LECTURE 1

RYSZARD NEST

Contents

1. Hochschild cochains 1
1.1. Algebraic structures on Hochschild cochains I 2
1.2. Formality 4
1.3. Braces 4
1.4. Applications to deformation theory 5
2. Deformation 2-groupoids 7

1. Hochschild cochains

Notation 1.

- k-a commutative algebra with unit, $\mathbb{Q} \subset k$
- A-a flat k-algebra with unit
- $C^{n}(A, A)=\operatorname{Hom}_{k}\left(A^{\otimes n}, A\right)$ - Hochschild cochains
- $\delta: C^{n}(A, A) \rightarrow C^{n+1}(A, A)$,

$$
\begin{array}{r}
(\delta D)\left(a_{1} \ldots, a_{n+1}\right)=a_{1} D\left(a_{2} \ldots, a_{n+1}\right)+ \\
\sum_{i=1}^{n}(-1)^{i} D\left(a_{1} \ldots, a_{i} a_{i+1}, \ldots a_{n+1}\right) \\
+(-1)^{n+1} D\left(a_{1} \ldots, a_{n}\right) a_{n+1}
\end{array}
$$

Lemma 2. $\delta^{2}=0$. The groups $H^{n}(A, A)=\frac{\operatorname{ker}\left(\delta: C^{n} \rightarrow C^{n+1}\right)}{i m\left(\delta: C^{n-1} \rightarrow C^{n}\right)}$ are called the Hochschild cohomology groups. In particular

- $H^{0}(A, A)=Z(A)$, the center of A
- $H^{1}(A, A)=\operatorname{Der}(A) / a d(A)$
- $H^{2}(A, A)=\frac{\text { Infinitesimal deformations of } A}{\text { isomorphisms }}$,

Here, an infinitesimal deformation of A is an associative $k[\epsilon]$-linear product $*$ on $A[\epsilon] / \epsilon^{2}$ which coincides with the original product on A modulo ϵ and an isomorphism is a $k[\epsilon]$-linear map of the form $T(a)=$ $a+X(a) \epsilon$ which intertwines the *-products.
1.1. Algebraic structures on Hochschild cochains I. Given $D \in$ C^{n} and $E \in C^{m}$, the cup product $D \cup E \in C^{n+m}$ is given by

$$
D \cup E\left(a_{1} \ldots a_{n+m}\right)=D\left(a_{1} \ldots a_{n}\right) E\left(a_{n+1} \ldots a_{n+m}\right)
$$

Lemma 3. $\left(C^{*}(A, A), \cup \delta\right)$ is a differential graded algebra. The cup product is commutative up to homotopy, in fact the following holds

$$
D \cup E-(-1)^{|D||E|} E \cup D=-(-1)^{|D||E|} \delta(D\{E\})-(\delta D)\{E\}-(-1)^{|D|-1} D\{\delta E\} .
$$

Here the brace is defined by

$$
\begin{array}{r}
D\{E\}\left(a_{1}, \ldots, a_{n+m-1}\right)= \\
\left.\sum_{i=0}^{n}(-1)^{i(m-i)} D\left(a_{1}, \ldots, a_{i}, E\left(a_{i+1}, \ldots, a_{i+m}\right), \ldots, a_{n+m-1}\right)\right)
\end{array}
$$

Hence $H^{*}(A, A)$ is a graded commutative algebra.
Lemma 4. The bracket

$$
[D, E]=D\{E\}-(-1)^{(|D|-1)(|E|-1)} E\{D\}
$$

defines on $C^{*+1}(A, A)$ a structure of DGLA (differential graded Lie algebra).

Proof. The brace $D\{E\}$ is not quite associative, but

$$
(D\{E\})\{F\}-D\{E\{F\}\}=D\{F, E\}-(-1)^{(|E|-1)(|F|-1)} D\{E, F\}
$$

where

$$
D\{E, F\}\left(a_{1}, \ldots\right)=\sum_{i<j}(-1)^{(|E|-1) i+(|F|-1) j} D\left(a_{1} \ldots, E\left(a_{i}, \ldots\right), \ldots, F\left(a_{j}, \ldots\right), \ldots\right) .
$$

Hence

$$
\begin{aligned}
& {[D,[E, F]]+\bigcirc=} \\
& (D\{E\})\{F\}-D\{E\{F\}\}-D\{F, E\} \pm D\{E, F\}+\bigcirc
\end{aligned}
$$

cancel out.
Let $*$ be any product on A and set $M(a, b)=a * b$. Then

$$
\mathrm{M} \text { is associative } \Longleftrightarrow[M, M]=0
$$

In particular, if $m(a, b)=a b$, then $\delta D=(-1)^{|D|}[m, D]$ and $\delta^{2}=0$ follows from $[m, m]=0$ and the Jacobi identity

$$
\delta[D, E]=[\delta D, E]+(-1)^{|D|-1}[D, \delta E]
$$

Hence

- $C^{*+1}(A, A)$ is a DGLA
- $H^{*+1}(A, A)$ is a Lie algebra

Moreover,

$$
[D, E \cup F]=[D, E] \cup F+(-1)^{(|D|-1)|E|} E \cup[D, F]+\delta D\{E, F\}
$$

Recall
Definition 5. A Gerstenhaber algebra is a graded vector space A^{*} with binary operations m and $[\cdot, \cdot]$, such that

- $\left(A^{*}, m\right)$ is a graded commutative algebra
- $\left(A^{*+1},[\cdot, \cdot]\right)$ is a Lie algebra
- $[a, b c]=[a, b] c+(-1)^{(|a|-1)|b|} b[a, c]$

The above discussion says that $H^{*}(A, A)$ has the structure of a Gerstenhaber algebra.
example 6. Let A be a commutative algebra. Then $\operatorname{Der} A$ is an A bimodule and

$$
\Lambda_{A}^{*} \operatorname{Der}(A)
$$

is a graded commutative algebra (with the wedge product). We set

- $[v, a]=v(a)$ for $a \in \Lambda_{A}^{0}(A)=A$ and $v \in \operatorname{Der}(A)=\Lambda_{A}^{1} \operatorname{Der}(A)$
- $[v, w]=v w-w v$ for $v, w \in \operatorname{Der}(A)$
$[\cdot, \cdot]$ has a unique extension to $\Lambda_{A}^{*} \operatorname{Der}(A)$ such that $\left(\Lambda_{A}^{*} \operatorname{Der}(A), \wedge,[\cdot, \cdot]\right)$ is a Gerstenhaber algebra. The map

$$
\Lambda_{A}^{n} \operatorname{Der}(A) \ni v_{1} \ldots v_{n} \mapsto \frac{1}{n!} \sum_{\sigma \in S_{n}}(-1)^{\operatorname{sgn}(\sigma)} v_{\sigma_{1}} \cup \ldots v_{\sigma_{n}} \in C^{n}(A, A)
$$

is a morphism of complexes $I_{H K R}:\left(\left(\Lambda_{A}^{*} \operatorname{Der}(A), 0\right) \rightarrow\left(C^{*}(A, A), \delta\right)\right.$.
example 7. Similarly, for $C^{\infty}(X)\left(X\right.$ a smooth manifold) $\Gamma\left(X, \Lambda^{*} T_{X}\right)$ is a Gerstenhaber algebra. The bracket here is called the SchoutenNijenhuis bracket. One can obviously replace polyvector fields on a smooth manifold by the sheaf of holomorphic polyvector fields on an analytic manifold.

In this example, if set $A=C^{\infty}(X)$ and from now on $C^{*}(A, A)$ will be the cochains given by polydifferential operators, i. e. of the form

$$
D\left(f_{1}, \ldots, f_{n}\right)=\sum^{\text {finite }} D_{1}\left(f_{1}\right) \ldots D_{n}\left(f_{n}\right)
$$

where D_{i} are differential operators. We again get a morphism of complexes

$$
I_{H K R}:\left(\left(\Lambda_{A}^{*} \operatorname{Der}(A), 0\right) \rightarrow\left(C^{*}(A, A), \delta\right)\right.
$$

Theorem 8 (Hochschild, Kostant, Rosenberg). For A regular commutative algebra, or $A=\mathbb{C}^{\infty}(X)$ (or sheaf of holomorphic functions...) $I_{H K R}$ is a quasiisomorphism.

Note that $I_{H K R}$ preserves neither the product, nor the bracket. But the induced maps

$$
\left(\Lambda_{A}^{*} \operatorname{Der}(A), \wedge,[\cdot, \cdot]\right) \rightarrow\left(H^{*}(A, A), \cup,[\cdot, \cdot]\right)
$$

is an isomorphism of Gerstenhaber algebras.

1.2. Formality.

Theorem 9 (Tamarkin). For an associative algebra A there exists a $D G$ Gerstenhaber algebra $\mathcal{C}^{*}(A)$, natural in A and
(1) a $D G L A$ quasiisomorphism $\mathcal{C}^{*}(A) \rightarrow C^{*}(A, A)$
(2) for A regular commutative or $C^{\infty}(X)$ (or...) there exists a quasiisomorphism of $D G$ Gerstenhaber algebras

$$
\mathcal{C}^{*}(A) \rightarrow \Lambda_{A}^{*} \operatorname{Der}(A)
$$

Remark 10. In other words, Hochschield cochains carry a structure of a $D G$ Gerstenhaber algebra, if one chooses the model "correctly". This should be compared to the algebra of singular cochains on a topological space which carries a cup-product commutative up to cohomology. But if one chooses instead the model (over \mathbb{Q}) of Sullivan forms, it becomes graded commutative on the level of cochains.

A DGLA \mathcal{A}^{*} is formal, if there exists a chain of DGLA quasiisom. of the form

with $\mathcal{A}_{i}^{*}=\mathcal{A}^{*}$ and $\mathcal{A}_{n}^{*}=H^{*}\left(\mathcal{A}^{*}\right)$. As a "corollary"
Theorem 11 (Kontsevich). $C^{\infty}(X)$ is formal.
1.3. Braces. For $D, E_{1}, \ldots, E_{n} \in C^{*}(A, A)$, we can form braces

$$
\begin{array}{r}
D\left\{E_{1}, \ldots, E_{n}\right\}\left(a_{1}, \ldots, a_{N}\right)= \\
\sum \pm D\left(a_{1}, \ldots, E_{1}\left(a_{i_{1}+1}, \ldots, a_{i_{i_{1}+n_{1}}}\right), a_{-}, E_{2}(\ldots), \ldots,\right. \\
\left.\ldots, E_{n}(\ldots), \ldots, a_{N}\right)
\end{array}
$$

The sum is over all possible insertions of E_{k} 's, where the order of a 's and E 's is preserved. The sign is dictated by the rule:

```
transposition }a\leftrightarrowE\mathrm{ contributes the sign (-1) (|a|-1)(|E|-1)
```

Lemma 12 (Brace relations).

$$
\begin{array}{r}
\left(D\left\{E_{1}, \ldots, E_{m}\right\}\right)\left\{F_{1}, \ldots F_{n}\right\}= \\
\sum \pm D\left\{F_{1}, \ldots, E_{1}\left\{F_{i_{1}+1}, \ldots\right\}, \ldots, E_{2}\{F,-\} \ldots,\right. \\
\left.\ldots, E_{m}\left\{F_{i_{m}+1}, \ldots\right\}, \ldots, F_{n}\right\}
\end{array}
$$

Recall what we used already:

- $\delta=[m, \cdot]$ respects \cup and $[\cdot, \cdot]$, where $D \cup E=(-1)^{|D|} m\{D, E\}$
- $[\cdot, \cdot]$ is a graded Lie bracket;
- $[D, E \cup F] \sim[D, E] \cup F \pm E \cup[D, F]$ with the homotopy given by $D\{E, F\}$.
The basic result says that $C^{*}(A, A)$ can be given a structure of a DG Gerstenhaber algebra, up to a quis of DGLA's. The idea of the proof is as follows.

G_{∞} is a cofibrant resolution of the operad Gerst, and the dotted map exists by general principles. As a corollary, $C^{*}(A, A)$ is a G_{∞}-algebra and DG Gerstenhaber algebra $\mathcal{C}^{*}(A)$ is its rectification.

From algebra to topology

Existence of the bottom action is the "Deligne conjecture".
Back from topology to algebra

- $H_{-*}(\operatorname{Disc}(n)$ is the natural operad $\operatorname{Gerst}(n)$ of n-ary operations on a Gerstenhaber algebra (Arnold, Cohen)
- $\left.C_{-*}(\operatorname{Disc}(n))\right) \rightarrow H_{-*}(\operatorname{Disc}(n))=\operatorname{Gerst}(n)$ is a quasiisomorphism of operads, i.e. the chain operad of the little disc operad is formal (Tamarkin) - this step involves an associator.
1.4. Applications to deformation theory. A deformation of an associative algebra A is an associative, $k[[t]]$-linear product $*$ on $A[[t]]$ of
the form

$$
a * b=a b+\sum_{i>0} t^{i} D_{i}(a, b), \quad D_{i} \in C^{2}(A, A) .
$$

An isomorphism of two deformations $(A[[t]], *)$ and $\left(A[[t]], *^{\prime}\right)$ is a $k[[t]]-$ linear bijection $T: A[[t]] \rightarrow A[[t]]$ of the form

$$
T(a)=a+\sum_{i>0} t^{i} T_{i}(a, b), T_{i} \in C^{1}(A, A)
$$

satisfying $T(a * b)=T(a) *^{\prime} T(b)$. If we set $a * b=a b+D(a, b)$, then D satisfies $[m+D, m+D]=0$, or

$$
\delta D+\frac{1}{2}[D, D]=0 .
$$

So
Definition 13. Let $\left(\mathfrak{g}^{*}, d\right)$ be a pronilpotent DGLA. A Maurer-Cartan element of \mathfrak{g} is an element $\omega \in \mathfrak{g}^{1}$ satisfying the Maurer-Cartan equation

$$
d \omega+\frac{1}{2}[\omega, \omega]=0
$$

two Maurer-Cartan elements ω_{1} and ω_{2} are gauge equivalent, if there exist an element $X \in \mathfrak{g}^{0}$ satisfying

$$
d+\omega_{2}=e^{X}\left(d+\omega_{1}\right) e^{-X}
$$

We set

$$
\operatorname{Def}(\mathfrak{g})=\frac{\text { Maurer Cartan elements }}{\text { gauge equivalence }}\left(=\pi_{0}(\mathfrak{g})\right)
$$

Theorem 14 (Goldmann-Nilsson, Yekuteli). A quasiisomorphism ϕ : $\mathfrak{g} \rightarrow \mathfrak{h}$ of pronilpotent DGLA's induces a bijection $\operatorname{Def}(\mathfrak{g}) \rightarrow \operatorname{Def}(\mathfrak{h})$.

Corollary 15. For a regular, commutative algebra A (or $A=C^{\infty}(X)$ or...)

In particular, we get a bijection

$$
\frac{\text { deformations of } C^{\infty}(X)}{\text { isomorphisms }} \simeq \frac{\text { formal Poisson structures } t \pi_{1}+t^{2} \pi_{2}+\ldots}{\text { formal diffeomorphisms }}
$$

We get more precise information. Given $\pi=\sum_{1}^{\infty} t^{n} \pi_{n},[\pi, \pi]_{S c h}=0$, let $\left(A_{\pi}, *\right)$ be the corresponding algebra. Then we get

$$
\begin{gathered}
C^{*+1}(A, A) \longleftarrow \mathcal{C}^{*+1}(A) \longrightarrow \Lambda_{A}^{*+1} \operatorname{Der}(A) \\
D \longleftarrow \\
D \longrightarrow \pi
\end{gathered}
$$

where $D \in t C^{2}(A, A)$ satisfies

$$
\delta D+\frac{1}{2}[D, D]=0, a * b=a b+D(a, b)
$$

In particular, we get the following
Corollary 16. There exists a chain of quasiisomorphisms of DGLA's

$$
\begin{gathered}
\left.C^{*+1}\left(A_{\pi}, A_{\pi}\right) \leftarrow \mathcal{C}^{*+1}(A)[t]\right] \longrightarrow \Lambda_{A}^{*+1} \operatorname{Der}(A)[[t]] \\
{\left[m_{\pi}, \cdot\right] \lessdot[\pi,[\Pi, \cdot] \longrightarrow}
\end{gathered}
$$

In particular,

$$
\left.Z\left(A_{\pi}\right) \simeq\{a \in A[t]] \mid \pi(d a, \cdot)=0\right\}
$$

Remark 17. [Duflo isomorphism] The above isomorphism of the center of A_{π} with the Poisson center of π is as vector spaces.

2. Deformation 2-Groupoids

Let $(\mathfrak{g},[], d$,$) be a nilpotent DGLA starting from dimension -1$:

$$
\mathfrak{g}^{-1} \oplus \mathfrak{g}^{0} \oplus \mathfrak{g}^{1} \oplus \mathfrak{g}^{2} \oplus \ldots
$$

As above, a Maurer-Cartan element $\mu \in \mathfrak{g}^{1}$ satisfies the equation

$$
d \mu+\frac{1}{2}[\mu, \mu]=0 .
$$

We will think of it as a flat connection

$$
\nabla_{\mu}=d+[\mu,]
$$

and will denote the set of Maurer-Cartan elements by $M C(\mathfrak{g}) \mathfrak{g}^{0}$ is a nilpotent Lie algebra and we will denote the corresponding Lie group by G^{0} - think of it as the gauge group. G^{0} acts on the space of flat connections by "gauge transformations":

$$
d+a d \mu \rightarrow \operatorname{Ad}\left(e^{X}\right)(d+a d \mu)
$$

This descends to an action on Maurer Cartan elements, by

$$
A d\left(e^{X}\right)(d+a d \mu)=d+a d\left(\int_{0}^{1} e^{a d t X}(d X) d t+e^{a d X}(\mu)\right)
$$

Given μ, the bracket

$$
[\theta, \phi]_{\mu}=\left[\nabla_{\mu} \theta, \tau\right]
$$

defines a structure of Lie algebra on \mathfrak{g}^{-1}, and the corresponding group G_{μ}^{-1} acts on G^{0} by multiplication by $e^{\nabla_{\mu} \theta}$.

All together, we get a Deligne two-groupoid $M C^{2}(\mathfrak{g})$:

- Objects - Maurer Cartan elements μ.
- 1-morphisms $e^{X}, X \in \mathfrak{g}^{0}$, acting by $\mu \rightarrow \int_{0}^{1} e^{\text {adt } X}(d X) d t+$ $e^{a d X}(\mu)$.
- 2-morphisms acting on $\operatorname{Hom}\left(\mu_{1}, \mu_{2}\right)$ by multiplication by $e^{\nabla_{\mu_{2}} \theta}$ for $e^{\theta} \in G_{\mu_{2}}^{-1}$.

Theorem 18. A L_{∞} quasiisomorphism of two DGLA's vanishing in degrees below -1 induces an equivalence of the associated Deligne two groupoids.

In particular, the formality of, say, $C^{*}\left(C^{\infty}(X), C^{\infty}(X)\right)$ says that the Deligne two groupoid of deformations of $C^{\infty}(X)$ is equivalent to the one, where

- objects are formal Poisson structures $\pi \in t \Lambda^{2} T_{X}$
- 1-morphisms are the formal diffeomorphisms $\exp (X), X \in t \Lambda^{1} T_{X}$
- 2-morphisms are the formal diffeomorphisms $\exp \left(X_{\theta}\right)$ associated to Hamiltonian vector fields $[\pi, \theta], \theta \in C^{\infty}(X)[[t]]$
To be more precise, let us define equivalence of two-groupoids of the form $M C^{2}$. Given a DGLA \mathfrak{g} as above,

$$
\Sigma(\mathfrak{g})=\left\{n \rightarrow M C\left(\mathfrak{g} \otimes \Omega^{*}\left(\Delta_{n}\right)\right\}\right.
$$

is a Kan simplicial set with homotopy vanishing in dimensions above 2 , and two $M C^{2}$'s are equivalent if the corresponding Σ 's are homotopy equivalent.

