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Introduction. This series of lectures involves the interplay between local group theory
and the theory of fusion systems, with the focus of interest the possibility of using fusion
systems to simplify part of the proof of the theorem classifying the finite simple groups.

For our purposes, the classification of the finite simple groups begins with the Gorenstein-
Walter Dichotomy Theorem (cf. [ALSS]) which says that each finite group G of 2-rank at
least 3 is either of component type or of characteristic 2-type. This supplies a partition
of the finite groups into groups of odd and even characteristic, from the point of view
of their 2-local structure. We will be concerned almost exclusively with the groups of
odd characteristic: the groups of component type. However Ulrich Meierfrankenfeld’s
lectures can be thought of as being concerned with the groups of even characteristic.

In the case of a saturated fusion system F , the situation vis-a-vis the Gorenstein-
Walter dichotomy is nicer: F is either of characteristic p-type or component type, irre-
spective of rank. Further the Dichotomy Theorem for saturated fusion systems is much
easier to prove than the theorem for groups; indeed once the notion of the generalized
Fitting subsystem F ∗(F) of a saturated fusion system F is put in place, and suitable
properties of F ∗(F) are established, including E-balance, the proof of the Dichotomy
Theorem for fusion systems is easy.

But of more importance, it seems easier to work with 2-fusion systems of component
type than with groups of component type. This is because in a group G of component
type, a 2-local subgroup H of G may have a nontrivial core, where the core of H is
the largest normal subgroup O(H) of H of odd order. The existence of these cores
introduces big problems into the analysis of groups of component type. These problems
can be minimized if one can prove the B-Conjecture, which says that, in a simple group,
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cores of 2-locals are “small” in a suitable sense. Unfortunately the proof of the B-
Conjecture is quite difficult. However in a saturated fusion system there are no cores
in local subsystems. Thus the corresponding difficulties do no arise, and no effort need
be expended on the B-Conjecture. This is the major reason why one can hope that a
classification of simple saturated 2-fusion systems of component type should be easier
than the classification of simple groups of component type.

There is a program in progress that attempts, first, to translate some of the mathe-
matics used to classify the finite simple groups of component type into the category of
saturated 2-fusion systems, and then, second, to classify the saturated simple 2-fusion
systems of component type using that mathematics. Finally, third, one can hope to use
the classification of the fusion systems of component type to obtain a classification of the
finite simple groups of component type. Hopefully this would provide a simplification
of the proof of the theorem classifying the finite simple groups. In particular such an
approach would avoid the necessity of classifying the unbalanced groups, which was the
basis for the proof of the B-Conjecture.

I will begin my series of lectures with a discussion of groups of component type, includ-
ing an outline of the classification of such groups. Then I will provide some background
on fusion systems and the translation of local finite group theory into a local theory of
fusion systems. Finally I’ll outline a program for classifying simple saturated 2-fusion
systems of component type, indicating on the one hand which parts of the program are
complete or nearly complete, and, on the other, where important notions from local
group theory have not as yet been translated into analogous notions for fusion systems,
or the necessary theorems on fusion systems have not as yet been proved.

Section 1. The generalized Fitting subgroup of a finite group.

Let G be a finite group. Our reference for basic finite group theory is [FGT].
Recall G is quasisimple if G = [G,G] and G/Z(G) is simple. Subnormality is the

transitive extension of the normality relation on subgroups of G. The components of G
are the subnormal quasisimple subgroups of G.

Let E(G) be the subgroup of generated by the components of G. Recall F (G) is the
Fitting subgroup of G, which is the largest normal nilpotent subgroup of G. Thus F (G)
is the direct product over all prime divisors of |G| of the groups Op(G), where Op(G)
is the largest normal p-subgroup of G. Finally F ∗(G) = F (G)E(G) is the generalized
Fitting subgroup of G. We record the following standard facts, which can be found for
example in section 31 of [FGT].
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Lemma 1.1. (1) E(G) is the central product of the components of G, which are permuted
by G via conjugation.

(2) F ∗(G) is the central product of F (G) and E(G).

(3) CG(F ∗(G)) = Z(F ∗(G)).

Recall next that O(G) = O2′(G) is the largest normal subgroup of G of odd order.
Write O2′,E(G) for the preimage in G of E(G/O(G)) and set L(G) = O2′(O2,E(G)). The
subgroup L(G) is the layer of G.

Lemma 1.2. (L-balance) For each 2-local subgroup H of G, L(H) ≤ L(G).

Proof. See 31.17 in [FGT] for a proof using the Schreier Conjecture.

Lemma 1.3. Let t be an involution in G and L a component of CG(t). Suppose L(G) =
E(G). Then there exists a component D of G such that one of the following holds:

(1) L = D.

(2) L < D = [D, t].

(3) D 6= Dt and L = E(CDDt(t)) = {ddt : d ∈ D} is the image of D under the map
d 7→ ddt.

Proof. This is Exercise 1.

Hypothesis 1.4. Let I be the set of involutions in G and assume for each t ∈ I that
E(CG(t)) = L(CG(t)). Write L for the set of components of centralizers of involutions
in G. For L ∈ L, write [L] for the set of K ∈ L such that L is a homomorphic image of
K, and set [L] = {[L] : L ∈ L}.

Lemma 1.5. Assume Hypothesis 1.4. Assume t, s ∈ I, L is a component of CG(t), and
s centralizes t and L. Then there exists a component D of CG(s) such that one of the
following holds:

(1) L = D.

(2) L < D = [D, t].

(3) D 6= Dt, L = E(CDDt(t)), and D ∈ [L].

Proof. Set H = CG(s), and observe that as L is a component of CG(t) centralized by s,
L is also a component of CH(t). By Hypothesis 1.4, E(H) = L(H), so the lemma follows
from 1.3 applied to H in the role of G.
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Notation 1.6. Assume Hypothesis 1.4. Define [L0] ∈ [L] to be maximal if whenever
L ∈ [L0] and t, s ∈ I with L a component of CG(t) such that s centralizes t and L, then
case (2) of Lemma 1.5 is not satisfied. For example if L0 is of maximal order in L then
[L0] is maximal. Later we will see that the Component Theorem says that if G satisfies
Hypothesis 1.4 and [L] is maximal, then, modulo an exceptional case, L is a so-called
standard subgroup of G. This is accomplished using some combinatorics arising from the
tension generated by Lemma 1.5.

Our finite group G is said to be almost simple if F ∗(G) is a nonabelian simple group.
In that event, setting L = F ∗(G), the conjugation map c : G→ Aut(L) is (by 1.1.3) an
injection embedding G in Aut(L) with Lc = Inn(L). Thus an almost simple group is a
subgroup of Aut(L) containing Inn(L) for some nonabelian simple group L.

Here is one of a number of (roughly) equivalent statements of the B-conjecture:

B-Conjecture. If G is almost simple then for each involution t in G, L(CG(t)) =
E(CG(t)).

Put another way, the B-conjecture says that almost simple groups satisfy Hypothesis
1.4. The B-conjecture was derived as a corollary to the Unbalanced Group Theorem:

Unbalanced Group Theorem. Assume G is an almost simple group possessing an
involution t such that O(CG(t)) 6= 1. Then F ∗(G) is on a list of known simple groups.

Section 2. The simple groups and notions of characteristic.

Here is one statement of the Classification Theorem:

Classification Theorem. Each finite simple group is isomorphic to one of the follow-
ing:

(1) A group of prime order.

(2) The alternating group An on a set of order n.

(3) A finite group of Lie type.

(4) One of 26 sporadic groups.
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The groups of Lie type in (3) are linear groups over finite fields. Thus if G is of Lie
type then as a linear group it comes equipped with a characteristic: the characteristic of
the defining finite field.

The local group theory underlying the classification focuses on the 2-local subgroups
of finite groups G, so we wish to come up with a definition of the notion of a group of
“even characteristic” in terms of the 2-local structure of the group, such that, from the
point of view of this definition, the groups of Lie type over fields of even order are of
even characteristic, and those over fields of odd order are of odd characteristic.

We begin with the definitions used in the original proof of the classification.

Definition 2.1. A finite group G is of characteristic 2-type if for each 2-local subgroup H
or G, F ∗(H) = O2(H). Further G is of component type if for some 2-local H, L(H) 6= 1.
Given a prime p, the p-rank mp(G) of G is the maximum of the dimensions of elementary
abelian p-subgroups of G, viewed as vector spaces over the field of order p.

In the original proof of the classification, the groups of characteristic 2-type are re-
garded as groups of even characteristic, and those of component type are regarded as of
odd characteristic. The groups G with m2(G) ≤ 2 are regarded as “small”. Then the
Dichotomy Theorem says that, if G is not too small, then G is of even or odd character-
istic.

Gorenstein-Walter Dichotomy Theorem. Let G be a finite group with m2(G) ≥ 3.
Then G is either of characteristic 2-type or of component type.

The proof of the Dichotomy Theorem uses L-balance, but also the Feit-Thompson
Theorem on groups of odd order, signalizer functor theory, and the Bender-Suzuki clas-
sification of groups with a strongly embedded subgroup.

The simple groups of Lie type over fields of even order are of characteristic 2-type,
while most groups of Lie type over fields of odd order are of component type, as are most
alternating groups. Roughly half of the sporadic groups are of component type, and of
course the rest are of characteristic 2-type.

The Dichotomy Theorem supplies a partition of the simple groups into groups of even
and odd characteristic. But it is not clear that partition is optimal. Here are two other
notions of “even groups”.
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Definition 2.2. Define G to be of even characteristic if for each 2-local H of G containing
a Sylow 2-subgroup S of G, F ∗(H) = O2(H). Define the Thompson group J(S) of S
to be the subgroup generated by the elementary abelian 2-subgroups of S of 2-rank
m2(S). The Baumann subgroup of S is Baum(S) = CS(Ω1(Z(S))). We say G is of
Baumann characteristic 2 if for each 2-local subgroup H of G containing Baum(S), we
have F ∗(H) = O2(H).

The following two examples begin to suggest that it might be advantageous to move
the boundary of the odd-even partition so as to make more groups of even characteristic.

Example 2.3. Let X = X(q2) be a group of Lie type over a field Fq2 of even order
and t an involutory field automorphism of X. Form the semidirect product G = X〈t〉.
Then (generically) F ∗(CX(t)) = L is of Lie type X(q), so that G is of component type.
But, aside from some small G, each 2-local H of G containing a Sylow 2-subgroup S

of G, or even just with m2(H) = m2(G), satisfies F ∗(H) = O2(H). That is G is of
even characteristic and of Baumann characteristic 2. This seems more satisfying, since
intuitively G should be an “even group”.

Example 2.4. Let X = X1 ×X2 be the direct product of two copies Xi of X(q) with
q even, let t be an involutory automorphism of X with Xt

1 = X2, and form G = X〈t〉.
This time L = CX(t) = {xxt : x ∈ X1} ∼= X1, so G is of component type. Indeed for s
an involution in X2, X1 is a component of CG(s). But for each 2-local H containing a
Sylow 2-subgroup S, F ∗(H) = O2(H), so G is of even characteristic. If s ∈ Z(S ∩X2)
then s centralizes Baum(S), so G is not of Baumann characteristic 2. But that is not so
bad. The point is that it is difficult to work with CG(t) as its 2-share is so small. But
|S : CS(s)| = 2, so CG(s) is much easier to work with, and to use to recognize that X1

is a component of G.

If one adopts either of the definitions of “even groups” in Definition 2.2, then difficulties
encounter in dealing with involution centralizers like those in Examples 2.3 and 2.4 are
avoided or minimized, as the groups in 2.3 become “even”, while in 2.4 the 2-share of the
order of the centralizer of the relevant involution s is large. On the other hand the class
of “even groups” is enlarged, so the treatment of such groups becomes more difficult.
But perhaps the trade is a good one.

The Gorenstein-Lyons-Solomon program has yet another definition of “even group”
which also has the effect of enlarging the class. The Aschbacher-Smith treatment of
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quasithin groups is devoted to groups of even characteristic.
Finally here is one more possible definition of an “even group”: G is even if F ∗(H) =

O2(H) for each 2-local subgroup H of G with m2(H) = m2(G). This notion of an “even
group” sits somewhere between that of groups of Baumann characteristic 2 and groups
of characteristic 2-type.

Section 3. The Component Theorem.

As usual let G be a finite group.

Definition 3.1. A subgroup K of G is said to be tightly embedded in G if K is of even
order and the intersection of each pair of distinct conjugates of K is of odd order. A
standard subgroup of G is a quasisimple subgroup L such that K = CG(L) is tightly
embedded in G, NG(K) = NG(L), and L commutes with none of its conjugates.

A K-group is a finite group G with the property that each simple section of G is on
the list K of “known” simple groups appearing in the statement of the Classification
Theorem. A K̂-group is a finite group each of whose proper subgroups is a K-group. In
particular a minimal counter example to the Classification Theorem is a K̂-group.

There are a variety of results on tightly embedded subgroups in the literature. In
essence they say that if Q ∈ Syl2(K), m2(K) > 1, and Φ(Q) 6= 1, then, aside from a few
exceptional Q, K is subnormal in G.

The situation when L is standard with centralizer K is even more restrictive; here
either L E G or m2(K) = 1 or Q is a 4-subgroup.

Example 3.2. Let G ∼= An with n ≥ 9 be the alternating group on I = {1, . . . , n}, let
Q be the 4-subgroup of G moving J = {1, 2, 3, 4}, and L = GJ ∼= An−1. Then L is a
standard subgroup of G with Q Sylow in K = GI−J ∼= A4.

Or let V be an n-dimesional symplectic space over Fq with q odd and n ≥ 6,
G = PSp(V ), U a nondegenerate 2-dimensional subspace of V , L = CG(U), and
K = CG(U⊥). Then L is standard in G with centralizer K ∼= SL2(q) of 2-rank 1.

Component Theorem. Assume Hypothesis 1.4 and L ∈ L with [L] maximal. Then
one of the following holds:

(1) L is standard in G.
(2) m2(L) = 1 and L0 = 〈LG ∩NG(L)〉 = L ∗ Lg with CG(L0) tightly embedded in G.
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(3) There exist D ∈ [L] and commuting involutions t and s such that L is a component
of CG(t), D is a component of CG(s), D 6= Dt appears in case (2), and L = E(CDDt(t)).

(4) L is a component of G or L = E(CDDt(t)) for some component D 6= Dt of G and
involution t.

In particular if G is almost simple then case (4) of the Component Theorem does not
hold, while in case (3) we can replace L by D to reduce to case (2). Hence, in an almost
simple group G satisfying Hypothesis 1.4, either G has a standard subgroup or case (2)
arises. As in Example 3.2, the group G = PSp4(q) provides an example where case (2)
holds.

Richard Foote [F] determined all groups in which case (2) of the Component Theorem
holds. Alternatively, one can use the Classical Involution Theorem from the next section
to treat that case.

Observe that if G is almost simple of component type and the B-Conjecture holds,
then we can choose L to satisfy the hypotheses of the Component Theorem. Thus by
the Component Theorem and the discussion in the previous paragraph, we can assume
that L is a standard subgroup of G. This leads to:

Standard Form Problem for L. Let L be a known quasisimple group. Determine the
finite groups G with a standard subgroup isomorphic to L.

From the discussion above, if we can prove the B-Conjecture and solve the standard
form problem for each known quasisimple group L, then we will have determined all
almost simple K̂-groups of component type.

In practice it is not necessary to do the standard form problem for L when L is of
Lie type and odd characteristic and not L2(q) or a Ree group. Instead one uses Walter’s
Theorem, as discussed in the next section. Thus we need only consider the cases where
L is L2(q) or a Ree group, or a covering of an alternation group, a group of Lie type in
characteristic 2, or a sporadic group.

But Examples 2.3 and 2.4 show that the case where L is of Lie type and characteristic
2 can be difficult. Thus it might be preferable to assume G is not of even characteristic
or Baumann characteristic 2, so that there exists a 2-central involution t or an involution
t in the center of the Baumann subgroup such that CG(t) has a component. Then one
would need to refine the Component Theorem to show there exists a standard subgroup
L such that CG(L) contains such an involution. In our work on quasithin groups, Steve
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Smith and I were able to do this in quasithin group not of even characteristic. Magaard
and Stroth have a preprint which does something similar in general.

However I have no good ideas as to how to prove a Baumann Component Theorem. I
do have an approach in mind to deal with the fusion theoretic analogue of the situtation
where L(CG(t)) 6= 1 for some involution t in G with m2(CG(t)) = m2(G).

Section 4. The Classical Involution Theorem and Walter’s Theorem.

As usual let G be a finite group.

Definition 4.1. A classical involution in G is an involution z such that CG(z) has a
subnormal subgroup K such that K/O(K) ∼= SL2(q) or Â7 for some odd prime power q,
and z ∈ K. Here Â7 is the covering of A7 with quaternion Sylow 2-groups.

Example 4.2. Given an odd prime p, let Chev∗(p) consist of the quasisimple groups
G of Lie type over a field of characteristic p other than L2(q) and the Ree groups. If
G = X(q) is such a group a fundamental subgroup of G is a subgroup K = 〈U,U−〉,
where U is the center of a long root subgroup of G and U− is an opposite of U . It turns
out that K ∼= SL2(q) and K is subnormal in CG(z), where z is the involution in K.
If G is G2(q) or 3D4(q) we can also take U to be a short root subgroup, in which case
K ∼= SL2(q) or SL2(q3) in the respective case. Thus we also regard these SL2-subgroups
as fundamental subgroups. In particular in each case, z is a classical involution.

Classical Involution Theorem. Assume z is a classical involution in G with O(G) = 1
and z ∈ K with K/O(K) ∼= SL2(pe) or Â7 and K is subnormal in CG(z). Assume G is
the subnormal closure of K in G. Then one of the following holds:

(1) G ∈ Chev(p)∗ and K is a fundamental subgroup.
(2) G = K is SL2(3) or Â7.
(3) G ∼= M11.

Actually something much stronger is proved under a fusion theoretic hypothesis which
includes the classicial involution setup as a special case, and also includes the case where
G has a tightly embedded subgroup with quaternion Sylow 2-subgroups. We will en-
counter the fusion theoretic hypothesis in the third lecture.

The Classical Involution Theorem supplies a characterization of the groups in Chev∗(p).
In [W] John Walter used this characterization to prove the following theorem:
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Walter’s Theorem. Assume G is almost simple such that each subgroup of G which
does not contain F ∗(G) is a K-group. Assume there exists an involution t in G and L

subnormal in CG(t) with L/O(L) ∈ Chev∗(p). Then G ∈ Chev∗(p).

Actually when p = 3 a few more groups are excluded as choices for L/O(L), but this
statement suffices for expository purposes. Harris proves a similar theorem in [H].

As discussed in the previous section, Walter’s Theorem allows us to avoid the standard
form problems for groups in Chev∗(p). Walter also uses his theorem (and various other
difficult theorems) to determine the list of “unbalanced groups” appearing as conclusions
in the Unbalanced Group Theorem from section 1. Hence his theorem leads to a proof
of the B-conjecture.

Given the B-conjecture and the Component Theorem, the classification of K̂-groups
of component type is then reduced to the solution of the standard form problems for
the list of quasisimple groups appearing near the end of Section 3. Recall that a Sylow
2-group Q of K = CG(L) is either of 2-rank 1 or a 4-group. Using the classification
of groups with a tightly embedded subgroup with quaternion Sylow 2-groups, we can
assume Q is cyclic or a 4-group. Thus for t an involution in K, CG(t) closely resembles
the centralizer in some almost simple group. It is then left to show G is isomorphic to
that group, using the structure of the centralizer.

Section 5. Fusion systems.

Our basic references for fusion systems are [AKO], [BLO], and [Cr].
Let p be a prime. A fusion system on a finite p-group S is a category whose objects

are the subgroups of S and such that the set homF (P,Q) of morphisms from a subgroup
P of S to a subgroup Q of S consists of injective group homomorphisms; in addition two
weak axioms are required to hold. See Definition I.2.1 in [AKO] for a precise definition.

The Standard Example. Let G be a finite group and S a Sylow p-subgroup of G.
For g ∈ G, write cg for the conjugation map cg : x 7→ xg = g−1xg on G. Let FS(G) be
the fusion system on S where homFS(G)(P,Q) consists of the maps cg : P → Q for those
g ∈ G with P g ≤ Q. We will call FS(G) the p-fusion system of G.

Let F be a fusion system on S. We will call S the Sylow group of F . The fusion
system F is said to be saturated if it satisfies two additional axioms, which are easily
verified in the Standard Example using Sylow’s Theorem. There are various choices for
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the two additional axioms; see Definition I.2.2 and Proposition I.2.5 in [AKO] for two
possible sets of axioms.

Fusion systems and saturated fusions systems were first defined by Puig, beginning
about 1990. However Puig didn’t publish his work for about 15 years, and in the interim
others took up his work and introduced their own terminology. For example Puig calls a
fusion system on a p-group S a divisible S-category and he calls saturated fusion systems
Frobenius categories. However here we will use the (by now) standard terminology of
“fusion system” and “saturated fusion system”. See Puig’s book [P] for some history
and for Puig’s approach to the subject.

For P ≤ S set PF = {Pφ : φ ∈ homF (P, S)}. The members of PF are the F-
conjugates of P .

Definition 5.1. A subgroup P of S is said to be fully normalized, centric if for each
Q ∈ PF , |NS(P )| ≥ |NS(Q)|, CS(Q) ≤ Q, respectively. The subgroup P is radical if
Op(AutF (P )) = Inn(P ). Write Ff , Fc, Fr for the fully normalized, centric, radical
subgroups of S, respectively. We also write Ffrc for Ff ∩Fr ∩Fc, and use other similar
notation.

Let A(P ) = AF (P ) consists of those α ∈ homF (NS(P ), S) such that Pα ∈ Ff .

Lemma 5.2. Let P ≤ S.
(1) If P ∈ Ff then AutS(P ) ∈ Sylp(AutF (P )).
(2) For each fully normalized conjugate Q of P , there exists α ∈ A(P ) with Pα = Q.

Proof. See for example Proposition I.2.5 and Lemma I.2.6 in [AKO].

Given a subgroup T of S and subcategories Ti, i ∈ I, of F on subgroups of T , write
〈Ti : i ∈ I〉T for the fusion system on T generated by the Ti; that is the smallest fusion
system on T containing each Ti, which is just the intersection of all such fusion systems
on T . Often we omit the “T” subscript.

Alperin’s Fusion Theorem. If F is a saturated fusion system then F = 〈AutF (R) :
R ∈ Ffrc〉S.

Given a second fusion system F ′ on a p-group S′, a morphism α : F → F ′ of fusion
systems is a group homomorphism α : S → S′, such that for each P,Q ≤ S and φ ∈
homF (P,Q), we have ker(α|P )φ ≤ ker(α|Q), and the map φα : xα 7→ xφα, x ∈ P , is in
homF ′(Pα,Qα). The kernel of the morphism α is its kernel ker(α) as a homomorphism
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α : S → S′ of groups. The morphism α is surjective if α : S → S′ is surjective, and for
each P ′, Q′ ≤ S′ and φ′ ∈ homF ′(P ′, Q′) there exists P,Q ≤ S and φ ∈ homF (P,Q) such
that Pα = P ′, Qα = Q′, and φα = φ′.

Define a subgroup T of S to be strongly closed in S with respect to F if for each P ≤ T
and φ ∈ homF (P, S), Pφ ≤ T .

Example 5.3. Let G be a finite group, S ∈ Sylp(G), and F = FS(G). Let H E G.
Then H ∩ S ∈ Sylp(H) and H ∩ S is strongly closed in S with respect to F . Moreover
if π : G → G/H is the natural map π : g 7→ gH then α = π|S : S → SH/H defines a
surjective morphism of fusion systems α : F → FSH/H(G/H) with kernel S ∩H.

Lemma 5.4. Let F ′ be a fusion system on S′ and α : S → S′ a homomorphism of
groups.

(1) Assume ker(α) is strongly closed in S with respect to F . Then for each P,Q ≤ S

and φ ∈ homF (P,Q), the map φα : Pα → Qα defined by φα : xα → xφα is an injective
group homomorphism independent of the choice of representative in x ker(α|P ).

(2) If α : F → F ′ is a morphism of fusion systems then ker(α) is strongly closed in S

with respect to F .

Proof. This is part of Exercise 2.

Notation 5.5. Given a category C, an isomorphism α : A → B in C, and subobjects
D,E of A, write α∗ : homC(D,E)→ homC(Dα,Eα) for the map α∗ : φ 7→ α−1φα.

For example if α : S → Sα is an isomorphism of groups then Fα∗ is the fusion system
on Sα∗ with homFα∗(Pα,Qα) = homF (P,Q)α∗ and α : F → Fα∗ is an isomorphism of
fusion systems.

Example 5.6. Let p = 2 and S a quaternion group of order m ≥ 16. Then S has two
conjugacy classes QSi , i = 1, 2, of quaternion subgroups of order 8. Let U be the universal
fusion system on S. We define four subsystems of U on S.

First we write S for the system FS(S). Next for i = 1, 2, set Fi = 〈Aut(Qi)〉S . Finally
set F1,2 = 〈Aut(Q1), Aut(Q2)〉S . Then S, F1, F2, and F1,2 are the four saturated fusion
systems on S. This is assertion is part of Exercise 3, and follows from Alperin’s Fusion
Theorem and the fact that, up to conjugation in S, Q1 and Q2 are the only subgroups
of S whose automorphism group is not a 2-group.
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Moreover if α is an automorphism of S with Q1α = Q2, then α : F1 → F2 is an
isomorphism, so up to isomorphism there are exactly three saturated fusion systems on
S.

Let q be an odd prime power with (q2−1)2 = m, where n2 is the 2-share of an integer
n. Then S is Sylow in the group G = SL2(q) and we will write SL2[m] for the fusion
system FS(G). By Exercise 3, F1,2 = SL2[m]. Similarly if q = q0 is a square then G has
a subgroup H with O2(H) ∼= SL2(q0) and S Sylow in H, and if we choose notation so
that Q1 ≤ H then FS(H) = F1.

In particular we see that the 2-fusion system of SL2(q) depends only on the 2-share
of q2 − 1, not on q.

Section 6. Local subsystems of fusion systems.

Let F be a fusion system on a p-group S. For X ≤ S, the normalizer in F of X is
the fusion system NF (X) on NS(X) such that for P ≤ NS(X), the NF (X)-maps from P

into NS(P ) are those φ ∈ homF (P,NS(P )) which extend to ϕ ∈ homF (PX,NS(P )) such
that ϕ acts on X. Moreover we say X is normal in F and write X E F if F = NF (X).
The centralizer CF (X) of X in F is defined similarly.

We wish to develop a local theory of fusion systems analogous to the local theory
of finite groups. The local subsystems of F in this theory are the systems NF (X) for
1 6= X ≤ S. Of most interest are the normalizers of fully normalized subgroups, because
of the following result of Puig:

Theorem 6.1. (Puig) If F is saturated and X ∈ Ff then NF (X) is saturated.

Proof. See Theorem I.5.5 in [AKO].

It is not difficult to see that there is a largest subgroup of S normal in F ; we write
Op(F) for this subgroup.

Lemma 6.3. Let F be saturated and Q ≤ S. Then the following are equivalent:
(1) Q E F .
(2) Q is strongly closed in S with respect to F and contained in each member of Ffrc.
(3) There is a series 1 = Q0 ≤ · · · ≤ Qn = Q such that for each 1 ≤ i ≤ n, Qi is

strongly closed in S with respect to F and [Q,Qi] ≤ Qi−1.

Proof. See I.4.5 and I.4.6 in [AKO].
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Lemma 6.4. Assume F is saturated and Q ≤ S is strongly closed in S with respect to
F . Then each of the following imply that Q E F .

(1) Q is abelian.
(2) There is Q1 ≤ Q such that Q1 E F , Q/Q1 is abelian, and AutF (Q1) is a p-group.

Proof. Condition (1) is sufficient by the equivalence of parts (1) and (3) of 6.3. Exercise
4 shows that (2) is sufficient.

Our fusion system F is said to be constrained if there exists a centric subgroup of S
normal in F . From Definition 5.1 a normal subgroup Q of S is centric if CS(Q) ≤ Q. A
model for F is a finite group G such that S ∈ Sylp(G), F = FS(G), and F ∗(G) = Op(G).

Model Theorem. Let F be constrained and saturated. Then
(1) there exists a model G for F , and
(2) if H is a model for F then the identity map ι on S extends to an isomorphism

ι̌ : G→ H, and ι̌ is unique up to an automorphism cz of G for some z ∈ Z(S).

Proof. This is essentially Proposition C in [BCGLO]; see also I.4.9 in [AKO].

Lemma 6.5. Assume F is saturated and let R ∈ Ffrc. Then NF (R) is constrained, so
there is a model G(R) for NF (R), and and R = F ∗(G(R)).

Proof. As F is constrained and R is fully normalized, NF (R) is saturated by 6.1. As
R E NF (R) and R is centric, NF (R) is constrained, so it possesses a model G by
the Model Theorem. Now R E G and R is centric, so CS(R) = Z(R) and hence
CG(R) = Z(R) × Op′(CG(R)). As G is a model, F ∗(G) = Op(G), so Op′(CG(R)) = 1.
Thus Z(R) = CG(R). Then AutF (R) = AutG(R) ∼= G/Z(R). Finally as R is radical,
Op(AutF (R)) = Inn(R), so Op(G/Z(R)) = R/Z(R), and hence R = Op(G), completing
the proof.

Section 7. Factor systems.

Let F be a fusion system on a p-group S and S0 a subgroup of S strongly closed in
S with respect to F . Let N = NF (S0), S+ = S/S0, and for x ∈ S, set x+ = Sx. Let
θ : S → S+ be the natural map θ : x 7→ x+, and define the fusion system F/S0 on S/S0

as in Exercise 2. For P,Q ≤ S and φ ∈ homF (P,Q), recall from Exercise 2 that φ+ :
P+ → Q+ is defined by x+φ+ = (xφ)+. Further from Exercise 2, homF/S0(P+, Q+) =
{φ+ : φ ∈ homN (PS0, QS0)}. Indeed by Exercise 2:
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Lemma 7.1. F/S0 is a fusion system on S+ and θ : N → F/S0 is a surjective morphism
of fusion systems with kernel S0.

The fusion system F/S0 is the factor system of F modulo S0.

Theorem 7.2. If F is saturated then θ = θF,S0 : F → F/S0 is a surjective morphism
of fusion systems with kernel S0.

Proof. See II.5.12 in [AKO].

Lemma 7.3. Assume F is saturated and ρ : F → F̃ is a surjective morphism of fusion
systems with kernel S0. Let S̃ be Sylow in F̃ and define π : S+ → S̃ by x+π = xρ. Then
π : F/S0 → F̃ is an isomorphism of fusion systems with θπ = ρ.

Proof. As S0 = ker(ρ), the map π : S+ → S̃ is a well defined isomorphism with θπ = ρ.
Next for φ+ ∈ homF/S0(P+, Q+) and x+ ∈ P+, (x+π)φ+π = x+φ+π = (xφ)+π = xφρ =
(xρ)φρ, so (F/S0)π∗ = Fρ = F̃ , and hence π : F/S0 → F̃ is an isomorphism from 5.5.

Theorem 7.4. Assume F is saturated. Then the map S0 7→ F/S0 is a bijection be-
tween the set of subgroups of S0 strongly closed in S with respect to F , and the set of
isomorphism classes of homomorphic images of F .

Proof. This is a consequence of 7.2 and 7.3.

Lemma 7.5. If F is saturated then F/S0 is saturated.

Proof. See II.5.4 in [AKO].

From basic group theory, the homomorphic images of a group are parameterized by
its normal subgroups, while from Theorem 7.4, the homomorphic images of a saturated
fusion system are parameterized by its strongly closed subgroups. In a later section we
will define the notion of a “normal subsystem” of a saturated fusion system F . The
Sylow group of a normal subsystem will be strongly closed. However in general there are
strongly closed subgroups which are Sylow in no normal subsystem, and, as in the case
of groups, a strongly closed subgroup can be Sylow in many normal subsystems. Thus
homomorphic images of a saturated fusion system are not parameterized by its normal
subsystems.

Section 8. Direct and central products of fusion systems.
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In this section p is a prime and for i = 1, 2, Fi is a fusion system on a p-group
Si. Set S = S1 × S2 and let πi : S → Si be the ith-projection. For Pi, Qi ≤ Si and
φi ∈ homFi(Pi, Qi), define φ1 × φ2 : P1 × P2 → Q1 ×Q2 by

φ1 × φ2 : (x1, x2) 7→ (x1φ1, x2φ2).

Define F = F1 × F2 to be the category whose objects are the subgroups of S, and for
P,Q ≤ S, homF (P,Q) consists of the maps φ : P → Q such that φ = (φ1 × φ2)|P for
some φi ∈ homFi

(Pi, Qi).

We call F1 ×F2 the direct product of F1 and F2.

Lemma 8.1. (1) F1 ×F2 is a fusion system on S.

(2) If Fi is saturated for i = 1, 2 then so is F .

Proof. See 2.1 in [A5] for (1). See 2.7 in [5] or I.6.6 in [AKO] for (2).

Let D ≤ Z(F1) × Z(F2) with D ∩ Z(Fi) = 1 for i = 1, 2. Define the central product
of F1 and F2 with respect to D to be

F1 ×D F2 = (F1 ×F2)/D.

Lemma 8.2. Set S+ = S/D and assume E is a fusion system on S+ and for i = 1, 2,
Ei is a saturated subsystem of E on S+

i such that the map si 7→ s+
i is an isomorphism of

Fi with Ei. Assume

(1) for i = 1, 2, for each P ∈ Efci , and for each φ ∈ AutEi
(P ), φ extends to φ̂ ∈

AutE(PS+
3−i) with φ̂ = 1 on S+

3−i; and

(2) E = 〈φ̂ : φ ∈ AutEi
(P ), P ∈ Efci , i = 1, 2〉.

Then E = F1 ×D F2.

Proof. This is 2.9.6 in [A5].

Definition 8.3. Let E be a fusion system and Ei a subsystem of E on Ei for i = 1, 2.
We say that E1 centralizes E2 if for i = 1, 2, Ei ≤ CF (E3−i). In that event, E contains
the subsystem Êi = E3−i ∗ Ei which is a central product of E3−i and Ei.
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Lemma 8.4. Let E be a fusion system on E such that Fi is a saturated subsystem of
E for i = 1, 2 such that F1 centralizes F2. Then 〈F̂1, F̂2〉S1S2 is a central product of F1

and F2.

Proof. Let T = S1S2 ≤ E. As F1 centralizes F2, [S1, S2] = 1, so there is a surjection
ρ : S → T such that πiιi = ρ for i = 1, 2, where ιi is the identity map on Si. Set
D = ker(ρ) and S+ = S/D. Then ξ : s+ → sρ is an isomorphism of S+ with T which
restricts to an isomorphism of F+

i with Fi. As F1 centralizes F2, condition (1) of 8.2 is
satisfied. Hence the lemma follows from 8.2.

Section 9. Normal subsystems of fusion systems.

In this section p is a prime, F is a saturated fusion system on a p-group S, and T is
a subgroup of S strongly closed in S with respect to F .

Definition 9.1. There are at least three equivalent definitions of an F-invariant subsys-
tem; here is one of them. A subsystem E of F on a strongly closed subgroup T of S is said
to be F-invariant if AutF (T ) ≤ Aut(E) and for each P ≤ T and each α ∈ homF (P, S),
there exists ϕ ∈ AutF (T ) and φ ∈ homE(Pϕ, T ) such that α = ϕφ.

Lemma 9.2. Assume E is F-invariant on T and D is a subsystem of F on D. Then

(1) E ∩ D is a D-invariant subsystem of D on T ∩D, and

(2) if D is F-invariant then E ∩ D is F-invariant on T ∩D.

Proof. This is 3.6 in [A4]; the proof is straight forward if one uses one of the other
definitions of invariance. Here E∩D is the fusion system on T∩D such that for P ≤ T∩D,
homE∩D(P, T ∩D) consists of those φ : P → T ∩D such that φ is both a E-map and a
D-map.

Definition 9.3. There are at least three notions of “normal subsystem” in the literature.
We will adopt the convention in [AKO] and [Cr]. Define a subsystem E of F on a strongly
closed subgroup T to be weakly normal in F if E is F-invariant and saturated. Define E
to be normal in F if E is weakly normal and satisfies condition (N1):

(N1) For each φ ∈ AutE(T ), φ extends to φ̂ ∈ AutF (TCS(T )) such that [φ̂, CS(T )] ≤
Z(T ).

We write E E F to indicate that E is normal in F .
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Example 9.4. Let G be a finite group, S ∈ Sylp(G), and H E G. Then FS∩H(H) E

FS(G). See Proposition I.6.2 in [AKO] for a proof.

From 9.2.2 the intersection of invariant subsystems of F is F-invariant. Unfortunately
the intersection of normal subsystems is not in general normal. This not too serious a
problem however, since it develops that the intersection of a pair of normal subsystems
in not quite the right candidate for the greatest lower bound for the pair.

Theorem 9.5. Let Ei be a normal subsystem of F on Ti for i = 1, 2. Then there exists
a normal subsystem E1 ∧ E2 on T1 ∩ T2 contained in E1 ∩ E2. Moreover E1 ∧ E2 is the
largest normal subsystem of F normal in E1 and E2.

Proof. This is Theorem 1 in [A5].

Definition 9.6. Let Σ be a collection of subcategories of F . Then by Theorem 9.5, the
wedge of the set of all normal subsystems of F containing Σ is a normal subsystem of F ,
which we denote by [Σ]F . We call this subsystem the normal closure of Σ in F . Then we
write Op

′
(F) for the normal closure [S]F of S in F . Thus Op

′
(F) is the smallest normal

subsystem of F on S.

In a group the product of normal subgroups is again a normal subgroup. No theorem
for fusion systems has been proved at that level of generality, but we do know the
following:

Theorem 9.7. Assume Ei is a normal subsystem of F on Ti for i = 1, 2. Assume
further that [T1, T2] = 1. Then there exists a normal subsystem E1E2 of F on T = T1T2.
Further if T1 ∩ T2 ≤ Z(Ei) for i = 1, 2, then E1E2 is a central product of E1 and E2.

Proof. This is Theorem 3 in [A5].

Lemma 9.8. Assume Ei is a normal subsystem of F on Ti for i = 1, 2, and E1 centralizes
E2. Set T = T1T2, Then 〈Ê1, Ê2〉T = E1E2 is a central product of E1 and E2.

Proof. As E1 centralizes E2, [T1, T2] = 1 and T1 ∩ T2 ≤ Z(Ei) for i = 1, 2. Thus E1E2 is a
central product C by 9.7, while C = 〈Ê1, Ê2〉T by 8.4.

One of the weaknesses in our current theory of fusion systems is the lack of the
notion of the “normalizer” or “centralizer” of an arbitrary subsystem of F . We do have
normalizers and centralizers of subgroups of S, and we also have the following result:
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Theorem 9.9. Let E be a normal subsystem of F on T . Then
(1) the set of subgroups of S centralizing E has a largest member CS(E);
(2) CS(E) is strongly closed in S with respect to F ; and
(3) there exists a normal subsystem CF (E) on CS(E) which centralizes E.

Proof. See Theorem 4 in [A5].

Definition 9.10 The hyperfocal subgroup hyp(F) of S is

〈[x, α] : x ∈ P ≤ S, α ∈ Op(AutF (P ))〉.

Theorem 9.11. The hyperfocal subgroup hyp(F) is strongly closed in S with respect
to F and there exists a normal subgroup Op(F) of F on hyp(F) such that Op(F) =
Op(Op(F)).

Proof. See for example 7.7 in [A5].

Section 10. The generalized Fitting subsystem of a fusion system.

In this section p is a prime, F is a saturated fusion system on a p-group S.
We’ve finally reached the point where it becomes possible to define the notions of

simple and quasisimple fusion systems, and the generalized Fitting subsystem of a sat-
urated fusion system. Compare these notions to the corresponding notions for groups,
appearing near the beginning of Section 1.

A saturated system F is simple if it has no nontrivial proper normal subsystems.
Further F is quasisimple if F = Op(F) and F/Z(F) is nontrivial and simple.

As in the case of groups, subnormality for saturated fusions systems is the transitive
extension of normality for fusion systems. Then the components of F are its subnor-
mal quasisimple subsystems. Write E(F) for the normal subsystem [Comp(F)]F of F
generated by the set Comp(F) of components of F . It turns out the E(F) centralizes
Op(F) so, using Theorem 9.7, we can form the normal subsystem F ∗(F) = Op(F)E(F)
of F ; F ∗(F) is the generalized Fitting subsystem of F . Compare the following theorem
to Lemma 1.1 for groups.

Theorem 10.1. (1) F ∗(F) is a normal subsystem of F .
(2) E(F) is a central product of the components of F .
(3) F ∗(F) is a central product of Op(F) and E(F).
(4) CF (F ∗(F)) = Z(F ∗(F)).

Proof. This is Theorem 6 in [A5].
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E-Balance Theorem. For each fully normalized subgroup X of S, E(NF (X)) ≤ E(F).

Proof. This is Theorem 7 in [A5].

Lemma 10.2. F is constrained if and only if E(F) = 1.

Proof. Suppose F is constrained. Then there is a subgroup R of S normal in F such
that CS(R) ≤ R. As R E F , we have R ≤ Op(F), so R centralizes E(F) by 10.1.3.
Thus if C is a component of F on T then T ≤ CS(R) ≤ R ≤ CS(T ), so T is abelian.
But then T E C by 6.4.1, so as C/Z(C) is simple, T = Z(C). Then from Definition
9.10, hyp(C) = 1, a contradiction as C = Op(C) so hyp(C) is Sylow in C. Thus F has no
components, so E(F) = 1.

Conversely assume E(F) = 1. Then F ∗(F) = Op(F) = R, and hence by 10.1.4,
CS(R) ≤ R, so R is centric, and hence F is constrained.

Compare the following definitions to the corresponding definitions for groups in Defi-
nition 2.1.

Definition 10.3. Define F to be of characteristic p-type if for each 1 6= X ∈ Ff ,
NF (X) is constrained. Define F to be of component type if for some X ∈ Ff of order p,
E(CF (X)) 6= 1.

Dichotomy Theorem for Fusion Systems. Each saturated fusion system is either
of characteristic p-type or of component type.

Proof. Assume F is not of characteristic p-type. Then from 10.3, there exists 1 6= U ∈ Ff

such that N = NF (U) is not constrained. By 6.1, N is saturated, so by 10.2, E(N ) 6= 1.
Let T be Sylow in N and X a subgroup of U of order p normal in T . Then X is fully
normalized in N and centralizes E(N ). Therefore (cf. 10.3 in [A5]), E(N ) = E(NN (X)).
Let C = CF (X); replacing U and X by suitable conjugates and appealing to 5.2.2, we
may assume X ∈ Ff and U ∈ Cf . Moreover E(CN (X)) = E(NC(U)), so by E-Balance,
1 6= E(NC(U)) ≤ E(C). Hence F is of component type by 10.3.

Section 11. Tightly embedded subsystems.

With a basic theory of fusion systems in place, we are now in a position to attempt to
translate the major pieces of the classification of the simple groups of component type
into analogous steps in a program to classify the simple saturated 2-fusion systems of
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component type. Thus we need analogues of tightly embedded subgroups, the Component
Theorem, the Classical Involution Theorem, and Walter’s Theorem, in the category of
saturated 2-fusion systems. Also, at some point, various standard form problems need
to be solved. Most of this work is in preliminary form, so “proofs” and possibly even
statements of some of the “theorems” may need to be modified.

We begin with a translation of the notion of a tightly embedded subgroup into a
corresponding notion for fusion systems. Recall from Definition 3.1 that if G is a finite
group, then a subgroup K of G is tightly embedded in G if K is of even order, but the
intersection of any pair of distinct conjugates of K is of odd order. This formulation
does not translate well into a statement about fusion systems, but there are equivalent
formulations which do translate:

Lemma 11.1. Let G be a finite group and K a subgroup of G of even order. Then the
following are equivalent:

(1) K is tightly embedded in G.
(2) For each nontrivial 2-subgroup X of K, XG∩K = XNG(K) and NG(X) ≤ NG(K).
(3) For each involution x in K, xG ∩K = xNG(K) and CG(x) ≤ NG(K).

Proof. This is Exercise 5.

Now let F be a saturated fusion system on a p-group S.

Definition 11.2. A tightly embedded subsystem of F is a saturated subsystem Q of F on
a nontrivial fully normalized subgroup Q of S, satisfying the following three conditions:

(T1) For each 1 6= X ∈ Qf and α ∈ A(X), Op
′
(NQ(X))α∗ E NF (Xα).

(T2) For each subgroup X of Q of order p, XF ∩Q = XAutF (X)Q.
(T3) AutF (Q) ≤ Aut(Q).
Here XAutF (Q)Q = {Xϕφ : ϕ ∈ AutF (Q) and φ ∈ homQ(Xϕ,Q)}.

Example 11.3. Let G be a finite group and S ∈ Sylp(G). Let K be a tightly embedded
subgroup of G such that Q = S ∩ K ∈ Sylp(K) and NS(Q) ∈ Sylp(NG(K)). Then
FQ(K) is tightly embedded in FS(G).

Example 11.4. The converse of 11.3 is not in general true. Let q be an odd prime
power, G = L2(q2), and S ∈ Syl2(G). Then S is dihedral and G contains a subgroup
K isomorphic to PGL2(q) containing S. Set L = O2(K), Q = S ∩ L, and Q = FS(L).
Then Q is tightly embedded in F = FS(G), but (unless q = 3) L is not tightly embedded
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in G. Similarly S has a second dihedral subgroup Q′ of index 2 in S and Q′ = FQ′(Q′)
is tightly embedded in FS(K) but Q′ is not tightly embedded in K.

Definition 11.5. A subgroup Q of S is F-semistable if for each P ≤ Q and φ ∈
homF (P, S), Pφ is contained in some conjugate of Q.

In the remainder of the section we focus on 2-fusion systems, so from now on we
assume p = 2.

Theorem 11.6. Assume Q = O2′(Q) is a saturated subsystem of F on a nontrivial fully
normalized subgroup Q of S. Assume Φ(Q) 6= 1. Then the following are equivalent:

(1) Q is tightly embedded in F and Q is F-semistable.
(2) Q is subnormal in F and Q ∩R = 1 for each R ∈ QF − {Q}.

Proof. This is Theorem 1 in the preprint [A6].

At first glance it is not clear whether Theorem 11.6 is very interesting; after all, the
condition in 11.6.1 that Q is F-semistable appears fairly strong. However the next result
says that if m2(Q) > 1, then, with the exception of some cases where Q is “small”, the
semistability assumption is unnecessary.

Theorem 11.7. Assume Q = O2′(Q) is tightly embedded in F with Sylow group Q.
Then one of the following holds:

(1) Q is subnormal in F .
(2) Φ(Q) = 1.
(3) m2(Q) = 1.
(4) Q is dihedral.
(5) Q = Q and Q has a unique abelian subgroup X of index 2 such that Φ(X) 6= 1 and

X is inverted by the members of Q−X. Moreover X is tightly embedded and subnormal
in F , and Q ∩O2(F) = X.

(6) Q = Q appears in one of three special cases.

Proof. This is Theorem 2 in the preprint [A6].

A number of other results on tightly embedded subsystems (corresponding to theorems
on groups in [A1] and [A2]) are necessary to prove and exploit the Component Theorem,
but our time is limited, so we will move on to the next topic.
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Section 12. Toward a Component Theorem.

In this section, F is a saturated fusion system on a 2-group S, and C is a quasisimple
subsystem of F on T . We will eventually give a definition of a “standard subsystem”
of F , analogous to the definition of a standard subgroup of a finite group appearing in
Definition 3.1. We will also briefly discuss preliminary work aimed at proving a fusion
theoretic version of the Component Theorem appearing in Section 3. We begin with
some notation related to that in 1.4.

Notation 12.1. Set Q0 = CS(T ) and let X = X (C) be the set of nontrivial subgroups X
of Q0 centralizing C. Let X̃ = X̃ (C) consist of those X ∈ X such that for some α ∈ A(X),
Cα∗ is a component of NF (Xα). Let I be the set of involutions in X̃ . Let ρ(C) consist
of the pairs (tα, Cα∗) such that t ∈ I(C) and α ∈ A(t). Let ρ0(C) consist of the (t1, C1)
in ρ(C) such that CCS(t1)(C1)# ⊆ X̃ (C1). Write C for the set of quasisimple subsystems
C of F such that I(C) 6= ∅. For C ∈ C, write [C] for the set of D ∈ C such that C is a
homomorphic image of D, and set [C] = {[C] : C ∈ C}.

Compare the following result to Lemma 1.5 on groups.

Lemma 12.2. Assume E4
∼= 〈t, a〉 ∈ X with t ∈ I. Let α ∈ A(a), ā = aα, t̄ = tα,

C̄ = Cα∗, and F̄ = CF (ā). Then there exists a component D of F̄ such that one of the
following holds:

(1) D = C̄.

(2) t̄ acts on but does not centralize D, and C̄ is a component of CD(t̄).

(3) D 6= Dt, C̄ = E(CDDt̄(t̄)), and D ∈ [C].

Proof. This is essentially 10.11.3 in [A5].

Next we adopt notation analogous to that in Notation 1.6:

Notation 12.3. Define C to be maximal in C if whenever the setup of 12.2 arises, then
conclusion (2) of Lemma 12.2 never occurs. For C0 ∈ C, define [C0] to be maximal if each
member of [C0] is maximal.

When C is maximal, Lemma 12.2 can be used to show that C is a component in the
centralizer of many involutions. For example we can often achieve the following setup:
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Definition 12.4. Define ∆(C) to consist of those conjugates C1 = Cφ∗ of C such that C1
centralizes C, T# ⊆ X̃ (C1), and (Tφ)# ⊆ X̃ (C). Then set C⊥ = ∆(C) ∪ {C}.

Theorem 12.5. Assume C is maximal, T ∈ Ff , and C⊥ 6= {C}. Then either
(1) C is a component of F and C⊥ is the set of F-conjugates of C, or
(2) m2(T ) = 1, C⊥ = {C, C1} is of order 2, and Z(C) = Z(C1).

There is a “proof” of this result in my notes, but the proof is preliminary. Theorem
12.5 is a fusion system version of Theorem 5 in the paper [A1] where the Component
Theorem for groups is proved; Theorem 5 is the most difficult result in [A1].

Here is one possible definition of the notion of a “standard subsystem”:

Definition 12.6. A standard subsystem of F is a quasisimple subsystem C of F on a
fully normalized subgroup T of S, such that:

(S1) X̃ contains a unique maximal member Q.
(S2) For each 1 6= X ≤ Q and α ∈ A(X), Cα∗ E NF (Xα).
(S3) If 1 6= X ≤ Q and β ∈ A(X) with Xβ ≤ Q then Tβ = T .
(S4) AutF (T ) ≤ Aut(C).

Moreover define C to be a nearly standard subsystem of F with it satisfies conditions
(S1)-(S3).

So far it is not clear that the definition of a “standard subsystem” in 12.6 is analogous
to that of a standard subgroup in 3.1. But this is more apparent after the next result:

Proposition 12.7. Assume C is a standard subsystem of F , and choose notation so that
Q is fully normalized. Then there exists a saturated subsystem Q of F on Q such that:

(1) Q E NF (T ).
(2) Q centralizes C.
(3) Q is tightly embedded in F .
(4) For 1 6= X ∈ Ff with X ≤ Q, CNF (X)(C) = NQ(X).

Proof. There is a “proof” of this in my notes. Call Q the centralizer in F of C.

Theorem 12.8. Assume [C] is maximal in [C]. Then one of the following holds:
(1) C is a component of F .
(2) C ∼= SL2[m] for some m ≥ 16, C⊥ = {C, C1} is of order 2, and Z(C) = Z(C1) ≤

Z(S).
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(3) There exists t ∈ I(C) and a component D of F contained in [C] such that D 6= Dt

and C = E(CDDt(t)).

(4) C ∼= L2[m] for some m ≥ 16 and there exists t ∈ I(C), an involution a centralizing
t such that 〈a, t〉 ∈ X (C), and a component D of F̄ such that SL2[m] ∼= D 6= Dt̄,
D⊥ = {D,Dt̄}, C̄ = E(CDDt̄(t̄)), and Z(D) = Z(Dt̄) ≤ Z(S).

(5) ρ(C) = ρ0(C) and C⊥ = {C}.

Proof. Again there is a “proof” of this in my notes which is preliminary. Theorem 12.8
should be compared to the Component Theorem for groups in section 3.

In 12.8.5 we would like to show that C is standard. If Z(C) 6= 1 it can be shown that
C is nearly standard. But what about condition (S4)?

Lemma 12.9. Assume T ∈ Ff and set Σ = NAutF (QT )(T ). Then

(1) AutF (T ) = AutΣ(T ).

(2) Σ acts on Q0.

(3) If σ ∈ Σ and X ∈ X̃ with Xσ ∈ X̃ then σ|T ∈ Aut(C).
(4) If some characteristic subgroup of Q0 is in X̃ then AutF (T ) ≤ Aut(C).
(5) Suppose Q ≤ Q0 with Q# ⊆ X̃ and |Q| > |Q0 : Q|. Then AutF (T ) ≤ Aut(C).

Proof. Exercise 6.

For example Q1 = [Q0, Q0] centralizes C, so, given (S1) and (S2), if Q0 is nonabelian
then Q1 ∈ X̃ , so (S4) follows from 12.9.4 in this case. Or if Z(C) = Z(T ) then we can
apply 12.9.4 to Z(T ). Thus in certain situations one can show that, when C is nearly
standard, condition (S4) holds and hence C is standard, but I have no proof of this in
general. It would be nice to have such a proof.

One might also attempt to verify (S4) for various choices of “known” C on an ad hoc
basis.

Example 12.10 Assume C has a dihedral Sylow group T . Then |T | ≥ 8 and C is the
fusion system on T such that AutC(E) = Aut(E) for each 4-subgroup E of T . From this
description it is trivial that Aut(T ) ≤ Aut(C), so that (S4) holds. The fusion system C
is L2[m] ∼= SL2[m]/Z(SL2[m]), where SL2[m] is described in 5.6 and |T | = m/2. Put
another way, C is the fusion system of L2(q), where (q2 − 1)2 = m.

Similarly if C is SL2[m] then Aut(T ) ≤ Aut(C).
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However there is a more serious problem than the verification of condition (S4): In
general in case (5) of Theorem 12.8, C need not be nearly standard. For if C is nearly
standard then Q0 acts on the unique maximal member Q of X̃ . In particular for t ∈ Q
and u ∈ Q0, tu 6= tz for any t ∈ T − Z(C). The following examples show this need not
be the case:

Example 12.11. Consider Example 2.4 where G = 〈t〉X1X2 is the wreath product of
a simple group X1 by an involution t, so that CX1X2(t) = {xxt : x ∈ X1} = L ∼= X1.
Let S ∈ Syl2(G) with t ∈ S and F = FS(G); then C = FS∩L(L) appears in case (5) of
Theorem 12.8. But for u an involution in Z(X1 ∩ S), tu = tz with z = uut ∈ Z(S ∩ L).
Indeed both t and tu centralize C, but of course z does not.

Similarly in Example 2.3, G is the split extension of a group X = X(q) of Lie type
over a field of order q = 22e by a field automorphism t, and L = CX(t) ∼= X(2e). Let z
be an involution in Z(S ∩ L); then the root group U of z is in the center of S ∩X and
there is u ∈ U with tu = tz.

In summary, if one adopts the definition in 12.6 of a “standard subsystem” then in
case (5) of Theorem 12.8, F need not have a standard subsystem. I’ll suggest one possible
way to avoid this problem in a moment.

But, as in the discussion near the end of Section 4 and Definition 2.2, even when
standard subsystems exist, it might be better to prove a component theorem for systems
that are not of even characteristic (ie. NF (X) is not constrained for some 1 6= X E S)
or not of Baumann characteristic 2 (ie. NF (X) is not constrained for some nontrivial
fully normalized X centralizing J(S)); in such a theorem one would seek to establish
the existence of a standard subgroup C on T such that T E S or Baum(S) acts on
T , respectively. In the former case, one would need to classify fusion systems of even
characteristic, which might be too difficult a problem. In the latter case I have no
good ideas for proving a Baumann component theorem. However see Problem 16.9 for a
possible fix.

In short it is not clear exactly what an optimal statement of a component theorem
for fusion systems should be, although it is perhaps possible to build on the preliminary
results discussed above to obtain a suitable theory.

Section 13. Tight split extensions.
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In order to exploit the existence of a standard subsystem, we need some results on
certain kinds of extensions of quasisimple fusion systems. Thus in this section, F0 is a
saturated fusion system on a 2-group S0. If E is a fusion system on E then the weak
closure of a subgroup P of E is 〈PF 〉, and P is weakly closed in E with respect to E if
P E = {P}.

Definition 13.1. A split extension of F0 is a pair (F , Q) where F is a saturated fusion
system on a 2-group S, F0 E F , O2(F) = O2(F0), and Q is a complement to S0 in S.
The extension (F , Q) is said to be tight if Q is tightly embedded in F .

Lemma 13.2. Assume (F , Q) is a split extension of F0 and Q is weakly closed in S

with respect to F . Then Q E F , so F = Q×F0.

Proof. This is Exercise 7.

Lemma 13.3. Assume (F , Q) is a tight split extension of F0.
(1) If Q is nonabelian then Q E F , so F = Q×F0.
(2) If Q is noncyclic abelian and Φ(Q) 6= 1 then the weak closure of Q in S with

respect to F is normal in F .

Proof. These results are proved in my notes. In (1), it can be shown that Q is weakly
closed, so that (1) follows from 13.2.

Definition 13.4. Assume F0 is quasisimple. A critical split extension of F0 is a tight
split extension (F , Q) of F0 such that Q is a 4-group. Further F0 is said to be split if
there exists no nontrivial critical split extension of F0; that is for each such extension
(F , Q), F is a central product of CS(F0) with F0.

Conjecture 13.5. Every quasisimple 2-fusion system is split.

Actually I have little evidence for the truth of the conjecture, but I would be surprised
if it were not true.

Notice that if F0 is quasisimple and (F , Q) is a tight split extension of F0 such that Q
does not centralize F0, then by Lemma 13.3.1, Q is abelian. Let W be the weak closure
of Q in S with respect to F . If W E F , then Q ≤ O2(F) and O2(F) centralizes F0 by
10.1.3, contrary to our assumption that Q does not centralize F . Thus W is not normal
in F , so by 13.3.2 either Q is cyclic or Q is elementary abelian. Assume Q is not cyclic;
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then Q is generated by its 4-subgroups U , and for each such U , (UF0, U) is a critical
split extension of F0, so if F0 is split then UF0 is a central product. But then F is also
a central product. We will exploit this observation in the next section.

Section 14. Standard form problems.

In this section F is a saturated fusion system on a 2-group S and C is a standard
subsystem of F . Let Q be the centralizer in F of C and Q the Sylow group of Q. Define
F to be almost simple if F ∗(F) is a nonabelian simple system.

Lemma 14.1. One of the following holds:

(1) C E F .

(2) C is simple and F ∗(F) = C × Cϕ∗ with Cϕ∗ = F ∗(Q).

(3) F is almost simple and C ≤ F ∗(F).

(4) Q = 〈u〉 is of order 2 and F ∗(F) = D × Du for some simple component D of F
such that C ∼= D is a full diagonal subsystem of F ∗(F). That is QF ∗(F) is the wreath
product of C with a group of order 2.

Proof. This appears in my notes. In cases (1) and (2), C is a component of F , and in
(4), u is neither in the center of S nor centralizes the Baumann subgroup of S. The most
interesting case is case (3).

Definition 14.2. Let C be quasisimple. The standard form problem for C is to determine
all almost simple saturated 2-fusion systems F in which C is a standard subsystem of
F . Or perhaps this problem should be modified so as to demand that C centralizes an
involution in the center of S, or that the Baumann subgroup of S normalizes C, or that
m2(NS(T )) = m2(S).

Theorem 14.3. Assume C is split. Then one of the following holds:

(1) C is a component of F .

(2) m2(Q) = 1.

(3) Φ(Q) = 1.

Proof. As usual a proof appears in my notes. It depends heavily on the theory of tightly
embedded subsystems.
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In case (2), Q is either quaternion or cyclic. Further if Q is quaternion then as
Q is tightly embedded in F , a Classical Involution Theorem for fusion systems would
determine F . Thus if C is split, then in solving the standard form problem for C, we may
assume that Q is cyclic or elementary abelian. In the case of groups, if Q is noncyclic it
turns out that Q is a 4-group; presumably the same thing is true for fusion systems.

Section 15. Quaternion fusion packets and Walter’s Theorem.

Recall from section 4 that the Classical Involution Theorem gives a means for rec-
ognizing groups of Lie type and odd characteristic, and deals with the case where G

has a tightly embedded subgroup with quaternion Sylow 2-groups. The definition of a
“classical involution” appears in Definition 4.1. But in [A3] there is a much more general
setup (called Hypothesis Ω in [A3]), and in [A3] the groups appearing in that setup are
determined. Those groups include groups with a classical involution, but there are also
many more examples. The definition of the setup is fusion theoretic, and is very close to
the following hypotheses for fusion systems:

Definition 15.1. A quaternion fusion packet is a pair τ = (F ,Ω) where F is a saturated
fusion system on a finite 2-group S and Ω is an F-invariant set of subgroups of S such
that:

(1) There exists an integer m such that for each K ∈ Ω, K has a unique involution
z(K) and K is nonabelian of order m.

(2) For each pair of distinct K,J ∈ Ω, |K ∩ J | ≤ 2.

(3) If K,J ∈ Ω and v ∈ J − Z(J) then vF ∩ CS(z(K)) ⊆ NS(K).

(4) If K,J ∈ Ω with z = z(K) = z(J), v ∈ K, and φ ∈ homCF (z)(v, S) then either
vφ ∈ J or vφ centralizes J .

Example 15.2. Recall the discussion of the class Chev∗(p) of groups of Lie type over
fields of odd characteristic p (other than L2(q) and the Ree groups) and their fundamental
subgroups. Let G ∈ Chev∗(p), S ∈ Syl2(G), and Ω the set of subgroups L ∩ S, for L a
fundamental subgroup of G such that L ∩ S ∈ Syl2(L). Set τ(G) = (FS(G),Ω) and call
τ(G) the Lie packet of G. Then τ(G) is a quaternion fusion packet.

I presume that each quaternion fusion packet is the packet of one of the groups appear-
ing in the various theorems in [A3]. In particular the generic examples are the Lie fusion



30 MICHAEL ASCHBACHER

packets of members of Chev∗(p), but there are also many other classes of examples. For
example the 2-fusion systems of the groups Sp6(2) and Ω+

8 (2) admit fusion packets.
I have extensive notes on the problem of determining all quaternion fusion packets,

and believe I will be able to complete the problem.
As in the case of groups, a classification of quaternion fusion packets would supply a

characterization of the 2-fusion systems of the members of Chev∗(p), as p ranges over the
odd primes. Then we can hope to use that characterization to prove a fusion theoretic
version of Walter’s Theorem (cf. Section 4). Here is a possible statement of Walter’s
Theorem for fusion systems:

Let F be a simple saturated fusion system on a 2-group S and C be a quasisimple
subsystem of F such C is the 2-fusion system of a member of Chev∗(p) for some odd
prime p (with a small number of exceptions) and I(C) is nonempty. Then either F is the
2-fusion system of a member of Chev∗(p) for some odd prime p, or F is a Benson-Solomon
system.

The Benson-Solomon systems are the only know simple exotic saturated 2-fusion sys-
tems. A saturated fusion system E on a finite p-group is exotic if there exists no finite
group G such that E is the p-fusion system of G.

As far as I know, no one has made an attempt to prove a version of Walter’s Theorem
for fusion systems. I have not thought seriously about the problem.

Recall that Walter’s Theorem would make it possible to avoid the standard form
problems for the 2-fusion systems of members of Chev∗(p).

Section 16. Some open problems.

Here are various open problems in the program to determine the simple saturated 2-
fusion systems of component type, and then to use that theorem to simplify the existing
treatment of simple groups of component type.

Problem 16.1. Revisit some of the difficult results in [A5] such as Theorems 9.5, 9.7,
and 9.9 from section 9, and find simpler and more intuitive proofs of those theorems.
That may involve coming up with simpler, more natural (but equivalent) definitions of
the objects E1∧E2, E1E2, and CF (E) appearing in those results. Ellen Henke has already
made such an improvement in Theorem 5 of [A5], a result which I’ve not mentioned
explicitly, but have used here implicitly.
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Problem 16.2. Given a (suitable) saturated subsystem of a saturated fusion system F ,
define the normalizer or centralizer of the subsystem, and prove this system is saturated.
Example 12.11 shows that this could be tricky or even impossible.

Problem 16.3. Given a simple 2-fusion system F on S, determine those simple groups
G such that FS(G) = F . Some such result would be necessary to turn a classification
of simple 2-fusion systems of component type into a classification of simple groups of
component type.

Problem 16.4. Solve the standard form problem for some given quasisimple system C
or family of such systems. Perhaps it would first be best to solve the Baumann standard
form problem for C; that is assume C is normalized by the Baumann subgroup of the
Sylow group of the oversystem F in which C is standard. For example Justin Lynd
has solved the Baumann standard form problem for L2[m] in the case where a Sylow
group Q of the centralizer of C is cyclic; this leaves the case where Q is noncyclic and
elementary abelian, where the 2-fusion systems of the alternating groups A10 and A11

make an appearance. I believe Matt Welz, a student of Richard Foote, has some results
on this problem.

Problem 16.5. Solve the standard form problem for each Benson-Solomon system, or
perhaps just the Baumann standard form problem.

Problem 16.6. Prove each nearly standard subsystem is standard; that is verify condi-
tion (S4) of Definition 12.6.

Problem 16.7. Prove Conjecture 13.5 on critical split extensions of quasisimple systems.
Or perhaps prove the conjecture for the known simple systems other than those of groups
of Lie type and odd characteristic. Or a less ambitious goal is to prove the conjecture
for some particular class of quasisimple systems.

Problem 16.8. State and prove a version of Walter’s Theorem for fusion systems.

Problem 16.9. State and prove a Baumann Component Theorem. Define a saturated
2-fusion system F over S to be a of Baumann component type if for some involution
t in the center of Baum(S), E(CF (t)) 6= 1. Define C to be a Baumann standard sub-
system of F if C is a standard subsystem such that I(C) ∩ Z(Baum(S)) 6= ∅. Then



32 MICHAEL ASCHBACHER

a Baumann Component Theorem would say something like, with known exceptions, if
F is of Baumann component type and all members of C are simple of known type and
not of type Chev∗(p), then F has a Baumann standard subsystem. I don’t have any
good ideas of how to prove such a result. However I do have a few vague ideas about
how to prove that, if all members of C are simple of known type and not in Chev∗(p),
and if E(CF (t)) 6= 1 for some involution t with m2(CS(t)) = m2(S), then, with known
exceptions, there exists a standard subsystem C on T such that m2(NS(T )) = m2(S).
Such a result might suffice, or perhaps could be used to prove a Baumann component
theorem. Also it would probably avoid the problem that, in the general case, standard
subsystems need not exists.
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