Proper finiteness properties of certain solvable arithmetic groups

Stefan Witzel

WWU Münster

Classifying spaces, loop spaces and finiteness 14-18 October 2013

Outline

- Classifying spaces and finiteness properties
- 2 Brown's criterion
- 3 Application: certain S-arithmetic groups

Actions with prescribed stabilizers

Let a group G act on a CW-complex X (always assume that G_{σ} fixes $\sigma \in X$ pointwise). Then X is a G-CW-complex.

Let \mathcal{F} be a family of subgroups of G:

- $H \in \mathcal{F} \implies H^g \in \mathcal{F}, g \in G$,
- $\bullet \ \ H \in \mathcal{F}, \ K < H \implies K \in \mathcal{F}.$

We say that X has stabilizers in \mathcal{F} if $G_{\sigma} \in \mathcal{F}$ for every $\sigma \in X$.

Example

- $\mathcal{F} = \{1\} \rightsquigarrow$ free actions.
- $\mathcal{F} = \{\text{finite subgroups}\} \leadsto \text{proper actions.}$
- $\mathcal{F} = \{ \text{virtually cyclic subgroups} \} \leadsto \dots$

Classifying spaces for families of stabilizers

The homotopy category of G-CW-complexes with stabilizers in \mathcal{F} has a terminal object $E_{\mathcal{F}}G$.

A model X for $E_{\mathcal{F}}G$ is a classifying space for G with stabilizers in \mathcal{F} and is characterized by

- $2 X^H = \emptyset \text{ for } H < G, H \not\in \mathcal{F}.$

Example

- $\mathcal{F} = \{1\}$: $E_{\mathcal{F}}G = EG$ classifying space for free actions.
 - $\mathbf{0} \Leftrightarrow X \cong \mathsf{pt.}, \mathbf{2} \Leftrightarrow \mathsf{free} \ \mathsf{action}.$
- \$\mathcal{F} = \{\text{finite subgroups}\}\$:
 \$E_F G = \overline{E}G\$ classifying space for proper actions
 (e.g. \$G\$ acting properly on a CAT(0)-cell complex \$X\$).

Finiteness properties

G is **of type** \mathcal{F} - \mathbf{F}_n if there is a model for $E_{\mathcal{F}}G$ whose *n*-skeleton is finite modulo the action of *G*.

Again set $F_n := \{1\} - F_n$ and $\underline{F}_n := \{\text{finites}\} - F_n \dots$

Example

- **1** G is $F_1 \Leftrightarrow G$ is finitely generated.
- ② G is $F_2 \Leftrightarrow G$ is finitely presented.
- **3** G is $\underline{F}_0 \Leftrightarrow G$ has finitely many conjugacy classes of finite subgroups.

Cohomological finiteness properties

G is **of type** \mathcal{F} - FP_n if there is a projective resolution of the trivial $\mathcal{O}_{\mathcal{F}}G$ -module $\underline{\mathbb{Z}}$ that is of finite type up to dimension n. Facts:

- \mathcal{F} - $F_n \Longrightarrow \mathcal{F}$ - FP_n
- \mathcal{F} - FP_n and \mathcal{F} - $F_2 \implies \mathcal{F}$ - F_n (Hurrewicz)

Remarks

- If G is torsion free then EG = EG.
- $SL_{n+1}(\mathbb{F}_q[t])$ is of type F_{n-1} but not of type \underline{F}_0 .
- Leary–Nucinkis '03: G can be virtually of type F and of type \underline{F}_{m-1} but not \underline{F}_m any m.
- Kochloukova–Martínez-Pérez–Nucinkis '11: groups of type F_{n-1} but not F_n and of type F_{m-1} but not F_m for some m ≤ n.

Connectivity

Say that X is

- \mathcal{F} -n-connected if X^F is n-connected for every $F \in \mathcal{F}$.
- \mathcal{F} -n-acyclic if $\tilde{H}_k(X^F) = 0$ for every $k \leq n$ and $F \in \mathcal{F}$.

Essential connectedness

A directed system $(X_{\alpha})_{\alpha \in D}$ of G-CW complexes is

F-essentially n-connected if

$$\forall \alpha \; \exists \beta \geq \alpha \quad \forall F \in \mathcal{F} \; \forall k \leq n \; \pi_k(X_{\alpha}^F \to X_{\beta}^F) = 0$$

F-essentially n-acyclic if

$$\forall \alpha \ \exists \beta \geq \alpha \quad \forall F \in \mathcal{F} \ \forall k \leq n \ \tilde{H}_k(X_{\alpha}^F \to X_{\beta}^F) = 0$$

Observation

If $(X_{\alpha})_{\alpha}$ and $(X'_{\alpha'})_{\alpha'}$ are G-cocompact filtrations of a space X then one is essentially n-connected (n-acyclic) if and only if the other one is.

If X is a locally finite affine G-cell complex and $H \subseteq X$ is G-cocompact, say that H is \mathcal{F} -essentially n-connected if $(B_n(H))_{n\in\mathbb{N}}$ is.

Brown's criterion

Theorem (Brown '87 $\mathcal{F} = \{1\}$, Fluch–W. '13)

Let G be a group and let \mathcal{F} be a family of subgroups.

Assume that G acts on a CW-complex X such that

- X is \mathcal{F} -(n-1)-acyclic,
- G_{σ} is of type $(\mathcal{F} \cap G)$ - FP_{n-p} for every p-cell of X.

Let $(X_{\alpha})_{\alpha \in D}$ be a cocompact filtration of X. Then G is of type \mathcal{F} -FP_n if and only if $(X_{\alpha})_{\alpha}$ is \mathcal{F} -essentially (n-1)-acyclic.

Proper finiteness properties related to Abels's groups

Theorem (W. '13)

For $0 < m \le n$ there is a solvable algebraic group \mathbf{G} such that for every prime p > 2 the group $G := \mathbf{G}(\mathbb{Z}[1/p])$ is of type F_{n-1} but not of type F_m and is of type F_{m-1} but not of type F_m .

Given $v \in \mathbb{Z}^{n+1}$ subject to some conditions, define

$$\mathbf{G} := \left\{ \begin{pmatrix} d_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & d_{n+1} \end{pmatrix} \in \mathrm{GL}_{n+1} \mid \prod_i d_i^2 = 1 = \prod_i d_i^{v_i} \right\}.$$

Proof outline

$$G := \left\{ \begin{pmatrix} d_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & d_{n+1} \end{pmatrix} \in \operatorname{GL}_{n+1}(\mathbb{Z}[1/p]) \mid \prod_i d_i^2 = 1 = \prod_i d_i^{v_i} \right\}$$

- G acts on a Bruhat–Tits building X.
- Point stabilizers are arithmetic $\implies F_{\infty}$.
- $\prod_i d_i^{v_i} = 1 \rightsquigarrow G$ leaves a horosphere H invariant.
- The action on *H* is cocompact.
- Brown '87:
 G is of type F_n ⇔ H is essentially (n − 1)-connected.
 Fluch–W. '13:

G is $\underline{FP}_n \Leftrightarrow H$ is {finites}-essentially (n-1)-acyclic.

Classical finiteness properties of G

Brown '87: *G* is of type $F_n \Leftrightarrow H$ is ess. (n-1)-connected.

Theorem (Bux-Wortman '11)

A horosphere in an irreducible n-dimensional euclidean building is (n-2)-connected.

- \Rightarrow H is (n-2)-connected
- \Rightarrow *G* is of type F_{n-1} (and not of type F_n).

Proper finiteness properties of *G*

Fluch–W. '13: *G* is $\underline{FP}_n \Leftrightarrow H$ is {finites}-ess. (n-1)-acyclic.

Fact: $H^F = H \cap X^F = H \cap (Y_1 \times \cdots \times Y_k)$

Corollary (to Bux-Wortman '11)

Let X be a euclidean building. A horosphere centered at $\xi \in \partial X$ is (m-2)-connected where m is the dimension of the least factor $Y \subseteq X$ such that $\xi \in \partial Y$.

The vector v determines (1) the amount of torsion and (2) the position of the horosphere.

Example

For $v = (m, 0, \dots, 0, \underbrace{-1, \dots, -1})$ the group G is of type \underline{F}_{m-1} but not of type \underline{F}_m .