The Chas-Sullivan product had to do with the diagram

Λ×Λ←− F −→ Λ

where F = Map(∞,M). Reversing this, get a coproduct

Λ←− F −→ Λ×Λ

called Vt , almost trivial on homology. Set

F[0,1] = {(γ,s) ∈ Λ× [0,1] | γ(0) = γ(s)}.
Then we get

Λ× [0,1]←− F[0,1] −→ Λ×Λ

or rather(
Λ× [0,1],∂ (Λ× [0,1])

)
←−

(
F[0,1],∂F[0,1]

)
−→

(
Λ×Λ,∂ (Λ×Λ)

)
Given A ∈H∗(Λ,Λ0), form A× [0,1], take an umkehr by the first map, then apply the
second. The coproduct has degree −n+1.

The resulting cohomology product

H i(Λ,Λ0)⊗H j(Λ,Λ0)−→ H i+ j+n−1(Λ,Λ0)
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satisfies the inequality
Cr(x ·GH y)>Cr(x)+Cr(y).

(The cup product does not have this property!) We say that x ∈ H∗(Λ) is level-
nilpotent if Cr(x·GHm)> m ·Cr(x) for all m.

Some rephrased theorems that illustrate the principle of Poincaré duality in action.
This one due to Bott:

(1) M compact, oriented, dimension n, metric with all closed geodesics non-
degenerate as critical points. (This is a generic condition on the metric.)
Then every homology class in H∗(Λ) is level-nilpotent, and every cohomol-
ogy class in H∗(Λ) is also level-nilpotent.

And now these ones due to myself, which apply in the non-nilpotent case. Let γ be
an isolated closed geodesic of length L.

(1) Assume that γ has non-nilpotent level homology. Then for any ε > 0, if m∈Z
is sufficiently large, there is a closed geodesic with length in (mL,mL+ε). It
follows that M has infinitely many closed geodesics.

(2) Assume that γ has non-nilpotent level cohomology. Then for any ε > 0, if
m ∈ Z is sufficiently large there is a closed geodesic with length in (mL−
ε,mL).

Just as we were finishing this up I went to a talk by Eliashberg at Princeton. He
asked this question.

Question of Eliashberg, 2007. Given M metric. Define

d(t) = max{k | Image[Hk(Λ
6t)→ Hk(Λ)] 6= 0}.

Does there exist C independent of the metric so that d(t1 + t2) 6
d(t1)+d(t2)+C?

The answer is ‘yes’, provided that H∗(Λ,Λ0) is finitely generated as a ring with the
cohomology product. (This holds for spheres and projective spaces.)
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4. LUC MENICHI — EILENBERG-MOORE SPECTRAL SEQUENCE AND STRING
TOPOLOGY

Joint work with Kunbayashi and Naito.

I. String topology of manifold. Mm. LM =free loops on M. Chas-Sullivan loop
product

Hp(LM)⊗Hq(LM)
•−−→ Hp+q−m(LM).

Cohen-Jones homotopical definition:

LM LM×M LM
comp

oo ∆̃ //

��

LM×LM

��
M

∆

// M×M

Using Thom-Pontrjagin, Cohen and Jones defined:

Hp+q(LM×LM)
∆̃−−→ Hp+q−m(LM×M LM)

comp∗−−−→ Hp+q−m(LM).

II. Felix-Thomas extension to Gorenstein spaces.

Definition. An augmented differential graded algebra A is a Gorenstein algebra of
dimension m ∈ Z if:

dimExtlA(F,A) =
{

0 if l 6= m,
1 if l = m

Definition. A space M is a Gorenstein space if the singular cochain C∗(M) is a
Gorenstein algebra.

Example.
(1) Closed oriented manifold M, m = dim(M)> 0.
(2) BG connected compact Lie group, m =−dim(G).
(3) If G acts on M, EG×G M, m = dim(M)−dim(G).

Theorem (Felix-Thomas).
(1) Let M be a connected Gorenstein space of dimension m. Then

Ext∗C∗(M2)(C
∗(M),C∗(M))∼= H∗−m(M).

Write ∆! ∈ ExtmC∗(M2)
(C∗(M),C∗(M) for the element corresponding to 1.

(2) There exists a unique

∆̃
! ∈ ExtmC∗(LM×MLM)(C

∗(LM×M LM),C∗(LM×LM))

such that the following square commutes.

C∗(LM×M LM)
∆̃!
// C∗+m(LM×LM)

C∗(M)

ev∗

OO

∆!
// C∗+m(M×M)

OO
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The dual of the loop coproduct is given by

C∗(LM)
comp∗−−−−−→C∗(LM×M LM)

∆̃!
−−−→C∗+m(LM×LM)

Proof.

X
g //

q
��

E

p fibration
��

N
f
// B

Suppose we have f ! ∈ExtdC∗(B)(C
∗(N),C∗(B)). Let ε : P '−→C∗(N) a right C∗(B)-free

resolution of C∗(N). Then there exists a unique right C∗(E)-linear map such that

C∗(X) P⊗C∗(B)C∗(E)EMoo g!
// C∗+d(E)

C∗(N)

ev∗

OO

P
f !

//

p7→p⊗1
OO

ε

'
oo C∗+d(B)

p∗
OO

Applying homology, EM gives an iso, the Eilenberg-Moore isomorphism.

TorC
∗(B)
∗ (C∗(N),C∗(E))

H∗(EM)−−−−−→∼= H−∗(X). �

Recall that by filtering P⊗C∗(B) C∗(E) we obtain the cohomological Eilenberg-
Moore spectral sequence.

III. A Tor-description of the loop product. Suppose

X
g //

q
��

E

p fib
��

// Y

o fib
��

N
f
// B // Z

then we can show that

H∗(X)
g!

// H∗+d(E)

TorC
∗(Z)(C∗(N),C∗(Y ))

Tor( f !,1)
//

∼=
OO

TorC
∗(Z)(C∗(B),C∗(Y ))

∼=
OO

in particular in the case of

LM×M LM ∆̃ //

��

LM×LM //

��

MI×MI

ev×ev
��

M
∆

// M×M
∆×∆

// M2×M2
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we obtain

H∗(LM×M LM)
∆̃!

// H∗+d(LM×LM)

TorC
∗(M2×M2)(C∗(M),C∗(MI×MI))

Tor(∆!,1)
//

∼=
OO

TorC
∗(M2×M2)(C∗(M×M),C∗(MI×MI))

∼=
OO

Now we can get a description of the dual of the loop product in terms of Tor.

IV. Rational isomorphism with Hochschild. Let M be a 1-connected Gorenstein
space Denote by A(M) the commutative algebra of polynomial differential forms on
M introduced by Sullivan.

A(M)←→C∗(M,Q)

Theorem (KMN). The Eilenberg-Moore isomorphism

Hp(LM;Q)∼= HH−p(A(M),A(M)∨)

with Hochschild cohomology of A(M) with coeffients in A(M)∨ is an isomorphism of
graded algebras with respect to the loop product, and to the following cup-product
of the Hochschild cohomology of a commutative Gorenstein algebra.

Let A be a 1-connected commutative Gorenstein algebra of dimension m. The
proof of Felix-Thomas in the case A=C∗(M) shows that Ext∗A⊗A(A,A⊗A)∼=H∗−m(A).
Let ∆! be a generator of ExtmA⊗A(A,A⊗A). By taking duals,

(∆!)∨ ∈ ExtmA⊗A(A
∨⊗A∨,A∨).

Since A is commutative, (∆!)∨ induces an element

µ ∈ ExtmA⊗A(A
∨⊗A A∨,A∨).

By definition, the cup product is

HH p(A,A∨)⊗HHq(A,A∨)
⊗A−−−→HH p+q(A,A∨⊗A A∨)

HH∗(A,µ)−−−−−−−→HH p+q+m(A,A∨)

In the Poincaré duality case:

Corollary (F-T-V, Merkulov). Hp+m(LM;Q)∼= HH−p(A(M),A(M)).

IV. Eilenberg-Moore spectral sequences.

LM ∆̃ //

��

MI

��

M'oo

∆{{
M

∆

// M×M

Consider the EMSS in homology

E2
p,∗ = HH−p(H∗(M),H∗(M)) =⇒ H∗(LM).

Theorem. The EMSS is multiplicative. The product on the E2-term is the cup product
induced by

H((∆!)∨).
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(Here ∆! is the product induced by F-T for the Gorenstein space M.) Suppose that M
is a closed 1-connected manifold (or just Poincaré duality space).

E2
p,∗ = HH−p,∗(H∗(M),H∗(M)) =⇒ H∗(LM)
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5. KATE POIRIER — COMPACTIFIED COMBINATORIAL STRING TOPOLOGY

This does not mean string topology of finite sets. This is joint work in progress —
old work with Nathaniel Rounds and new work with Gabriel Drummond-Cole.

Problem of Sullivan: Describe the compactification of the moduli space of Riemann
surfaces which is appropriate for string topology.

Spoiler: Something like Bödigheimer’s harmonic compactification.

Know: H∗(M) acts on H∗(LM). (Godin.)

Want: C∗(M) acts on C∗(LM), inducing the structure on homology.

Definition. Let M(g,k, l) be the moduli space of Riemann surfaces with genus g and
k+ l boundary components.

k in

genus g

l out
w1 w2

There are weights wi on the output with ∑wi = 1. We will also have surfaces with
punctures, which we think of as boundary at ∞.)

Example. M(0,2,2) 'M0,4×∆1. (Here we have punctures, not boundary, though
the talk will blur the distinction throughout.) The moduli space M0,4 of the 4-
punctured sphere is the 3-punctured sphere, so we can draw M(0,2,2) like this:

w1 = 0

w2 = 0

(Think of this picture as solid, containing the top and bottom boundary but not the
rest.) The three given loops in M0,4, namely the two small ones in the ‘interior’
and the large one around the ‘outside’ correspond to Dehn twist about the curves,
respectively:

1 2

A B

1 2

B A

1 2

A B

‘Compactify’ by:
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• Taking the closure of this picture.
• Inserting a DM stratum:

w1 = w2

Definition. A fatgraph is a graph together with a cyclic ordering of the half-edges
adjacent to each vertex.

(For the orientation we take the chalkboard orientation.) The graph can be thickened,
replacing each vertex by a disc and each arc by a strip, in order to make a surface.
Here what I have done is produced a pair of pants. In the resulting surface I think of
the boundary components as what we call the boundary cycles of the graph.

This surface has genus 0 and 4 boundary components.

I will use special kinds of fat graphs to define string topology operations at the
chain level.

Definition. A string diagram of type (g,k, l) is a sequence of metric fat graphs

Γ0 ⊂ ·· · ⊂ ΓN

constructed inductively so that:
• Γ0 is k disjoint circles (length 1);
• Γn+1 is constructed from Γn by adjoining metric trees by attaching their

leaves to Γn;
• together with ‘spacing parameters’ (s1, . . . ,sN−1) ∈ [0,1]N−1.

It must be such that ΓN has genus g and k+ l boundary cycles, with k of them in Γ0.
The metric trees must satisfy some condition on lengths. (In the previous pictures Γ0
will be the two circles, Γ1 will be the first diagram, and Γ2 is the second diagram.)

Proposition. The space S(g,k, l) of string diagrams of type (g,k, l) is a finite cell
complex. Cells are labelled by the combinatorial type.

Definition. A string diagram is called simple if
• N = 1
• Γ1−Γ0 is a forest.

(Cohen, Godin and others call this a Sullivan diagram.) In the example fat graphs,
the first was simple but the second was not.

Proposition. Simple diagrams form a union of open cells. This is noncompact in
general.
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Theorem (In progress with G.C.Drummond-Cole). The cellular chains of S act on
the singular chains of LM. (Here M is a d-dimensional closed, oriented, compact
Riemannian manifold with injectivity radius ε .)

The string topology operation associated to Γ ∈ S(g,k, l).

µΓ : C∗(LMk)−→C∗−|χ|d(LMl)

We will define µΓ(σ) where σ is a generator σ : ∆n→ LMk and extend linearly.

Example. Here we take Γ ∈ S(0,2,1).

Then
µΓ : C∗(LM×LM)−→C∗−d(LM)

And σ : ∆n→ LM×LM, which we think of as σ(t) : S1tS1→M for t ∈ ∆n. We’ll
define

gσ ,Γ : C∗(∆n)−→C∗−d(LM)

and set µΓ(σ) = g([∆n]), where [∆n] is the fundamental chain.

The construction has four ingredients:
(1) Let Nε be a neighbourhood of ∆ : M→M×M.
(2) U ∈Cd(Nε ,Nε −Nε

2
) representing the Thom class of the diagonal.

(3) An evaluation map
evΓ : ∆

n −→M×M
given by evaluating σ(t) at the chord endpoints.

(4) Let Sε = ev−1
Γ
(Nε).

Observe that σ(t) sends chord endpoints into an ε-ball in M. Define g in three steps:
(1) The composite:

C∗(∆)−→C∗(∆,∆−S ε

2
)

s−−→C∗(Sε ,Sε −S ε

2
)
−∩ev∗

Γ
(U)−−−−−−→C∗−d(Sε)

Here s is an explicit chain homotopy inverse to i∗, and Hatcher has a formula
for it.

(2) heart : Sε →Map(Γ,M), t 7→
{

σ(t) on circles,
geodesic segment on chords. .

(3) Map(Γ,M)
out−−→ LM.

Then
g = out∗ ◦heart∗ ◦ (−∩ ev∗Γ(u))◦ s◦ j.
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6. GREGORY GINOT — STRING TOPOLOGY FOR STACKS II

Goals of the project “String topology for stacks”
• Relate string topology with orbifold cohomology of Chen and Ruan. This is

an algebra (H∗(ΛX);∪) with a strange grading, for X an ‘almost complex’
orbifold.
• Have a common framework for string topology operations encompassing

– closed oriented manifolds;
– classifying spaces of Lie groups;
– “commutative families” of groups over a fixed (closed oriented) mani-

fold M.

I) Bivariant theory for stacks.

Theorem. Fix a commutative ring k. There exists a bivariant theory for topological

stacks, denoted H•(X
f−→Y) such that

• H∗(X =−→ X) = H∗(X)
• Hn(X→ pt) = H−n(X) for all n

and which induces the usual operations of cup and cap product, pullback in coho-
mology and pushforward in homology.

(Now the rest of the bivariant theory is essentially a tool that allows you to form
Gysin maps.)

Definition. Let p : E→X be a vector bundle of rank n. It is orientable if there exists
a class τ ∈ Hn(E,E−X) such that the map

H i(X)−→ Hn+i(E,E−X), c 7→ p∗(c)∪ τ

is an isomorphism. We call τ an orientation.

Proposition. Let p : E→ X and q : F→ X be vector bundles over X of ranks n and
m. Let K be a closed substack of X. Then there exists canonical isomorphisms fitting
inside a commutative diagram.

H i(X,X−K)
' //

'
��

Hn+i(E,E−K)

'
��

H i+m(F,F−K)
' // H i+m+n(E⊕F,E⊕F−K)

What this means is that the cohomology H i(X,X−K) can be computed by replac-
ing X with a vector bundle over X, and the result doesn’t depend on how you do
that.

Recall the bivariant theory for closed manifolds, that for f : X → Y a smooth map
gives

H i(X
f−→ Y ) = H i+n(Rn×Y,Rn×Y − i(X))

where i : X → Rn×Y is given by x 7→ (ϕ(x), f (x)) for ϕ an embedding. Two ideas:
• Allow all vector bundles over Y.
• Probe X by relatively (compared to Y) small stacks K.

Assume that we have a stack map f : X→Y that satisfies the following property:
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(∗) (Bounded proper.) There exists a closed embedding ϕ

E

p
��

X
f
//

ϕ
??

Y

where p : E→Y is a metric, oriented vector bundle over Y and ϕ(X) lies in
the unit vector bundle of E.

Definition (Partial definition). If f is bounded proper then set

H i(X
f−→Y) = H i+dim(E)(E,E−X).

By the earlier definition this does not depend on the choice of embedding, but it does
not always work.

For general maps f : X→Y we start by defining a category C( f ).

• Object of C( f ): map of stacks a : K→ X such that f ◦a has property (∗).
• Morphisms of C( f ): (homotopy classes of) maps

K

��

a // X

L
b

??

Definition. The bivariant theory for an arbitrary morphism f : X→Y is

H i(X
f−→Y) = colimC( f )

(
H i+dim(E)(E,E−K)

)
.

I leave it to you to define the maps in the colimit. There should be a proposition that
the partial definition from before is an instance of this definition.

Pullback construction: Given a 2-cartesian square of stacks

X′
f ′ //

q
��

Y′

p
��

X
f
// Y

we get a map

H i(X
f−→Y)−→ H i(X′

f ′−→Y′)

as follows. Take

E

��
K

ϕ

77

a
// X // Y
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Define K′ = K×YY′ and define E′ = p∗E= E×YY′. Then a induces a map

E′

��
K′

ϕ ′
77

a′
// X′ // Y′

So we obtain

H i+dim(E)(E,E−K) // H i+dim(E′)(E′,E′−K′)

��

H i(X′
f ′−→Y′)

Pushforward:

H i(X
f−→Y

g−→ Z)
f∗−−−→ H i(Y

g−→ Z)

for any maps. (In other words any map is confined.)
Cup-product: The product

H i(X
f−→Y)⊗H j(Y

f−→ Z)
∪−−→ H i+ j(X

g◦ f−−−→Y)

is defined for (strongly) adequate maps g : Y→ Z.

Example. Some strongly adequate maps:
(1) f : X→ K is strongly adequate for K a compact topological space.

(2) X
f−→Y equivalences. (In particular you get a cup-product.)

(3) X→ X×X diagonal satisfying the condition (∗).
(4) Assume that X and Y are smooth manifolds with an action of a compact Lie

group G. Let f : X → Y be G-equivariant. Then

[X/G]
[ f/G]−−−−−→ [Y/G]

is strongly adequate.

To check that the cohomology groups associated to a stack are the ordinary co-
homology groups is trivial. And to check that the homology groups associated to a
stack are the ordinary homology groups is essentially Alexander duality.

II) Orientation.

Definition. A normally nonsingular or nns map is a (representable) map f : X→Y
such that there is a factorisation

E // F

π

��
X

f
//

s

OO

Y

with E→ X and F→ Y vector bundles, with F oriented, and with the top arrow
an open embedding. It is said to be oriented if E is oriented. Define codim( f ) =
dim(F)−dim(E).
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Example.
• X → Y an embedding of manifolds, then it is an nns map.

Tub // Y

π

��
X

f
//

s

OO

Y

• Let p : E→ X be an oriented vector bundle. Then it is nns oriented:

E
= // E

p
��

E p
//

=

OO

X

Example (Main example). Let X ,Y be smooth manifolds acted upon by a compact
Lie group G. Let f : X → Y be equivariant. Assume in addition that there exists a
linear representation V of G together with an equivariant embedding X ↪→V . (Mann
Theorem: If H∗(X) is finitely generated in every degree for all i, then you have this
property.) Then:

• The map [X/G]→ [Y/G] is nns.
• If X , Y oriented and G is orientation-preserving then it is nns-oriented.

Sketch of proof: You can assume that V is oriented. (If not then take V ⊕V .) Then
[V/G]→ [pt/G] is an oriented vector bundle. So we form [V/G]×[pt/G] [Y/G] which
is an oriented vector bundle over [Y/G]. We obtain a diagram

[V/G]×[pt/G] [Y/G]

��
[X/G]

f
//

77

[Y/G]

and this factors through an nns diagram by choosing a G-equivariant tubular neigh-
bourhood. �

Definition (Orientation). Let f : X→Y be a strongly adequate nns map. A class θ ∈
Hcodim( f )( f : X→Y) is called a strong orientation if for all g : Z→X, multiplication
by θ induces an isomorphism

H(Z
g−→ X)

∪θ−−−→ H(Z
f◦g−−→Y).

A stack X is said to be oriented if X ∆−→ X×X is strongly oriented.

Proposition. If f : X→Y is a strongly adequate oriented nns map, then there is a

canonical strong orientation θ ∈ Hcodim( f )(X
f−→Y).

Example. If X , Y are smooth manifolds, X compact, G compact acting in an orientation-
preserving way on X and Y , and f : X → Y is G-equivariant, then [X/G]→ [Y/G] is
oriented. So [pt/G] is always orientable.

Proposition. If f : X→Y is an nns map between oriented stacks, then it is canoni-
cally strongly oriented.
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III) Mapping stacks.

Definition. Let X and Y be topological stacks. Set

Map(X,Y)(T ) = hom(T ×X,Y).

Proposition. The mapping stack Map(X,Y) is a stack over Top.

Proposition. If X ' [X0/X1] with X1⇒ X0 being “compact”, then Map(X,Y) is a
topological stack.

So the good news is that the circle, figure-eight and so on are compact.

Definition. LX= Map(S1,X) which is a topological stack. (In general very far from
being differentiable.)

Example. If X= [pt/G] with G connected then LX' [pt/LG]. If G is discrete then
LX' [G/G] (adjoint action).

Theorem. Let X be a (Hurewicz, which includes differentiable) oriented stack of
dimension d. Then H∗(LX) is a dimension-d Frobenius algebra. (Meaning that we
have the loop product and loop coproduct, but no units or counits in general.)

LX LX×X LXoo //

��

LX×LX

��
X

∆

// X×X

(The fact that LX×X LX 'Map(∞,X) follows because X is Hurewicz. A pushout
of spaces is not necessarily a pushout in stacks. Here the relevant pushout is ∞.
However for Hurewicz stacks what you want still holds.)

Take θ ∈ Hd(X→ X×X) to be your strong orientation. Get

p∗(θ) ∈ Hd(LX×X LX→ LX×LX)

If
[x] ∈ Hi(LX×X LX)' H−i(LX×LX→ pt)

then

∆
![x] = p∗(θ)∪ [x] ∈ H−i+d(LX×X LX→ pt)' Hi−d(LX×X LX)→ Hi−d(LX).

Example. If G is a compact connected Lie group, then

H∗(L[pt/G],R)∼= H∗([Gad/G])∼= S(g∗)⊗G (Λ∗(g)G ∼= S(x1, . . . ,xl)⊗Λ
∗(y1, . . . ,yl).

The loop product is null, however the coproduct is counital.
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7. DANIELA EGAS — HIGHER STRING OPERATIONS USING RADIAL SLIT
CONFIGURATIONS I

Bödigheimer: “Configuration models of moduli space of Riemann surfaces with
boundary”.

I will give the leisurely introduction to what Sander will do on Friday. Sander uses
a modification of Bödigheimer’s model of moduli space. It behaves really nicely.
Because my talk will be leisurely I will give explanations using pictures.

Part I. Configuration models.

A. Radial slit configurations. The idea is we will take a bunch of annuli, cut them
up, and then glue them together along the cuts.

Fix integers h > 0 (minus the Euler characteristic of the result), n,m > 1 (the
number of incoming & outgoing boundary circles). The space of possibly-degenerate
preconfigurations is

PRaddeg
h (n,m)⊂ (

n⊔
i=1

C)2h×S2h×S2h×{0,1}2h× (1,∞)× (
n⊔

i=1

C)m.

An element is L = (ζ ,λ ,ω,θ ,R,P). Given R ∈ (1,∞) we will write

AR = {z ∈ C | 16 z6 R}
and

B= A1
Rt·· ·tAn

R.

image1

Then L ∈ PRaddeg
h (n,m) if the following hold:

(1) The element ζ ∈ (
⊔n

i=1C)2h is written ζ = (ζ1, . . . ,ζ2h) where the ζi are the
slits. We demand ζi ∈ B. The slit segments are:

image2

(2) λ ∈ S2h is the slit pairing.
• We assume λ has h disjoint cycles of length 2. “Pairing slits 2 by 2”.
• We demand that |ζi|= |ζλ (i)| so we are pairing slits of the same modulus.

Each slit has a negative and positive side, determined by the orientation of the plane.
We pair the positive bank of each slit with the negative bank of its pair. In the fol-
lowing case we get a pair of pants.CONSTRUCTING HIGHER STRING TOPOLOGY OPERATIONS USING RADIAL SLIT CONFIGURATIONS 7





Figure 2. Four steps in the process of obtaining the surface corresponding to a
radial slit configuration. For the convenience of visualization these steps do not
correspond exactly to the steps of the glueing process defined in this section.

Figure 3. An example of a degenerate radial slit configuration with its associated surface.

In figure 2 we give an example of a radial slit configuration whose corresponding surface has
genus 1 and a single incoming and outgoing boundary component. Further examples can be found
in figure 12. We recommend that the reader tries to draw some examples as well.

In section 4.5 of [Böd06] the following criterion is proven.

Proposition 1.10. The surface F (L) is not a smooth surface with boundary if and only if L
satisfies at least one of the following two conditions.

• Some ⇣i lies in @inAR or @outAR.
• There is a pair (i, j) such that ⇣i and ⇣j lie on the same annulus AR, i 2 ⇥ and ⇣i = ⇣j

such that |⇣k| � |⇣i| = |⇣j | for all k 2 I between i and j in the induced cyclic ordering of
the indices of ⇣ on the annulus AR.

If L doesn’t satisfy either of these conditions we call it non-degenerate. If it is non-degenerate or
just satisfies the first condition we call it semi-degenerate. If it is not non-degenerate or semi-
degenerate, we call it degenerate.

In other words, there is a small problem when a slit lies on the boundary, but that there is a
big problem if two slits coincide or a slit is squeezed in between two larger slits. By looking at the
corresponding surfaces, e.g. figures 3 and 14, one sees that this is indeed the case. These types of
degenerations are called harmonic degenerations in the literature.

Definition 1.11. The space of radial slit preconfigurations PRad is the subspace of PRaddeg con-
sisting of those preconfigurations that are non-degenerate. Similarly, the space of semi-degenerate

Here is a more interesting case:
image4
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A configuration is generic when no slit points ζi lie on the same radial segment. If a
configuration is non-generic then this process we have defined so far is ambiguous.
Let’s see why.

image5
If I only say where the points are then I don’t know if I should place 1 before 3 or
vice versa. In one case you get a pair of pants with three legs, and in the other you
get a surface of genus 1 with two boundary components. This problem is why we
have ω .

(3) ω ∈ S2h is such that:
• ω = ω1 · · ·ωn
• ωi = ( j,k, l, . . .) is a cycle and ζ j,ζk,ζl . . . ∈ Ai

R
• ωi respects the weak cyclic ordering coming from the argument.

I think of slits lying in the same radial segment as being epsilon apart. This
ω tells me what ordering to place those slits in.

There is still a problem. You might not have noticed it yet, but there is still a possible
ambiguity in the resulting surface.

Definition. The exceptional case is when there is an annulus with more than 1 slit,
and all of its slits are at the same radial segment .

image6

The two possible orderings are not distinguished by ω , which is (12) in each case.

(4) θ ⊂ {1,2, . . . ,2h} satisfies θ = /0 in the nonexceptional case, and in the ex-
ceptional case it contains all except the ‘last’ of the slits.

image7

This fixes a genuine ordering; I only need it when all slits lie on the same
radial segment.

(5) We demand that λ ◦ω consists of exactly m cycles. Note this will divide
∂outB into m sections O1, . . . ,Om which intersect only at points.

image8

In the first case m = 3, and in the second case m = 1.
(6) P ∈ (

⊔n
i=1C)m parametrization points. We demand that Pi ∈ Oi, so there is

exactly one Pi in each Oi.

B. The space Rad. We have seen that

PRaddeg ∈ L 7−→ F(L)

where F(L) is the surface obtained by cut-and-paste. Is F(L) a surface? No.

Proposition (Bödigheimer). F(L) is a “degenerate” surface if and only if at least
one of the following holds.

(1) ζi ∈ ∂outB∪∂inB for some i. (Finitely many identified points.)
(2) There is i such that ζi = ζλ (i), and no ζk > |ζi|= |ζλ (i)| where k is between i

and λ (i).
image9

Anything not of this form is in fact a surface. (Bödigheimer proves it by giving
charts.)
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Definition. PRad⊂ PRaddeg where PRad is the subspace of nondegenerate configu-
rations.

Is it possible that F(L1)∼ F(L2) when L1 6= L2? Yes, sometimes.

Definition. ≡1 generated by jumps of parametrization points and jumps of a short
slit along a long slit.

image

Definition. ≡2 is defined by L1 ≡ L2 if L1 ≡1 L2 or L1 is obtained from L2 by rela-
belling ζi and modifying the remaining data accordingly.

Definition.
LRad = PRad/≡1, Rad = PRad/≡2

The latter is Bödigheimer’s space of radial slit configurations.

Theorem (Bödigheimer, Kupers (who protests)).

Radh(n,m)'
⊔
[Σ]

BΓΣ

where ΓΣ is the mapping class group of Σ and Σ ranges over all cobordisms with n
incoming, m outgoing, and χ =−h.

Definition.
PRad //

≡2
��

PRaddeg

≡2
��

Rad // Rad
Rad is the harmonic compactification.

C. Composition and disjoin union. A very nice thing about this model is that com-
posing and taking disjoint unions is very nice. We define

Pt : PRadh(n,m)×PRadh′(n
′,m′)−→ PRadh+h′(n+n′,m+m′)

by
(L,L′) 7−→ L′′

where L′′ is obtained by disjoint union, and we scale the radius to the max of R and
R′. And we define

P#: PRadh(n,m)×PRadh′(m,k)−→ PRadh+h′(n,k)

by
(L,L′) 7−→ L′′.

We use the following picture of the annuli:

AR◦R′ = AR∪AR·R′
R

where AR·R′
R has inner radius R and outer radius R ·R′.

On L we divide up the boundary compondents O1, . . . ,Om. Each Oi is divided into
ai1 · · ·ail by cutting at every Pi and at every radial segment. On L′ we split Ai

R starting
at the marked point so that the inner radius is cut proportionally to the lengths of the
ai j. Label the sections Fi1, . . . ,Fil .

images
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Now I will take the piece Fi j and scale (in the normal and in the angular sense) it so
that it fits onto the piece ai j.

We get L′′ where we take first the slits of L, then the slits of L′ (rotated and scaled)
and where the marked points are carried over from L′, and where the remaining data
is read from L and L′, except where you have to cut along some slits, and there you
can make any choice and it doesn’t make a difference.

Remark. These operations are associative, and the cylinder is a unit for the compo-
sition up to homotopy.

D. Fat graphs. From a radial slit configuration you get a fat graph:

L ∈ PRad 7−→ Γ

where

Γin = ∂inB, Γout = O1∪·· ·∪Om/',
and

Γ̃ = ∂inB∪{S′k−Sk|k = 1, . . . ,2h}
(here S′k−Sk is a whole radial segment, minus a radial slit) and then

Γ = Γ̃/'

where ' is gluing according to λ .

images

All the combinatorial data in the slit configuration tells you how to equip this graph
with a fat structure.

Part II. Operation of a generic configuration.

Γin ↪→ Γ̃
identify 2h points−−−−−−−−−−→ Γ ↪→ F(L)←↩ Γout ∼=

n⊔
i=1

S1

Let M be a manifold, oriented of dimension d.

Map(
n⊔

i=1

S1,M) = LMn→Map(Γ̃,M)←Map(Γ,M)→ LMm

We want to create a wrong-way map for the middle arrow. The simplest case is h= 1.
We assume that Γ comes from a generic configuration (no slits in the same segment).

Y P−−→ X = Y/∗1t∗2

Toy model

image

Can define φ : Y → [0,1] such that φ−1(1) = {∗1,∗2} and φ−1(0,1] = U1∪U2 with
Ui ⊂ Y open and deformation retracting onto ∗i.
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A. Tubular neighbourhoods. We have p : Y→X which is identification of two points.

ev∗(ν) //

f̃

&&

��

Map(X ,M) //

ev∗
��

Map(Y,M)

ev∗1 ,ev∗2
��

ν

f ,open, homeo onto image

88
// M

∇

// M×M

with ∇ of codimension d. Here

ev∗(ν) =
{
(g,v) | g : X →M, v ∈ νg(∗)

}
The preimage of ν in Map(Y,M) is {h : Y → M | h(∗1),h(∗2) ∈ ν}. Say g(∗) = m̃
and v ∈ νm̃. Now f (m̃,v) = (m,n). We want to make the following assignments

(g : X →M) 7→ (p(g) : Y →M) 7→ (g̃ : Y →M)

such that
(∗ 7→ m̃) 7→ (∗1 7→ m̃,∗2 7→ m̃) 7→ (∗1 7→ m,∗2 7→ n)

Θv : M×M× I −→M×M, (m̃, m̃, t) 7→
{

(m̃, m̃) if t = 0,
(m,n) = f (m̃,v) if t = 1.

ψv(y) = Θv(g(y),g(y),φ(y)) =
{

(g(y),g(y)) if y 6∈U1∪U2,
(m,n) if y = ∗1, y = ∗2.

f̃ (g,v)(y) =

 g(y) y 6∈U1∪U2
π1(ψv(y)) y ∈U1
π2(ψv(y)) y ∈U2

Want Θv to change continuously with v and g.

Definition. Let ν →M be a vector bundle. A propagating flow on ν is a map

χ : ν −→ χc(ν),

where χc(ν) is compactly supported vector fields on ν . It is such that for every v∈ ν ,
the result χ(v) (which is a vector field on ν) sends tv to v for 06 t 6 1. In particular
it flows (m̃,0)→ (m̃,v) in time 1.

Proposition (Stacey, Godin). The space of propagating flows is nonempty and con-
tractible.

Now choose a propagating flow χ , and use f to turn this into a map X with values
in χc(M×M) by extending by 0. Then take the flow to obtain a map

θ : ν× I→ Diffc(M×M).

Define Θv to be θ(v,−).
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8. DMITRY PAVLOV — NATURAL OPERATIONS ON HOCHSCHILD COMPLEXES

Outline:
(1) dg props, A∞-props
(2) (co)Hochschild complexes for functors
(3) operations on Hochschild complexes
(4) computation of the chain complex of operations
(5) example: cap product

1. dg props, A∞-props.

Definition. Ch = Z−graded chain complexes.

Definition. A dg-category is a category enriched in Ch.

Definition. A dg prop is a symmetric monoidal dg category with ⊗ on objects given
by (N,+,0). (So the objects are the natural numbers, the product is just addition, and
the unit is 0.)

Example. SymFrobh: morphisms m → n is chains on the moduli space of open
bordisms.

Definition. A∞ (non-unital version) is the dg-prop
(1) Construct a prop enriched in Z-graded sets. Free symmetric monoidal cate-

gory on one object x, and for any n> 2 a generating morphism mn : x⊗·· ·⊗
x→ x of degree n−2, which we visualise as a tree with n incoming vertices
and one outgoing vertex.

image1
This is the morphism m2 ◦ (m2⊗m3) : x⊗5→ x. We think of m2 as a more-
or-less ordinary product on an algebra, but it is only associative up to a ho-
motopy which is given by m3, and so on.

(2) Replace each set of morphisms by the free Z-graded abelian group.
(3) To define the differential we need only define it for the generators, and there

is it given by

d(mn) = ∑mk+l+1 ◦ (1x⊗k⊗mn−k−l⊗1x⊗l)

where the sum is over all k > 0 and l > 0 such that k+ l +26 n.
A remark: for unital A∞-algebras one has to add an additional generator 1→ x.

Definition. Acyclic
∞ is A∞ together with an additional object y, and morphisms ln : x⊗

·· ·⊗ x→ y where ln has degree n−1.

image3

We think of this as a morphism from three things to a ‘white’ vertex. The differential
is given by

d(ln) = ∑± cyclically split off a tree from ln
So dl3 is the sum (with signs) of the following six objects.

image4

Definition. L : Aop
∞ → Ch is the functor m 7→ Hom(m,y) where Hom is taken in

Acyclic
∞
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Remark. L(m) =
⊕

n>1 MorA∞
(m,n)⊗Ln where Ln = Z[n−1].

Definition. An A∞-prop is a strong symmetric monoidal functor i : A∞→ E.
(1) For any such, and any Φ : E→ Ch (not necessarily monoidal) we define the

Hochschild chain complex CΦ : E→ Ch on objects by

CΦ(m) = ((Φ◦ (−+m)◦ i)⊗A∞
L).

And on a morphism f : m→ n by

CΦ( f ) = ((Φ◦ (−+ f )◦ i)⊗A∞
L)

(2) Given Ψ : Eop→Ch, the coHochschild comples of Ψ is defined on objects by

DΨ(m) = HomA∞
(L,Ψ◦ (−+m)◦ i)

and on morphisms by

DΨ( f ) = HomA∞
(L,Ψ◦ (−+ f )◦ i).

Definition. In the last definition the ⊗A∞
means the following. Given F : C→ Ch

and G : Cop→ Ch, where C is a dg-category, then

F⊗C G =
∫

C
F(−)⊗G(−)

which is a chain complex.

Summary:

C : Fun(E,ch)→ Fun(E,ch)

D : Fun(Eop,ch)→ Fun(Eop,ch)

Remark.
(CΦ)(m) =

⊕
n>1

Φ(n+m)⊗Ln =
⊕
n>1

Φ(n+m)[n−1]

(DΦ)(m) = ∏
n>1

Hom(Ln,Ψ(n+m)) = ∏
n>1

Ψ(n+m)[1−n]

Remark. Take i : A∞→ E to be the identity on A∞. Let Φ be symmetric monoidal
(so it is basically an A∞-algebra). Then:

(1) CΦ(0) = Hochschild complex of A∞ algebra Φ(1).
(2) CnΦ(0) = (CΦ(0))⊗n. I will explain momentarily why it is interesting to

8.1. operations on Hochschild complexes.

Definition. Fix i : A∞→ E.
(1) Define a functor Cm,n

E : Fun(E,Ch)−→ Ch by Φ 7−→ (CmΦ)(n).
(2) Define the dg-category of formal operations NatE as follows. Objects = N2.

The complex of morphisms (m1,n1)→ (m2,n2) is

HomFun(E,Ch)(C
m1,n1
E ,Cm2,n2

E ).

(3) Define the dg-category Nat⊗ of natural operations by substituting Fun⊗ for
Fun.

(4) There is a canonical functor NatE→ Nat⊗E .

Definition. (1) Define the representable functor E(p,−) : E→ Ch.
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(2) So we obtain Cm1(E(p,−)) : E→ Ch. Making p variable we obtain

Cm1E : Eop⊗E→ Ch

and similarly
Dm2Cm1E : Eop⊗E→ Ch.

Theorem. Take i : A∞→ E. Then

NatE((m1,n1),(m2,n2)) = (Dm1Cm2E)(n1,n2).

Using the explicit formulas from earlier, this becomes:

∏
⊕

E
(
n1 +∑ j,n2 +∑k

)[
∑k−∑ j+n1−n2

]
.

Now we know how to compute formal operations on all functors. What is much
more interesting is the natural operations, which are defined for symmetric monoidal
functors. It turns out in many cases that this map from formal to natural operations is
an isomorphism. Question: When is NatE→ Nat⊗E an isomorphism? Or surjective,
injective, etc?

Example. m1 = m2 = 0, then NatE((0,n1),(0,n2)) = E(n1,n2). And

Nat⊗E ((0,n1),(0,n2)) = Hom(U⊗n1 ,U⊗n2)

where U : Fun⊗(E,Ch)→ Ch is the functor that evaluates at 1. The functor NatE→
Nat⊗E is then of the form

Nat⊗E ((0,n1),(0,n2))−→ Hom(U⊗n1,U⊗n2).

It is given by the structure of E-algebra.

Definition. For all E there is a functor of dg props

ρ : E−→ Ê

where
Ê(n1,n2) = Hom(U⊗n1,U⊗n2)

is called the completion of E. If this is an isomorphism then we say that E is complete.

Remark.
(1) Fun⊗(Ê,Ch)

∼=−−−→ Fun⊗(E,Ch)
(2) Ê is complete.
(3) The completion Ê again has the structure of A∞-prop via E→ Ê.
(4) Write r : NatE→ Nat⊗E .

(a) r is injective on morphisms / faithful if and only if ρ : E→ Ê is faithful.
(b) r is surjective on morphisms / full if and only if ρ is full.

(5) Nat⊗E → Nat
Ê

is an isomorphism.
(6) If E comes from a dg operad, then E→ Ê is faithful.

Example (Cap product). A : Assoc→ Ch. End(A) the dg prop with End(A)(p,q) =
Hom(A(p),A(q)). The cap product

∩ : Cp(A,A)⊗Cq(A,A)−→Cp−q(A,A)

is given on a⊗D, where a= a0⊗·· ·⊗ap and D : A⊗q→A, by a∩D=±a0D(a1, . . . ,aq)⊗
·· · .
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Proposition. There is

F : C∗(A,A)→ NatEnd(A)((1,0),(1,0))

given by cap product. It is injective.
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9. ANSSI LAHTINEN — STRING TOPOLOGY OF CLASSIFYING SPACES &
HHGFTS

Joint with Richard Hepworth. Z/2 coefficients.

I. Background.
Godin ‘07. Suppose M is a closed oriented manifold. Then there is a degree dim(M)
HCFT with S1 7→ H∗(LM).

Chataur-Menichi ‘07. Suppose G is a compact Lie group. Then there is a degree
−dim(G) HCFT with S1 7→ H∗(LBG).

Rough definition. An HCFT F of degree d is an assignment(
1−mfld X

)
7−→

(
F∗(X) graded vector space

)
and (

cobordism Σ : X → Y
)
7−→

(
H∗−d·χ(Σ,X)(BDiff(Σ))⊗F∗(X)→ F∗(Y )

)
where Diff(Σ) is the group of diffeomorphisms of Σ fixing X and Y pointwise. Com-
patible with disjoint union, composition and diffeomorphisms of cobordisms.

The way I have stated these two results makes it look like the two results are
exactly equivalent. But in fact the HCFT constructed by Godin is of a stronger type
than the one constructed by Chataur-Menichi. For example, in Godin’s theory the 1-
manifolds may have boundary, while for Chataur-Menichi they must be closed. Also
Godin’s theory comes with a unit for the value on a circle and a unit and counit for
the value on an interval; but Chataur-Menichi have neither a unit nor a counit. The
main goal of the project was to extend Chataur-Menichi’s result to one more closely
analogous to Godin’s. But in fact we ended up describing something much more
complicated.

II. Homological h-graph field theories (HHGFTs). The key idea in this extension
is that instead of 1-manifolds, sufaces and diffeomorphisms we can equally well work
with spaces that have the homotopy type of a finite graph and homotopy equivalences.

Definition. An h-graph is a space homotopy equivalent to a finite graph.

Example. pt, I, S1, S1∨S1, any compact connected surface Σ with non-empty bound-
ary.

Definition. An h-graph cobordism S : X → Y is a diagram of the form

X i−−→ S
j←−− Y

of h-graphs such that

• X tY
i, j−→ S is a closed cofibration.

• i : X → S is surjective on π0.
• There should exist a homotopy cocartesian square

A //

��

Y

j
��

B // X
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where A has the homotopy type of a finite set and B is an h-graph. What this
condition says is that up to homotopy S is obtained from Y by attaching a
finite graph along a finite number of points.

(One thing which this last requirement, which may seem a little mysterious, is that it
allows us to form compositions of h-graph cobordisms.)

Example. Any open-closed cobordism Σ : ∂0 → ∂1 between 1-manifolds such that
∂0→ Σ is surjective on π0. So the cobordisms we already had are still there.

In addition you can imagine any finite graph, and turn it into an h-graph cobordism
by deciding that part of it is the incoming boundary and part of it is the outgoing
boundary. Now we want families of such things.

Definition. Suppose that X and Y are h-graphs and that B is a space. A family of
h-graph cobordisms S/B : X → Y consists of:

• A fibration S→ B.
• Maps X×B→ S← Y ×B over B.

such that:
• The map (X tY )×B→ S is a closed fibrewise cofibration.
• The diagram X → Sb ← Y is an h-graph cobordism for each b ∈ B. (The

diagram is obtained by restricting to fibres.)

Example. Suppose Σ : ∂0→ ∂1 is an ordinary open-closed cobordism, and that ∂0→
Σ is surjective on π0. Let D = Diff(Σ). Then

BD×∂0 −→ ED×D Σ←− BD×∂1

(all over BD). Write UD = ED×D Σ. Then we have UD/BD : ∂0→ ∂1.

Example. Suppose S : X → Y any h-graph cobordism. Have a universal family of
h-graph cobordisms

UhAut(S)/BhAut(S) : X −→ Y
where hAut(S) = { f : S→ S | f |(X tY ) = id} is the topological monoid of self-
homotopy equivalences.

Definition. An HHGFT Φ of degree d consists of:
• A strong symmetric monoidal functor

(h graphs and homotopy equivalences) Φ∗−−−→ (graded vector spaces)

• For each family of h-graph cobordisms S/B : X → Y , a map

H∗−dχ(S,X)(B)⊗Φ∗(X)
Φ(S/B)−−−−−−→Φ∗(Y )

Satisfying 5 axioms:
(1) Base change (and homotopy invariance). Given

X
S/B

//

' φX
��

Y

'φY
��

X ′
S′/B′

// Y ′
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and φB : B→ B′ and φS : S→ S′ (over B and under (X tY )×B, such that ϕS
is a homotopy equivalence in every fibre. The diagram

H∗−dχ(S,X)(B)⊗Φ∗(X)
Φ(S/B)

//

��

Φ∗(Y )

��
H∗−dχ(S′,X ′)(B′)⊗Φ∗(X ′)

Φ(S′/B′)
// Φ∗(Y ′)

(2) Gluing. Given X
S/B−−−→Y

T/C−−−→, compare Φ(S/B), Φ(T/C), Φ((T ◦S)/(C×
B)). Here (T ◦ S)/(C×B) is the family whose fibres are the composites of
the fibres of T with the fibres of S.

(3) Identity: Φ(X× I/pt : X → X) acts as identity.
(4) Monoidality: Given Si/Bi : Xi→ Yi, i = 1,2, compare Φ(S1/B1), Φ(S2/B2)

and Φ((S1tS2)/(B1×B2)).
(5) Unit. Φ( /0/pt) acts as identity.

An HHGFT induces an HCFT. I get it by applying the HHGFT to the universal
families UD(Σ)/BD(Σ).

Theorem (H-L). Chataur-Menichi’s HCFT extends to an HHGFT.

The HCFT here is open-closed, and also has a counit. So we do get an extension
of the HCFT to one comparable to Godin.

(Some) benefits.
(1) New cobordisms, and so new operations. For example

1

from S1 to I. This is not an ordinary cobordism. The resulting operation
Φ∗(S1)→Φ∗(I) is a retraction of coalgebras.

(2) New factorisations.
2

(3) Connection to automorphism groups of free groups (with boundary). (These
groups are homotopy equivalent to hAut(S) for some suitable h-graph cobor-
dism S.)
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10. DANIEL BERWICK-EVANS — TWO-DIMENSIONAL YANG-MILLS THEORY
AND STRING TOPOLOGY OF CLASSIFYING SPACES

Joint with Dmitry Pavlov.
There are some structural aspects of Yang-Mills theory that look a lot like string

topology.

I. Yang-Mills theory.

Warm-up. G a finite group. Consider the group ring C[G]. This is a symmetric
semisimple Frobenius algebra.

Theorem (Schommer-Pries). There is an equivalence

{local 2−d topological field theories}←→{semisimple symmetric Frobenius algebras}
The objects on the left are symmetric monoidal functors Fun⊗(2−Bord,ALG). This
theory sends a point to an algebra A, an interval to an A-bimodule M, and bordisms
to morphisms of bimodules.

For A = C[G] we get a 2-TFT called Dijkgraaf-Witten theory.

pt 7→ C[G], S1 7→ Z(A) = C[G]G, pants 7→ (m : Z(A)⊗Z(A)→ Z(A)).

2-d Yang-Mills theory continues this story for G a compact Lie group with a biinvari-
ant metric. (The theory will not be topological.) I’ll tell you what a physicist would
write down if you asked what is Yang-Mills theory.

Classical YM theory. Consider the stack of maps Σ2 7→ pt//G∇. There is a function
on Map(Σ,pt//G) called the Yang-Mills action. For every map from a manifold S into
here, I will give you a map on S. Given Σ→ pt//G∇, corresponding to a principal
G-bundle P→ Σ with connection ∇, take

SY M =
∫

Σ

tr(F ∧∗F)

where F = curv(∇). Want to form∫
Map(Σ,pt//G∇)

e−SDφ .

This will define quantum Yang-Mills. When G is finite then Map(Σ,pt//G∇) is finite
and we (or in fact Dan Freed) can compute this. When G is not finite then all hell
breaks loose.
Observations:

• L(pt//G∇) = Map(S1,pt//G∇)∼= Gad//G which is finite-dimensional.
• Map(S1 × I,pt//G∇) ∼= Map(I,G//G). On the left here is a gauge theory

problem, and on the right it’s a classical mechanics problem; we can quantise
on the right (it’s quantum mechanics) and this will (by magic) coincide with
the quantisation on the left.
• The isomorphism C∞(Map(S1× I,pt//G∇))∼=C∞(Map(I,G//G)) sends SY M

to Smech, where Smech(γ) =
∫

I |γ̇|2dt. (A map I→G//G is I← P→G with P
a principal G-bundle with connection.)
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So quantizing Yang-Mills theory is quantising classical mechanics on G//G. Audi-
ence question: What is quantisation? We quantise and get C∞(G) as space of states,
together with the action by the Laplacian ∆ which is the Hamiltonian / time-evolution
operator.

Theorem (BE-Pavlov). Let G be a Lie group with bi-invariant metric. There is a
local 2-d field theory,

Y MG : 2−V Bord−→ ALG
generalizing Dijkgraaf-Witten theory. (Here again ALG is the 2-category of alge-
bras, bimodules and intertwiners.)

2−V Bord:
• objects are 0-manifolds;
• 1-morphisms are 1-manifolds;
• 2-morphisms are 2-manifolds with volume form.

Construction of Y MG:

pt 7−→C∞(G) with convolution product
I 7−→ AAA

∩ 7−→ Aop⊗AAC

S1 7−→ Z(A) =C∞(G)G ∼=C∞(G//G)

1 7−→ AAA⊗ AAA
m−−→ AAA

2 7−→ e−V ∆ : AAA→ AAA

cyclinder volume V 7−→ e−V ∆ : Z(A)→ Z(A)

pants made of cylinders volume V1,V2,V3 7−→ e−V3A ◦m◦ (e−V1∆⊗ e−V2∆)

cup volume 0 7−→ eve : Z(A)→ C, f 7→ f (e).

cap volume V > 0 7−→ C→ Z(A), 1 7→ e−V ∆
δe

Taking the zero-volume limit gives a 2-TFT without unit. We can try to solve this
using differential forms.

YM via push-pull constructions. Corresponding to the volume V = 0 pair of pants.

Map(∞,pt//G∇)

L×R

uu

c=m

((

L(pt//G∇)×L(pt//G∇) (G×G)//G L(pt//G∇)

G//G×G//G G//G×G//G

Then we take a push-pull:

C∞(G×G)G

(L×R)∗

vv

m!

&&

C∞(G)G⊗C∞(G)G C∞(G)G
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Let G be connected. Models for equivariant de Rham of G//G.
(1) S•(g∗)G⊗Λ•(g∗)G. Cartan.
(2) S•(g∗)G⊗Ω•(G)G. Weil.
(3) S•(g∗)G⊗Λ•(g∗)G⊗G Ω•(G). BRST.

The result:
(1) Get product, coproduct, a unit which is the harmonic volume form on G. This

is a TFT without counit.
(2) We can get a VFT where the cap is determined by

C→Φ(G), 1 7→ e−V ∆(dvolG ·δe).

As V → ∞, this becomes the previous theory.
Questions:

• Where is the counit?
• What does zero (or maybe infinite) volume limit mean precisely?
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11. SANDER KUPERS — HIGHER OPERATIONS USING RADIAL SLIT
CONFIGURATIONS II

Plan:
(1) Radial slits revisited.
(2) Global construction of operations.
(3) HCFTs and checking the axioms.
(4) (Partial) compactification and fun.

Last time:
(1) We defined radial slit configurations.
(2) For each radial slit configuration we defined a surface and some graphs.
(3) For generic ones we defined a string operation.

Conventions:
• M is a compact closed oriented manifold of dimension d.
• Homology is with field coefficients, for argument Q.

1. Radial slits again. Σ a 2d-cobordism such that each connected component has
non-empty incoming and outgoing boundary. One obtains

RadΣ
∼= BDiff+(Σ,∂Σ).

We started by defining possibly-degenerate preconfigurations

PRaddeg ⊂ (1,∞)× (
n⊔

i=1

C)2h×S2h×L×S2h×{0,1}2h× (
n⊔

i=1

C)m.

An element L is written
L = (R,(ζi),λ ,ω,θ ,Pi).

We then formed quotients (vertically)

PRaddeg

��

PRadoo

��
LRaddeg

��

LRadoo

��
Raddeg Radoo

where the first quotient identified diagrams related by slit jumps, and the second
identified diagrams under relabellings (of the indices i).

Theorem. RadΣ ' BDiff+(Σ,∂Σ).

Building a surface from L:
image2

This gives a space

Sector(L)⊂ (
2h⊔
j=1

(
n⊔

i=1

C)).
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Allowing L to vary, we get

Sector⊂ PRad× (
2h⊔
j=1

(
n⊔

i=1

C))

and by taking identifications in each fibre (the identifications required to make the
surface) we obtain a space

PΣ−→ PRad.

We want this to be the universal surface bundle.
(1) Want this to be compatible with slit jumps and parameterising point jumps.

In other words, need L ∼ L′ to give a canonical isomorphism Σ(L) ∼= Σ(L′).
This will produce a reduced bundle

LΣ−→ LRad.

(2) Want this to be compatible with relabelling. Then we obtain the reduced
bundle

Σ−→ Rad.

Theorem (Bödigheimer). Σ→ RadΣ is the universal surface bundle.

This is in Bödigheimer (2006) and possibly also a paper of Ebert.
In Σ(L) there are several types of graphs.

Image3

It gives us a diagram
Γin −→ Γ−→ Σ←− Γout

over Rad. (All of these can be pulled back over LRad or PRad, and I will indicate
that sort of thing using an L or a P.) Now

Γin ∼= (S1)n×Rad, Γout ∼= (S1)m×Rad

and there is also a section r : Σ→ Γ which is a homotopy equivalence.
Some other graph spaces over PRad (not compatible with slit jumps). The follow-

ing thing is actually not degenerate:

image4

We obtain PΓ̃ (don’t glue vertices yet), PΠ̃ (don’t identify edges or vertices), PΠ

(don’t identify edges). For generic L we have Γ̃ = Π̃ and Π = Γ. These guys are not
compatible with slit jumps.

So now I have a very big diagram which tells me all the spaces I need for my
construction.

Γin // Γ Σoo Γoutoo

LΓin

OO

��

LΓ

OO

��
PΓin PΓ̃oo PΠ̃oo // PΠ // PΓ



WORKSHOP ON STRING TOPOLOGY AND RELATED TOPICS 45

Now we will need some local systems on these spaces. Think of local systems as bun-
dles of abelian groups locally isomorpic to Q together with locally constant function
to Z.

Definition. Form LRad×Q. Now S2h acts on LRad with quotient Rad, and it acts
on Q by sign(σ). We define

L= {LRad×S2h Q,−h}.
Proposition. L is compatible with disjoint union and composition.

In this case L⊗d will be encoding orientations and degree-shifts of the Thom iso-
morphism.

2. Global construction.
2.1 outline
2.2 fibrewise mapping spaces and parameterised spectra
2.3 tubular neighbourhood and Pontrjagin-Thom map.

2.1 Outline:
i) Map the diagram fibrewise into M.

MΓin oo

T

33 MΓ MΣ// MΓout//

MLΓin

LT

33

OO

OO MLΓ

OO

OO

MPΓin

PT

33MPΓ̃// MPΠ̃// oo MPΠ oo MPΓ

ii) Construct a fibrewise tubular neighbourhood

P f : ν
h
PΠ −→MPΓ̃ for MPΠ→MPΠ̃.

This produces a fibrewise Pontrjagin-Thom collapse map

MPΠ̃ −→ Thom(νh
PΠ).

We check that the following composite factorises.

MPΓin //

PT ))

MPΠ̃ // Thom(νh
PΠ

)

Thom(νh
PΓ
)

OO

(This works because the tubular neighbourhood is chosen correctly.) Now
this map PT has enough good properties that it induces the maps LT and T
in the diagram above. So the output is a map

MΓin −→ Thom(νΓ)

where νΓ is a vector bundle over MΓ.
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iii) Create parameterized spectra.

Σ
∞
RadMΓin

+ −→Thomsp(νΓ)

Σ
∞
RadMΓ

+ −→ Σ
∞
RadMΓout

+

(The middle terms are related by Thom isomorphism.)

Σ∞
RadMΓin

+ ∧Rad HQ // Thomsp(νΓ)∧Rad HQ

��

Σ∞
RadMΓ

+∧Rad ΣhdHQL̃⊗d
// Σ∞

RadMΓout
+ ∧Rad ΣhdHQL̃⊗d

Moving the degree-shift gives

Ξ : Σ
∞
RadMΓin

+ ∧Rad HQL⊗d −→ Σ
∞
RadMΓin

+ ∧Rad HQ.

Taking homology gives

H∗(Rad,L⊗d)⊗H∗(LM;Q)⊗in −→ H∗(LM;Q)⊗m.

2.3 Tubular neighbourhood.
• Fix a normal bundle ν for ∇ : M→M2, and a propagating flow on ν .
• We want

P f : ν
h
PΠ

where νh
PΠ

is the pullback of h copies of ν under the map MPΠ→Mh.
• Fix L ∈ PRad and (g,ν) ∈ (νh

PΠ
)L where g : PΠL→M and ν ∈ ν

⊕h
ev(g). then

P f (g,ν) : y 7→ Z1(v1,λ (1),η1(y))
[
Z2(v2,λ (2),η2(y))

[
· · ·
[
g(q(y))

]
· · ·
]]

where y ∈ PΠ̃L and q : PΠ̃L→ PΠL, and the Zi are the flows that come out
of the propagating flow and the ηi(y) are ‘flow control functions’ going from
PΠ̃L→ [0,1].

3. HCFT. Recall that L was compatible with disjoint union and composition. The
spaces Rad are almost a prop in topological spaces.

Definition. H∗(PRad;L⊗d) prop in graded vector spaces.

Definition. An HCFT (without units or counits) of degree d is an algebra over this
prop.

Theorem. H∗(LM;Q) is an HCFT of dimension d.
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12. NATHALIE WAHL — STRING TOPOLOGY via HOCHSCHILD HOMOLOGY

We saw this morning that topology is tricky, and I’m gonna show you that algebra is
easy. Of course this is what I say, but then I was preparing my talk and I realised that
there’s all these little things that you need to know.

Theorem (Jones). Let M be 1-connected and work over a field. There is a quasi-
isomorphism

C∗(C∗(M),C∗(M))
'−−−→C∗(LM)

where C∗(M) denotes the singular cochain algebra.

Now H∗(M)=PD algebra=Frobenius algebra (meaning that it has a non-degenerate
pairing). So C∗(M) =some homotopy version of this. Why am I saying this? Be-
cause if you know that there is some algebraic structure on the algebra then you know
there should be some algebraic structure on the Hochschild homology.

Theorem (Costello, Kontsevich-Soibelman). If A is an ‘A∞-Frobenius algebra’, then
C∗(A,A) admits an action of the prop⊔

g>0

C∗(Mg,p+q) =
⊔
g>0

C∗(BDiff(Sg,p+q))

i.e. maps
C∗(A,A)⊗p⊗C∗(Mg,p+q)−→C∗(A,A)⊗q

compatible under ◦ and t.

Theorem (Tradler-Zeinalian). If A is a symmetric dg-Frobenius algebra then C∗(A,A)
admits such an action by a prop of Sullivan diagrams.

Here ‘symmetric’ means that the pairing is symmetric.
Plan:

• Relate these things to yesterday’s talk.
• Give a proof of both at once.
• Use this setup to compute nontrivial higher string operations.

Recall: A prop is a symmetric monoidal category whose objects are N.

Example. A∞ is the prop with

A∞(m,n) = Z− free on disjoint unions of trees with m+n leaves.

Here degree = ∑v |v|−3 and diff = ∑blow−ups of vertices.

Example. O is the prop with

O(m,n) = Z− free on fat graphs with m+n leaves.

(It is the same as A∞ except that there the graphs were of a very special kind.)

Note. i : A∞→ O is an A∞-prop.

Example. The prop H0(O) which has H0(O)(n,m) = H0(O(n,m)) which is free on
the topological typs of graphs, or equivalently on the topological types of open cobor-
disms nI→mI. It is concentrated in degree 0. It is an A∞-prop via A∞→O→H0(O).

Proposition (Lauda-Pfeffer).
H0(O)− algebras∼= {symmetric Frobenius algebras}
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Theorem (W).

C∗(Rad)

��

' // ⊔
g>0,r>0C∗(Mr

g,p+q)
' //

��

NatO(p,q)

��
C∗(Raddeg)

' // ⊔
g>0,r>0 SDr

g,p,q '
// NatH0(O)(p,q)

Constructing (formal) natural operations on C∗(A,A). Fix a general A∞-prop

i : A∞→ E.

“Free E-algebras”=representable functors E(p,−) : E→ Ch, n 7→ E(p,n).

Theorem (WW). If a prop D acts naturally on the Hochschild complex of the repre-
sentable functors E(p,−), i.e. if there is an action

Cn(E(p,−)(0)⊗D(n,m)−→Cm(E(p,−))(0)

natural in p, then D acts naturally on the Hochschild complex of E-algebras, i.e. there
are maps

C∗(A,A)⊗n⊗D(n,m)−→C∗(A,A)⊗m

for any A = Φ(1) where Φ : E→ Ch strong symmetric monoidal. (Weaker action for
weaker monoidality.)

Recall: If Φ : E→ Ch is an functor, its Hochschild C(Φ) : E→ Ch is given by

C(Φ)(m) = Φ(−+m)⊗A∞
L ∼=

⊕
n>1

Φ(n+m)⊗Ln ∼=
⊕
n>1

Φ(n+m)[n−1]

Picture: Ln = 〈ln〉
image

where ln is a corolla at a white vertex with leaves labelled 1, . . . ,n and the leaf 1
marked. Then

Cn(Φ)(m)∼=
⊕

k1,...,kn>1

Φ(k1 + · · ·+ kn +m)⊗A∞
(lk1⊗·· ·⊗ lkn).

Double bar construction (symmetric version). Given Φ : E → Ch, we construct
B(Φ,E,E) : E→ Ch, quasi-isomorphic (as functors) to Φ. It starts as a double com-
plex with

Bp(Φ,E,E) =
⊕

k0,...,kp

Φ(k0)⊗Σk0
E(k0,k1)⊗Σk1

· · ·⊗Σkp−1
E(kp−1,kp)⊗Σkp

E(kp,−)

and then one takes the total complex.
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Proof. Φ : E→ Ch strong symmetric monoidal, A = Φ(1).

C∗(A,A)⊗n⊗D(n,m)

∼=
��

// C∗(A,A)⊗m

∼=
��

Cn(Φ)(0)⊗D(n,m)

∼
��

Cm(Φ)(0)

Cn(BΣ(Φ,E,E))(0)⊗D(n,m)

∼
OO

Cm(BΣ(Φ,E,E))(0)

∼=
OO

BΣ(Φ,E,Cn(E)(0)))(0)⊗D(n,m)

∼=
OO

// BΣ(Φ,E,Cm(E)(0)))(0)

∼=
OO

We use the fact that Cn(Bp(Φ,E,E))(0) is given by⊕
k0, . . . ,kp

j1, . . . , jn > 1

Φ(k0)⊗Σk0
E(k0,k1)⊗Σk1

· · ·⊗Σkp−1
E(kp−1,kp)⊗Σkp

E(kp, j1+· · ·+ jn)⊗A∞
(L j1⊗·· ·⊗L jn)

�

Note. The action is explicit and easy to unravel. Take m = n = 1.

(a1⊗·· ·⊗ap)⊗d
_

��
((a1⊗·· ·⊗ap)⊗ (idp⊗ lp)+ · · ·)⊗d

_

��
((a1⊗·· ·⊗ap)⊗ (∑ei⊗ lqi)+ · · ·_

��
(b1⊗·· ·⊗bqi)⊗ lqi +0

Where the map

C(E(p,−))(0)⊗D(1,1)−→C(E(p,−))(0)
sends idp⊗ lp⊗d to ∑ei⊗ lqi .

I should say where this came from ... it started at a workshop here many years ago
called ‘Strings in Copenhagen’.

Take E= O. Want some D acting on Cn(O(p,−))(0).

Cn(O(d,−))(0) =
⊕

k1,...,kn>1

O(p,k1 + . . .+ kn)⊗A∞
(Lk1⊗·· ·⊗Lkn)

An element here is a fat graph with p inputs and k1 + · · ·+ kn outputs, together with
the corollas of ki leaves around white vertices with marked edge. There is nothing to
stop me from attaching these graphs together, and that’s what I do. The vertices from
the first part are ordinary, called ‘black’. The vertices from the second are ‘white’
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The result is exactly the model Costello and Kontsevich-Soibelman use for moduli
spaces of cobordisms from p open to n closed. Now we take

Cn(O(p,−)(0)⊗D(n,m)−→Cm(O(p,−))(−)
where D(n,m) is a chain complex of bordisms from n closed to m closed.

Sullivan diagrams and examples of non-trivial operations.

Proposition. Cn(H0(O)(p,−))(0) is isomorphic to a chain complex of ‘Sullivan di-
agrams’ with p ‘open boundaries’.

Here a Sullivan diagram on n circles is an equivalence class of fat graphs with n
embedded boundary components.

image 1

Such a graph has edges divided into ‘circle edges’ (around the outside) and ‘chords’
(the rest). The equivalence relation is given by sliding chords along each other. For
example:

image 2
‘Anything outside the circles is allowed to do all sorts of things.’ ‘You are inverting
the edge collapses of chords.’ Such a thing has a topological type as an open-closed
cobordism.

• Outgoing closed = the n circles.
• Incoming closed = leaf alone in its boundary circle.
• Incoming/outgoing open = leaves .
• Degree = number of circle edges minus n.
• Differential = sum of collapse of circle edges.

Example.
Image3.

• Gluing = sum over all meaningful things.

Example.
image4

Action on C∗(H∗(Sn),H∗(Sn)) ' C∗(LSn), nontrivial on HH∗(H∗(Sn),H∗(Sn)).
(We won’t have to worry about signs.)

H∗(Sn) = 〈1,x〉
where x2 = 0, 1 unit, ∆(x) = x⊗ x, ∆(1) = (1⊗ x)± (x⊗ 1). We will consider the
reduced Hochschild complex.

C∗(H∗(Sn),H∗(Sn)) = Z〈1, x, 1⊗ x, x⊗ x, 1⊗ x⊗ x, x⊗ x⊗ x, . . .〉
with generators in degree 0, n, n− 1, 2n− 1, 2n− 2, 3n− 2 and so on. There is
only one generator in each degree. And most differentials are zero. (Most of them
multiply x with itself, which produces zero.)

Example.
image 5
image 6
image 7
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Corollary. The classes [t1], [t3], . . . are nontrivial in H∗(SD).
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