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1. Hochschild cochains

Notation 1.
• k-a commutative algebra with unit, Q ⊂ k
• A-a flat k-algebra with unit
• Cn(A,A) = Homk(A⊗n, A) - Hochschild cochains
• δ : Cn(A,A)→ Cn+1(A,A),

(δD)(a1 . . . , an+1) = a1D(a2 . . . , an+1) +
n∑
i=1

(−1)iD(a1 . . . , aiai+1, . . . an+1)

+(−1)n+1D(a1 . . . , an)an+1

Lemma 2. δ2 = 0. The groups Hn(A,A) = ker(δ:Cn→Cn+1)
im(δ:Cn−1→Cn) are called

the Hochschild cohomology groups. In particular
• H0(A,A) = Z(A), the center of A
• H1(A,A) = Der(A)/ad(A)
• H2(A,A) = Infinitesimal deformations of A

isomorphisms ,

Here, an infinitesimal deformation of A is an associative k[ε]-linear
product ∗ on A[ε]/ε2 which coincides with the original product on A
modulo ε and an isomorphism is a k[ε]-linear map of the form T (a) =
a+X(a)ε which intertwines the ∗-products.
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1.1. Algebraic structures on Hochschild cochains I. Given D ∈
Cn and E ∈ Cm, the cup product D ∪ E ∈ Cn+m is given by

D ∪ E(a1 . . . an+m) = D(a1 . . . an)E(an+1 . . . an+m)
Lemma 3. (C∗(A,A),∪, δ) is a differential graded algebra. The cup product is
commutative up to homotopy, in fact the following holds

D ∪ E − (−1)|D||E|E ∪D = −(−1)|D||E|δ(D{E})− (δD){E} − (−1)|D|−1D{δE}.

Here the brace is defined by

D{E}(a1, . . . , an+m−1) =
n∑
i=0

(−1)i(m−i)D(a1, . . . , ai, E(ai+1, . . . , ai+m), . . . , an+m−1)).

Hence H∗(A,A) is a graded commutative algebra.

Lemma 4. The bracket

[D,E] = D{E} − (−1)(|D|−1)(|E|−1)E{D}

defines on C∗+1(A,A) a structure of DGLA (differential graded Lie
algebra).

Proof. The brace D{E} is not quite associative, but

(D{E}){F} −D{E{F}} = D{F,E} − (−1)(|E|−1)(|F |−1)D{E,F},

where

D{E,F}(a1, . . .) =
∑
i<j

(−1)(|E|−1)i+(|F |−1)jD(a1 . . . , E(ai, . . .), . . . , F (aj, . . .), . . .).

Hence
[D, [E,F ]] + bb =
(D{E}){F} −D{E{F}} −D{F,E} ±D{E,F}+ bb

cancel out.
Let ∗ be any product on A and set M(a, b) = a ∗ b. Then

M is associative⇐⇒ [M,M ] = 0.

In particular, if m(a, b) = ab, then δD = (−1)|D|[m,D] and δ2 = 0
follows from [m,m] = 0 and the Jacobi identity

δ[D,E] = [δD,E] + (−1)|D|−1[D, δE].

Hence
• C∗+1(A,A) is a DGLA
• H∗+1(A,A) is a Lie algebra
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Moreover,
[D,E ∪ F ] = [D,E] ∪ F + (−1)(|D|−1)|E|E ∪ [D,F ] + δD{E,F}

Recall

Definition 5. A Gerstenhaber algebra is a graded vector space A∗ with
binary operations m and [·, ·], such that

• (A∗,m) is a graded commutative algebra
• (A∗+1, [·, ·]) is a Lie algebra
• [a, bc] = [a, b]c+ (−1)(|a|−1)|b|b[a, c]

The above discussion says that H∗(A,A) has the structure of a Ger-
stenhaber algebra.

example 6. Let A be a commutative algebra. Then DerA is an A-
bimodule and

Λ∗ADer(A)
is a graded commutative algebra (with the wedge product). We set

• [v, a] = v(a) for a ∈ Λ0
A(A) = A and v ∈ Der(A) = Λ1

ADer(A)
• [v, w] = vw − wv for v, w ∈ Der(A)

[·, ·] has a unique extension to Λ∗ADer(A) such that (Λ∗ADer(A),∧, [·, ·])
is a Gerstenhaber algebra. The map

Λn
ADer(A) 3 v1 . . . vn 7→

1
n!

∑
σ∈Sn

(−1)sgn(σ)vσ1 ∪ . . . vσn ∈ Cn(A,A)

is a morphism of complexes IHKR : ((Λ∗ADer(A), 0)→ (C∗(A,A), δ).

example 7. Similarly, for C∞(X) (X a smooth manifold) Γ(X,Λ∗TX)
is a Gerstenhaber algebra. The bracket here is called the Schouten-
Nijenhuis bracket. One can obviously replace polyvector fields on a
smooth manifold by the sheaf of holomorphic polyvector fields on an
analytic manifold.

In this example, if set A = C∞(X) and from now on C∗(A,A) will
be the cochains given by polydifferential operators, i. e. of the form

D(f1, . . . , fn) =
finite∑

D1(f1) . . . Dn(fn),
where Di are differential operators. We again get a morphism of com-
plexes

IHKR : ((Λ∗ADer(A), 0)→ (C∗(A,A), δ).

Theorem 8 (Hochschild, Kostant, Rosenberg). For A regular com-
mutative algebra, or A = C∞(X) (or sheaf of holomorphic functions...)
IHKR is a quasiisomorphism.



4 RYSZARD NEST

Note that IHKR preserves neither the product, nor the bracket. But
the induced maps

(Λ∗ADer(A),∧, [·, ·])→ (H∗(A,A),∪, [·, ·])

is an isomorphism of Gerstenhaber algebras.

1.2. Formality.

Theorem 9 (Tamarkin). For an associative algebra A there exists a
DG Gerstenhaber algebra C∗(A), natural in A and

(1) a DGLA quasiisomorphism C∗(A)→ C∗(A,A)
(2) for A regular commutative or C∞(X) (or...) there exists a

quasiisomorphism of DG Gerstenhaber algebras

C∗(A)→ Λ∗ADer(A).

Remark 10. In other words, Hochschield cochains carry a structure of
a DG Gerstenhaber algebra, if one chooses the model "correctly". This
should be compared to the algebra of singular cochains on a topological
space which carries a cup-product commutative up to cohomology. But
if one chooses instead the model (over Q) of Sullivan forms, it becomes
graded commutative on the level of cochains.

A DGLA A∗ is formal, if there exists a chain of DGLA quasiisom.
of the form

B∗

~~ ""
A∗i A∗i+1

with A∗i = A∗ and A∗n = H∗(A∗). As a "corollary"

Theorem 11 (Kontsevich). C∞(X) is formal.

1.3. Braces. For D,E1, . . . , En ∈ C∗(A,A), we can form braces

D{E1, . . . , En}(a1, . . . , aN) =∑
±D(a1, . . . , E1(ai1+1, . . . , aii1+n1 ), a , E2( ), . . . ,

. . . , En( ), . . . , aN)

The sum is over all possible insertions of Ek’s, where the order of a’s
and E’s is preserved. The sign is dictated by the rule:

transposition a↔ E contributes the sign (−1)(|a|−1)(|E|−1)
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Lemma 12 (Brace relations).
(D{E1, . . . , Em}){F1, . . . Fn} =∑

±D{F1, . . . , E1{Fi1+1, }, . . . , E2{F, } . . . ,
. . . , Em{Fim+1, }, . . . , Fn}

Recall what we used already:
• δ = [m, ·] respects ∪ and [·, ·], where D ∪E = (−1)|D|m{D,E}
• [·, ·] is a graded Lie bracket;
• [D,E ∪ F ] ∼ [D,E]∪ F ±E ∪ [D,F ] with the homotopy given
by D{E,F}.

The basic result says that C∗(A,A) can be given a structure of a DG Gersten-
haber algebra, up to a quis of DGLA’s. The idea of the proof is as follows.

C−∗(Disc)
Deligne conjecture //

��

Braces
--
C∗(A,A)

H−∗(Disc)

G∞
∼ //

BB

Gerst

G∞ is a cofibrant resolution of the operad Gerst, and the dotted map exists by
general principles. As a corollary, C∗(A,A) is a G∞-algebra and DG Gerstenhaber
algebra C∗(A) is its rectification.

From algebra to topology

Brace operations act on C∗(A,A)

��
Action C−∗(Disc(n))⊗ C∗(A,A)⊗n → C∗(A,A)

Existence of the bottom action is the "Deligne conjecture".
Back from topology to algebra
• H−∗(Disc(n) is the natural operad Gerst(n) of n-ary operations
on a Gerstenhaber algebra (Arnold, Cohen)
• C−∗(Disc(n)))→ H−∗(Disc(n)) = Gerst(n) is a quasiisomorph-
ism of operads, i.e. the chain operad of the little disc operad is
formal (Tamarkin) - this step involves an associator.

1.4. Applications to deformation theory. A deformation of an as-
sociative algebra A is an associative, k[[t]]-linear product ∗ on A[[t]] of
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the form
a ∗ b = ab+

∑
i>0

tiDi(a, b), Di ∈ C2(A,A).

An isomorphism of two deformations (A[[t]], ∗) and (A[[t]], ∗′) is a k[[t]]-
linear bijection T : A[[t]]→ A[[t]] of the form

T (a) = a+
∑
i>0

tiTi(a, b), Ti ∈ C1(A,A)

satisfying T (a ∗ b) = T (a) ∗′ T (b). If we set a ∗ b = ab + D(a, b), then
D satisfies [m+D,m+D] = 0, or

δD + 1
2[D,D] = 0.

So

Definition 13. Let (g∗, d) be a pronilpotent DGLA. A Maurer-Cartan
element of g is an element ω ∈ g1 satisfying the Maurer-Cartan equa-
tion

dω + 1
2[ω, ω] = 0.

two Maurer-Cartan elements ω1 and ω2 are gauge equivalent, if there
exist an element X ∈ g0 satisfying

d+ ω2 = eX(d+ ω1)e−X .

We set

Def(g) = Maurer Cartan elements
gauge equivalence (= π0(g))

Theorem 14 (Goldmann-Nilsson, Yekuteli). A quasiisomorphism φ :
g→ h of pronilpotent DGLA’s induces a bijection Def(g)→ Def(h).

Corollary 15. For a regular, commutative algebra A (or A = C∞(X)
or...)

Def(C∗−1(A,A)) Def(C ∗ (A))'oo

'
��

Def(Λ∗ADer(A))).

In particular, we get a bijection
deformations of C∞(X)

isomorphisms
' formal Poisson structures tπ1 + t2π2 + . . .

formal diffeomorphisms
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We get more precise information. Given π = ∑∞
1 tnπn, [π, π]Sch = 0,

let (Aπ, ∗) be the corresponding algebra. Then we get

C∗+1(A,A) C∗+1(A)oo // Λ∗+1
A Der(A)

D Πoo // π

where D ∈ tC2(A,A) satisfies

δD + 1
2[D,D] = 0, a ∗ b = ab+D(a, b)

In particular, we get the following
Corollary 16. There exists a chain of quasiisomorphisms of DGLA’s

C∗+1(Aπ, Aπ) C∗+1(A)[[t]]oo // Λ∗+1
A Der(A)[[t]]

[mπ, ·] δ + [Π, ·]oo // [π, ·]

In particular,
Z(Aπ) ' {a ∈ A[[t]] | π(da, ·) = 0}

Remark 17. [Duflo isomorphism] The above isomorphism of the cen-
ter of Aπ with the Poisson center of π is as vector spaces.

2. Deformation 2-groupoids

Let (g, [, ], d) be a nilpotent DGLA starting from dimension -1:
g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ . . . .

As above, a Maurer-Cartan element µ ∈ g1 satisfies the equation

dµ+ 1
2[µ, µ] = 0.

We will think of it as a flat connection
∇µ = d+ [µ, ]

and will denote the set of Maurer-Cartan elements by MC(g) g0 is a
nilpotent Lie algebra and we will denote the corresponding Lie group
by G0 - think of it as the gauge group. G0 acts on the space of flat
connections by "gauge transformations":

d+ adµ→ Ad(eX)(d+ adµ).
This descends to an action on Maurer Cartan elements, by

Ad(eX)(d+ adµ) = d+ ad(
∫ 1

0
eadtX(dX)dt+ eadX(µ)).
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Given µ, the bracket
[θ, φ]µ = [∇µθ, τ ]

defines a structure of Lie algebra on g−1, and the corresponding group
G−1
µ acts on G0 by multiplication by e∇µθ.
All together, we get a Deligne two-groupoid MC2(g):
• Objects - Maurer Cartan elements µ.
• 1-morphisms eX , X ∈ g0, acting by µ →

∫ 1
0 e

adtX(dX)dt +
eadX(µ).
• 2-morphisms acting on Hom(µ1, µ2) by multiplication by e∇µ2θ

for eθ ∈ G−1
µ2 .

Theorem 18. A L∞ quasiisomorphism of two DGLA’s vanishing in
degrees below -1 induces an equivalence of the associated Deligne two
groupoids.

In particular, the formality of, say, C∗(C∞(X), C∞(X)) says that
the Deligne two groupoid of deformations of C∞(X) is equivalent to
the one, where

• objects are formal Poisson structures π ∈ tΛ2TX
• 1-morphisms are the formal diffeomorphisms exp(X),X ∈ tΛ1TX
• 2-morphisms are the formal diffeomorphisms exp(Xθ) associ-
ated to Hamiltonian vector fields [π, θ], θ ∈ C∞(X)[[t]]

To be more precise, let us define equivalence of two-groupoids of the
form MC2. Given a DGLA g as above,

Σ(g) = {n→MC(g⊗ Ω∗(∆n)}
is a Kan simplicial set with homotopy vanishing in dimensions above 2,
and two MC2’s are equivalent if the corresponding Σ’s are homotopy
equivalent.


	1. Hochschild cochains
	1.1. Algebraic structures on Hochschild cochains I
	1.2. Formality
	1.3. Braces
	1.4. Applications to deformation theory

	2. Deformation 2-groupoids

