Exercises

Masterclass on Classification Problems in Groups and Fusion Systems Groups of local characteristic p Ulrich Meierfrankenfeld

#1. Let H be a finite group, p a prime and $L = F_p^*(C_H(Y_H))$. Show that

$$Y_L = \Omega_1 Z(O_p(H)).$$

2. Let G be a finite group, p a prime and H a maximal p-local subgroup of G. Put $L = \mathbb{F}_p^*(C_H(Y_H))$ and $Q = O_p(H)$. Suppose that H is the unique maximal p-local subgroup of G containing L. Show that

$$Q \unlhd N_G(A)$$

for all $1 \neq A \leq \mathbb{Z}(Q)$.

- #3. Let p be a prime and P be finite p-minimal group of characteristic p with Z(P) = 1. Show that
 - (a) $C_P(Y_P)S \neq P$,
 - (b) $Y_P = \Omega_1 Z(O_p(P))$, and
 - (c) $O_p(P)$ is a Sylow *p*-subgroup of $C_P(Y_P)$.
- #4. Let p a prime and G a finite group with large p-subgroup Q. Show that one of the following holds:
 - 1. $F^*(G) = O_p(G)$.
 - 2. $F^*(G) = O_{p'}(G) = F(G)$ and Z(Q) is cyclic.
 - 3. G has a simple subnormal subgroup K, K is perfect, p divides K and $F^*(G) = \langle K^Q \rangle$.
- # 5. Let p be prime, q a power of p and n an integer with $n \ge 2$. Let \mathbb{F}_q be a field of order q, V an n-dimensional vector space over \mathbb{F}_q and U a 1-dimensional \mathbb{F}_q -subspace of V. Put $G = \mathrm{PSL}_{\mathbb{F}_q}(V)$, $\tilde{C} = \mathrm{N}_G(U)$, $Q = \mathrm{O}_p(\tilde{C})$ and $E = \mathrm{O}^p\left(\mathrm{F}_p^*\left(\mathrm{C}_{\tilde{C}}(Y_{\tilde{C}})\right)\right)$. Show that
 - (a) \tilde{C} is a maximal p-local subgroup of G.
 - (b) $Q = Y_{\tilde{C}}$.
 - (c) E = 1 and so E is contained in more than one maximal p-local subgroup of G.
 - (d) Q is a large p-subgroup of G.