ℓ^2 -Betti numbers for group theorists

A minicourse in 3 parts - 2nd lecture

Roman Sauer

Karlsruhe Institute of Technology

Copenhagen, October 2013

The von Neumann dimension dim

Finite-dimensional vector spaces

Let $W\subset \mathbb{C}^n$ be a subspace and $\mathrm{pr}_W:\mathbb{C}^n\to \mathbb{C}^n$ be the projection onto W. Then

$$\dim_{\mathbb{C}}(W) = \operatorname{tr}_{M_n(\mathbb{C})}(\operatorname{pr}_W).$$

The von Neumann dimension dim

Finite-dimensional vector spaces

Let $W\subset \mathbb{C}^n$ be a subspace and $\mathrm{pr}_W:\mathbb{C}^n\to \mathbb{C}^n$ be the projection onto W . Then

$$\dim_{\mathbb{C}}(W) = \operatorname{tr}_{M_n(\mathbb{C})}(\operatorname{pr}_W).$$

The von Neumann trace

Let $L(\Gamma)$ be the algebra of Γ -equivariant bounded operators on $\ell^2(\Gamma)$ (von Neumann algebra of Γ). For $T \in L(\Gamma)$ define:

$$\operatorname{tr}_{\Gamma}(T) = \langle Te, e \rangle_{\ell^{2}(\Gamma)}.$$

It satisfies $\operatorname{tr}_{\Gamma}(ST) = \operatorname{tr}_{\Gamma}(TS)$ and extends to $M_n(L(\Gamma))$.

Hilbert **F**-modules

A **Hilbert** Γ -module is a Hilbert space with an isometric linear Γ -action such that there is an Γ -equivariant isometric embedding $H \hookrightarrow \ell^2(\Gamma)^n$.

$$\dim_{\Gamma}(H) := \operatorname{tr}_{M_n(L(\Gamma))}(\operatorname{pr}_H)$$

ℓ^2 -Betti numbers

Definition

Let X be a cocompact free Γ -CW complex. Its ℓ^2 -cohomology $H^i_{(2)}(X)$ is a Hilbert Γ -module via the embedding:

$$\bar{H}^i_{(2)}(X) \cong \ker(\Delta^i) \hookrightarrow \ell^2(\Gamma)^n$$
.

We define the ℓ^2 -Betti numbers as:

$$\begin{split} \beta_i^{(2)}(X) &= \dim_{\Gamma} \left(\bar{H}_{(2)}^i(X) \right) \\ \beta_i^{(2)}(\Gamma) &= \dim_{\Gamma} \left(\bar{H}_{(2)}^i(E\Gamma) \right) \end{split}$$

Homology versus cohomology

Alternatively, we could define $\beta_i^{(2)}$ by reduced homology. The Laplace operators are the same for homology and cohomology.

Properties

 ℓ^2 -Betti numbers satisfy equivariant homotopy invariance, a Künneth formula, and a Euler-Poincare formula....

A question by Atiyah

These real Betti numbers appear to deserve further study. Some natural questions are :

- (i) Triangulate X and compute the simplicial L^2 cohomology of \tilde{X} for the lifted triangulation (using cocycles/closure of coboundaries). Are these groups Γ -isomorphic to our $\mu^q(\tilde{X})$?
- (ii) If the answer to (i) is yes, are the $\mbox{ B}^{\mbox{\scriptsize q}}_{\Gamma}(\tilde{X})$ homotopy invariants of X ?
- (iii) A priori the numbers $B_{\Gamma}^{q}(X)$ are real. Give examples where they are not integral and even perhaps irrational.

Conjectures

Atiyah conjecture

Let Γ be a torsionfree group. Then the ℓ^2 -Betti numbers of a free cocompact Γ -CW complex are in $\mathbb{N} \cup \{0\}$.

Algebraic Atiyah conjecture

Let Γ be a torsionfree group. Let $A \in M_{m,n}(\mathbb{Z}\Gamma)$. Then

$$\dim_{\Gamma} \Bigl(\ker \bigl(\ell^2(\Gamma)^m \xrightarrow{\cdot \cdot A} \ell^2(\Gamma)^n \bigr) \Bigr) \in \mathbb{N} \cup \{0\}.$$

Zero divisor conjecture

Let Γ be a torsionfree group. The group $\mathbb{Z}\Gamma$ has no zero-divisors.

Conjectures

Atiyah conjecture

Let Γ be a torsionfree group. Then the ℓ^2 -Betti numbers of a free cocompact Γ -CW complex are in $\mathbb{N} \cup \{0\}$.

Algebraic Atiyah conjecture

Let Γ be a torsionfree group. Let $A \in M_{m,n}(\mathbb{Z}\Gamma)$. Then

$$\mathsf{dim}_{\Gamma}\Big(\mathsf{ker}\big(\ell^2(\Gamma)^m \xrightarrow{\cdot^{\boldsymbol{\cdot}} A} \ell^2(\Gamma)^n\big)\Big) \in \mathbb{N} \cup \{0\}.$$

Zero divisor conjecture

Let Γ be a torsionfree group. The group $\mathbb{Z}\Gamma$ has no zero-divisors.

Relations

Atiyah \iff algebraic Atiyah \Rightarrow ZD conjecture

4/7

Fredholm module

A **Fredholm** Γ -module consists of *-homomorphisms $\rho_{\pm}: L(\Gamma) \to \mathcal{B}(\mathcal{H})$ such that $\rho_{+}(a) - \rho_{-}(a)$ has finite rank for every $a \in \mathbb{C}\Gamma$.

Construct a Fredholm module with trace property

We construct a specific Fredholm F_2 -module ho_\pm such that

$$\underbrace{\operatorname{tr}_{F_2}(a)}_{F_2\text{-trace}} = \underbrace{\operatorname{tr}(\rho_+(a) - \rho_-(a))}_{\text{usual trace}} =: \tau(a) \ \text{ for all } a \in L(F_2).$$

5/7

Fredholm module

A **Fredholm** Γ -module consists of *-homomorphisms $\rho_{\pm}: L(\Gamma) \to \mathcal{B}(\mathcal{H})$ such that $\rho_{+}(a) - \rho_{-}(a)$ has finite rank for every $a \in \mathbb{C}\Gamma$.

Construct a Fredholm module with trace property

We construct a specific Fredholm F_2 -module ρ_+ such that

$$\operatorname{tr}_{F_2}(a) = \operatorname{tr}(\rho_+(a) - \rho_-(a)) =: \tau(a) \text{ for all } a \in L(F_2).$$

Let (V, E) be the Cayley graph of F_2 . Let

$$f: V \xrightarrow{\sim} E \coprod \{pt\}$$

$$f(x) = \begin{cases} \text{first edge on geodesic from } x \text{ to } x_0 & \text{if } x \neq x_0 \\ pt & \text{otherwise} \end{cases}$$

- ▶ Standard reps $\rho_+: L(F_2) \to \mathcal{B}(\underbrace{\ell^2(V)}_{\cong \ell^2(\Gamma)})$ and $\rho: L(F_2) \to \mathcal{B}(\ell^2(E) \oplus \mathbb{C})$
- $ho_- := F^{-1} \circ \rho \circ F : L(F_2) \to \mathcal{B}(\ell^2(V))$ with F induced by f.

Integrality lemma

Let $p,q\in\mathcal{B}(\mathcal{H})$ be projections for which p-q has finite rank. Then $\mathrm{tr}(p-q)\in\mathbb{Z}.$

Proof.

p, q commute with $(p-q)^2$, thus respect the eigenspace decomposition of $(p-q)^2$:

$$\mathcal{H} = \bigoplus_{\lambda \neq 0} E_{\lambda} \oplus \underbrace{\ker(p-q)^2}_{=\ker(p-q)}$$

This implies:
$$\operatorname{tr}(p-q) = \sum_{\lambda \neq 0} \operatorname{tr}(p|_{E_{\lambda}}) - \sum_{\lambda \neq 0} \operatorname{tr}(q|_{E_{\lambda}}) \in \mathbb{Z}$$

6/7

Integrality lemma

Let $p,q\in\mathcal{B}(\mathcal{H})$ be projections for which p-q has finite rank. Then $\mathrm{tr}(p-q)\in\mathbb{Z}.$

Proof.

p, q commute with $(p-q)^2$, thus respect the eigenspace decomposition of $(p-q)^2$:

$$\mathcal{H} = \bigoplus_{\lambda \neq 0} E_{\lambda} \oplus \underbrace{\ker(p-q)^{2}}_{=\ker(p-q)}$$

This implies:
$$\operatorname{tr}(p-q) = \sum_{\lambda \neq 0} \operatorname{tr}(p|_{E_{\lambda}}) - \sum_{\lambda \neq 0} \operatorname{tr}(q|_{E_{\lambda}}) \in \mathbb{Z}$$

Finite rank lemma

Let $a, b \in \mathcal{B}(\mathcal{H})$ such that a-b has finite rank. Then $\mathrm{pr}_{\ker(a)} - \mathrm{pr}_{\ker(b)}$ has finite rank.

Proof.

- ▶ It is easy to see that $pr_{ker(a)}$ and $pr_{ker(b)}$ agree on ker(a b).
- ▶ Since a b has finite rank, $ker(a b)^{\perp}$ is finite-dimensional.

A few comments on the status of the conjectures

- ▶ Linnell: (Strong) Atiyah conjecture for a certain class of groups that contains free groups and elementary amenable groups with upper bounds on orders of finite subgroups.
- ► This builds on earlier work of Kropholler-Linnell-Moody who proved the ZD conjecture for torsionfree elementary amenable groups.
- ▶ A lot of positive results by Linnell, Schick and others...
- The Grigorchuk-Schick-Zuk counterexample to the strong Atiyah conjecture.
- ▶ Austin's counterexample to the rationality of L^2 -Betti numbers.