LECTURE 2

RYSZARD NEST

Contents

1. Hochschild chains	1
1.1. Chern character	3
1.2. Pairings between chains and cochains.	3
2. Calculi	4
2.1. Formality for chains	4
2.2. Applications of formality for chains	5
3. Index theorems	6
3.1. Atiyah Singer index theorem	6

1. Hochschild Chains

Notation 1. As before, A is an associative algebra over k

- Hochschild chains $C_n(A) = A^{\otimes n+1}$, a reduced variant $A \otimes \overline{A}^n$, $\overline{A} = A/k$
- $b: C_n \to C_{n-1}$,

$$b(a_0, \dots a_n) = \sum_{i=0}^{n-1} a_0 \otimes \dots \otimes a_i a_{i+1} \otimes \dots \otimes a_n + (-1)^n a_n a_0 \otimes a_1 \otimes \dots \otimes a_n.$$

 $(C_*(A), b)$ s a complex computing Hochschild homology of A.

Example 2. A regular commutative. Set

$$\Omega^1_{A/k} = \frac{k\text{-span of } adb}{< ad(bc) - cadb - abdc >}$$

 $\Omega^1_{A/k}$ is an A-module and we set

$$\Omega_{A/k}^* = \Lambda^* \Omega_{A/k}^1$$

In the case of $A = C^{\infty}(X)$, we replace $\Omega^1_{A/k}$ by $\Omega^*(X)$. We define the HKR map by

$$I_{HKR}: (C_*(A), b) \to (\Omega^*_{A/k}, 0)$$

$$I_{HKR}(a_0 \otimes a_1 \otimes \ldots \otimes a_n \mapsto \frac{1}{n!} a_0 da_1 da_2 \ldots da_n$$

 I_{HKR} is a morphism of complexes.

Theorem 3. For A regular commutative algebra, I_{HKR} is a quasiisomorphism.

Fact 4. For $A = C^{\infty}(X)$, the above also holds if we replace $C_n(A)$ by its completion $C^{\infty}(X^{n+1})$ or alternatively, germs or jets of $C^{\infty}(X^{n+1})$ on the diagonal $\Delta = \{(x_0, \dots x_n \mid x_0 = x_1 = \dots x_n)\}.$

- 1.0.1. Algebraic structure on $(\Lambda_A^* Der(A), \Omega_{A/k}^*)$. a) $\Omega_{A/k}^*$ is a differential graded commutative algebra but the product does not exist when A is not commutative, already $H_0(A, A) = A/[A, A]$ is not an algebra.
- b) For a multivector $a \in \Lambda_A^n Der(A)$, there exists a contraction operator

$$\iota_a:\Omega^*_{A/k}\to\Omega^{*-n}_{A/k}$$

In the case of $v \in Der(A)$, ι_v is a degree -1 derivation given by $\iota_v a = 0$, $\iota_v da = v(a)$. We also have the Lie derivative

$$L_a = [d, \iota_a].$$

1.0.2. Algebraic structures on $(C^*(A,A),C_*(A))$. a) The cyclic differential.

For
$$C_n(A) = A \otimes \overline{A}$$
, define $B: C_n(A) \to C_{n+1}(A)$ by

$$B(a_0 \otimes \ldots \otimes a_n) = \sum_{i} (-1)^{n-i} 1 \otimes a_i \otimes a_{i+1} \otimes a_n \otimes a_0 \otimes \ldots \otimes a_{i-1}.$$

Then $B^2 = 0$, Bb + bB = 0, hence B induces a differential $H_n(A, A) \to H_{n+1}(A, A)$. Moreover,

$$I_{HKR}: (C_*(A), b) \to (\Omega_{A/k}^*, 0)$$

satisfies

$$dI_{HKR} = I_{HKR}B$$

Hence we can (and will) think of $(C_*(A), b)$ as noncommutative differential forms and of B as de Rham differential.

A good way of keeping track of the two differentials b and B is as follows. Let u be a formal variable of degree -2. Define

$$CC_{*}^{-}\left(A\right)=\left(C_{*}\left(A\right)\left[\left[u\right]\right],b+uB\right);$$

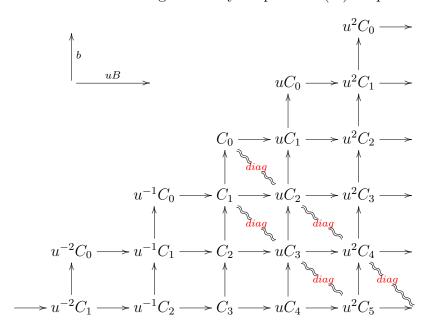
LECTURE 2 3

$$CC_*^{\text{per}}(A) = \left(C_*(A)\left[\left[u, u^{-1}\right], b + uB\right);\right.$$

$$C_*^{\lambda}(A) = \left(C_*(A)\left[\left[u, u^{-1}\right] / \left(uC_*(A)\left[\left[u\right]\right]\right), b + uB\right).$$

These are, respectively, the negative cyclic, the periodic cyclic, and the *cyclic* complexes of A over k.

Just to illustrate the usage of u: Cyclic periodic (bi)complex



1.1. Chern character. There exists in general a chern character(s)

• $ch: K_i^{alg}(A) \to CC_i^-(A)$ • $ch: K_i^{top}(A) \to CC_i^{per}(A)$

A formula for the second one is, say for an idempotent $e \in A$,

$$ch(e) = (e - \frac{1}{2}) \sum_{n} \frac{(2n)!}{n!} e^{\otimes 2n} \in CC_{even}^{per}(A)$$

1.2. Pairings between chains and cochains.

Contraction

$$\iota_D(a_0 \otimes \ldots \otimes a_n) = a_0 D(a_1, \ldots, a_k) \otimes a_{k+1} \otimes \ldots \otimes a_n$$

In particular, $\iota_D \circ \iota_E = \iota_{E \cup D}$ and $[\iota_D, b] = \iota_{\delta D}$.

• Lie derivative

$$L_D(a_0 \otimes \ldots \otimes a_n) = \sum \pm a_0 \otimes \ldots \otimes D(a_{i+1}, \ldots) \otimes \ldots + \sum \pm D(a_{n-j+1}, \ldots, a_0, \ldots, a_i) \otimes a_{i+1} \otimes \ldots$$

In particular, $b = \pm L_m$.

4

2. Calculi

Definition 5. A calculus is a pair of graded vector spaces (A^*, Ω^*) such that

- A^* is a Gerstenhaber algebra
- Ω^{-*} is a graded module over the graded commutative algebra \mathcal{A}^* under an action $(a, \omega \to \iota_a \omega)$
- Ω^{-*} is a graded module over the graded Lie algebra \mathcal{A}^{*+1} under an action $(a, \omega \to L_a \omega)$
- There is given an operator $d: \Omega^* \to \Omega^{*+1}$ satisfying $-d^2 = 0$ $-[L_a, \iota_b] = \iota_{[a,b]}$ $-L_[a,b] = L_a\iota_b + (-1)^{|a|}\iota_a L_b$ $-[d, \iota_a] = L_a$

Example 6. (1) For a commutative algebra A, $(\Lambda_A^*Der(A), \Omega)_{A/k}^*$ is a calculus.

- (2) For a smooth manifold X, $(\Gamma(X, \Lambda^*T_X), \Omega^*(X))$ is a calculus.
- (3) The operations ι_D , L_D , B, cup product and the Gerstenhaber bracket turn the pair $H^*(A, A)$, $H_*(A, A)$) into a calculus.
- (4) In the case of A regular commutative or $A = C^{\infty}(X)$, I_{HKR} induces an isomorphism of calculi.

2.1. **Formality for chains.** The following holds on the level of chains.

Theorem 7. For any associative algebra, there is a naturally defined DG calculus $(C^*(A), C_*(A))$ together with quasiisomorphisms

- $C^*(A) \to C^*(A, A)$ of DGLA
- $(C_*(A), d) \to (C_*(A), B)$ of DGL-modules.

Theorem 8 (Formality theorem for chains). For a regular commutative algebra A there exist a quasiisomorphism of DG calculi

$$(\mathcal{C}^*(A), \mathcal{C}_*(A)) \to (\Lambda_A^* Der(A), \Omega)_{A/k}^*)$$

In the case when $A = C^{\infty}(X)$, there exists a quasiisomorphism of calculi

$$(\mathcal{C}^*(A),\mathcal{C}_*(A)) \to (\Gamma(X,\Lambda^*T_X),\Omega^*(X)$$

- Fact 9. (1) The DG calculus $(C^*(A), C_*(A))$ is constructed naturally in A, but the construction depends on a choice of a Drinfeld associator and is inexplicit
 - (2) There is a visible part of "NC"-calculus, which are given by explicit formulas for example the Cartan formulas

LECTURE 2 5

- (3) For any Gerstenhaber algebra \mathcal{A}^* one can construct its enveloping algebra $\mathcal{Y}(\mathcal{A}^*)$ with generators ι_a , L_a , $|\iota_a| = |a|$, $|L_a| = |a| 1$ and relations $\iota_a \iota_b = \iota_{ab}$, $[L_a, L_b] = L_{[a}, b]$, $[L_a, \iota_b] = \iota_{[a}, b]$ and $L_{ab} = L_a \iota_b + (-1)^{|a|} \iota_a L_b$. It has a differential $\iota_a \to L_a \to 0$. The algebra $\mathcal{Y}(\mathcal{A}^*)$ is, up to homotopy, independent of the choice of an associator. For example, $\mathcal{Y}(\Gamma(X, \Lambda^*T_X))$ coincides with the algebra of differential operators on X.
- 2.2. Applications of formality for chains. We will work out the case of deformations of smooth manifold X. The formality theorem for chains provides the following picture

$$C^{*+1}(C^{\infty}(X), C^{\infty}(X)) \longleftarrow C^{*+1}(C^{\infty}(X)) \longrightarrow \Lambda^{*+1}T_X$$

$$\delta D + \frac{1}{2}[D, D] = 0$$
 $\delta \Pi + \frac{1}{2}[\Pi, \Pi] = 0$ $[\pi, \pi] = 0$

 $D \longleftarrow \prod \longmapsto \pi$

and a compatible quis's on the level of modules

$$C_{-*}(C^{\infty}(X))[[u]] \longleftarrow \mathcal{C}_{-*}(C^{\infty}(X))[[u]] \longrightarrow \Omega^{-*}(X)[[u]]$$

$$b + uB \longleftrightarrow b + ud \longleftrightarrow ud$$

Here D is a Maurer-Cartan element in $tC^2(C^\infty(X), C^\infty(X))[[t]]$. Π and π are essentially uniquely determined by Goldman-Nilsson theorem. D gives a deformation of $C^\infty(X)[[t]]$ with the product

$$a * b = ab + D(a, b)$$

We will denote it by A_{π} . Now note that $C_*(A_{\pi}) = C_*(C^{\infty}(X))[[\hbar]], b + L_D$, hence we get quis's

$$(C_{-*}(A_{\pi})[[u]], b+uB) \longleftarrow \bullet \longrightarrow (\Omega^{-*}[[t,u]], L_{\pi}+ud)$$

If we invert u, the isomorphism $\exp(\frac{\iota_{\pi}}{u})$ intertwines $L_{\pi} + ud$ and ud. Hence we get quis's

$$(C_{-*}(A_{\pi})((u)), b + uB) \longleftarrow \bullet \longrightarrow (\Omega^{-*}[[t, u]]_u, ud)$$

Definition 10. The resulting quis $TR: (C_{-*}(A_{\pi})((u)), b+uB) \longrightarrow (\Omega^{-*}[[t,u]]_u, ud)$ is called the canonical trace.

3. Index theorems

In the language of previous section, the following holds.

Theorem 11 (Index theorem). The following diagram is commutative

$$(C_{-*}(A_{\pi})[[u]], b_{\pi} + uB) \xrightarrow{TR} (\Omega^{-*}((t, u)), ud)$$

$$\downarrow_{t=0} \qquad \qquad \downarrow_{t=0} \qquad \qquad \downarrow_{t=0}$$

$$(C_{-*}(C^{\infty}(X))[[u]], b + uB) \xrightarrow{I_{HKR}} (\Omega^{-*}((t, u)), ud)$$

3.1. Atiyah Singer index theorem. The simplest case of an application of above is as follows. Let X be a smooth manifold and set $M = T^*X$.

Deformation

We will denote by S(M) the space of Schwartz functions. Define

$$\operatorname{Op}: S(M) \to \operatorname{End}(C^{\infty}(X))$$

by

$$\operatorname{Op}(\theta)(u)(x) = \int_{T_z^*X} d\xi \int dy \, \chi(x,y) \, e^{i\xi \cdot v} \, \theta(z,\xi) \, u(y)$$

where $\chi(x,y)$ is a cutoff function, equal to one in a neighbourhood of the diagonal and such that the inverse of the exponential map $T^*X \times X \to X$ is well defined in its support, z is the midpoint of the geodesic joining x and y and $exp_z\frac{v}{2} = y$. Conversely, if P is in End $(C^{\infty}(X))$, set

$$\sigma(P)(z,\xi) = P_y(\chi(x,y) \exp^{i\xi \cdot v})|_{x=y=z}$$

Set, for $\theta \in C^{\infty}(T^*X)$, $\theta_t(x,\xi) = \theta(x,t\xi)$. Then
$$t \to \sigma(\operatorname{Op}(\theta_t^1) \circ \operatorname{Op}(\theta_t^2))_{t^{-1}}(x,\xi)$$

has an asymptotic expansion at t=0, which defines a *-product on M, i. e. a deformation $(C^{\infty}(M)[[t]],*)$ and such that $[f,g]=t\{f,g\}+o(t)$ Let us denote the corresponding algebra by \mathcal{O}_M^t .

Trace

The usual trace on the trace class operators on $L^2(M)$ has an asymptotic expansion which gives a (unique) trace τ on $\mathcal{O}_M^t[t^{-1}]$ such that

$$Tr(\operatorname{Op}(\theta_t)) \sim_{t\to 0} \tau(\theta) = \frac{1}{t^n} (\int_M f\omega^n + o(t)).$$

LECTURE 2

We will think of τ as an element of $CC_{per}^{ev}(\mathcal{O}_M^t)$ and, as such, it coincides with the composition

$$CC_{per}^{ev}(\mathcal{O}_M^t) \xrightarrow{TR} \Omega_M^* \xrightarrow{\int_M} \mathbb{C}.$$

Remark 12. The singularity in the trace at t = 0 is responsible for Bott periodicity.

Given a "symbol" $\sigma \in C^{\infty}(M)$ (symbol means that it has a nice asymptotic expansion at infinity), it is elliptic if it is invertible modulo $C_0(M)$. Then $Op(\sigma_t)$ is Fredholm (invertible modulo compact operators) and

$$Index \operatorname{Op}(\sigma_t) = dim \operatorname{Ker} \operatorname{Op}(\sigma_t) - dim \operatorname{Coker} \operatorname{Op}(\sigma_t) \in \mathbb{Z}$$

makes sense and is constant in t. Then

Index
$$Op(\sigma) = \langle \tau, ch(\sigma) \rangle$$

where the chern character on the right hand side is computed in $CC_{ev}^{per}(\mathcal{O}_M^t)$. The algebraic index theorem applied to this formula gives

Theorem 13 (Atiyah Singer).

Index
$$Op(\sigma) = \int_M ch_0(\sigma) \hat{A}_M$$

where ch_0 is the usual chern character with values in (Ω_M^*, d) .