LECTURE 1

RYSZARD NEST

Contents

1. l	Hochschild cochains	1
1.1.	Algebraic structures on Hochschild cochains I	2
1.2.	Formality	4
1.3.	Braces	4
1.4.	Applications to deformation theory	5
2. 1	Deformation 2-groupoids	7

1. Hochschild Cochains

Notation 1.

- k-a commutative algebra with unit, $\mathbb{Q} \subset k$
- A-a flat k-algebra with unit
- $C^n(A, A) = Hom_k(A^{\otimes n}, A)$ Hochschild cochains
- $\delta: C^n(A, A) \to C^{n+1}(A, A)$,

$$(\delta D)(a_1 \dots, a_{n+1}) = a_1 D(a_2 \dots, a_{n+1}) + \sum_{i=1}^{n} (-1)^i D(a_1 \dots, a_i a_{i+1}, \dots a_{n+1}) + (-1)^{n+1} D(a_1 \dots, a_n) a_{n+1}$$

Lemma 2. $\delta^2 = 0$. The groups $H^n(A, A) = \frac{ker(\delta:C^n \to C^{n+1})}{im(\delta:C^{n-1} \to C^n)}$ are called the Hochschild cohomology groups. In particular

- $H^0(A, A) = Z(A)$, the center of A
- $H^1(A, A) = Der(A)/ad(A)$ $H^2(A, A) = \frac{Infinitesimal\ deformations\ of\ A}{isomorphisms}$,

Here, an infinitesimal deformation of A is an associative $k[\epsilon]$ -linear $product * on A[\epsilon]/\epsilon^2$ which coincides with the original product on A modulo ϵ and an isomorphism is a $k[\epsilon]$ -linear map of the form T(a) = $a + X(a)\epsilon$ which intertwines the *-products.

1.1. Algebraic structures on Hochschild cochains I. Given $D \in C^n$ and $E \in C^m$, the cup product $D \cup E \in C^{n+m}$ is given by

$$D \cup E(a_1 \dots a_{n+m}) = D(a_1 \dots a_n) E(a_{n+1} \dots a_{n+m})$$

Lemma 3. $(C^*(A, A), \cup, \delta)$ is a differential graded algebra. The cup product is commutative up to homotopy, in fact the following holds

$$D \cup E - (-1)^{|D||E|}E \cup D = -(-1)^{|D||E|}\delta(D\{E\}) - (\delta D)\{E\} - (-1)^{|D|-1}D\{\delta E\}.$$

Here the brace is defined by

$$D\{E\}(a_1,\ldots,a_{n+m-1}) =$$

$$\sum_{i=0}^{n} (-1)^{i(m-i)} D(a_1, \dots, a_i, E(a_{i+1}, \dots, a_{i+m}), \dots, a_{n+m-1})).$$

Hence $H^*(A, A)$ is a graded commutative algebra.

Lemma 4. The bracket

$$[D, E] = D\{E\} - (-1)^{(|D|-1)(|E|-1)}E\{D\}$$

defines on $C^{*+1}(A,A)$ a structure of DGLA (differential graded Lie algebra).

Proof. The brace $D\{E\}$ is not quite associative, but

$$(D\{E\})\{F\} - D\{E\{F\}\} = D\{F, E\} - (-1)^{(|E|-1)(|F|-1)}D\{E, F\},$$

where

$$D\{E, F\}(a_1, \ldots) = \sum_{i < j} (-1)^{(|E|-1)i + (|F|-1)j} D(a_1, \ldots, E(a_i, \ldots), \ldots, F(a_j, \ldots), \ldots).$$

Hence

$$[D, [E, F]] + \bigcirc = (D\{E\})\{F\} - D\{E\{F\}\} - D\{F, E\} \pm D\{E, F\} + \bigcirc$$

cancel out.

Let * be any product on A and set M(a,b) = a*b. Then

M is associative
$$\iff$$
 $[M, M] = 0$.

In particular, if m(a,b)=ab, then $\delta D=(-1)^{|D|}[m,D]$ and $\delta^2=0$ follows from [m,m]=0 and the Jacobi identity

$$\delta[D, E] = [\delta D, E] + (-1)^{|D|-1}[D, \delta E].$$

Hence

- $C^{*+1}(A, A)$ is a DGLA
- $H^{*+1}(A, A)$ is a Lie algebra

Moreover,

$$[D, E \cup F] = [D, E] \cup F + (-1)^{(|D|-1)|E|} E \cup [D, F] + \delta D\{E, F\}$$

Recall

Definition 5. A Gerstenhaber algebra is a graded vector space A^* with binary operations m and $[\cdot, \cdot]$, such that

- (A^*, m) is a graded commutative algebra
- $(A^{*+1}, [\cdot, \cdot])$ is a Lie algebra
- $[a, bc] = [a, b]c + (-1)^{(|a|-1)|b|}b[a, c]$

The above discussion says that $H^*(A, A)$ has the structure of a Gerstenhaber algebra.

example 6. Let A be a commutative algebra. Then DerA is an A-bimodule and

$$\Lambda_A^* Der(A)$$

is a graded commutative algebra (with the wedge product). We set

- [v, a] = v(a) for $a \in \Lambda_A^0(A) = A$ and $v \in Der(A) = \Lambda_A^1 Der(A)$
- $[v, w] = vw wv \text{ for } v, w \in Der(A)$

 $[\cdot,\cdot]$ has a unique extension to $\Lambda_A^*Der(A)$ such that $(\Lambda_A^*Der(A), \wedge, [\cdot,\cdot])$ is a Gerstenhaber algebra. The map

$$\Lambda_A^n Der(A) \ni v_1 \dots v_n \mapsto \frac{1}{n!} \sum_{\sigma \in S_n} (-1)^{sgn(\sigma)} v_{\sigma_1} \cup \dots v_{\sigma_n} \in C^n(A, A)$$

is a morphism of complexes $I_{HKR}: ((\Lambda_A^*Der(A), 0) \to (C^*(A, A), \delta).$

example 7. Similarly, for $C^{\infty}(X)$ (X a smooth manifold) $\Gamma(X, \Lambda^*T_X)$ is a Gerstenhaber algebra. The bracket here is called the Schouten-Nijenhuis bracket. One can obviously replace polyvector fields on a smooth manifold by the sheaf of holomorphic polyvector fields on an analytic manifold.

In this example, if set $A = C^{\infty}(X)$ and from now on $C^*(A, A)$ will be the cochains given by polydifferential operators, i. e. of the form

$$D(f_1,\ldots,f_n) = \sum_{i=1}^{finite} D_1(f_1)\ldots D_n(f_n),$$

where D_i are differential operators. We again get a morphism of complexes

$$I_{HKR}: ((\Lambda_A^* Der(A), 0) \to (C^*(A, A), \delta).$$

Theorem 8 (Hochschild, Kostant, Rosenberg). For A regular commutative algebra, or $A = \mathbb{C}^{\infty}(X)$ (or sheaf of holomorphic functions...) I_{HKR} is a quasiisomorphism.

Note that I_{HKR} preserves neither the product, nor the bracket. But the induced maps

$$(\Lambda_A^* Der(A), \wedge, [\cdot, \cdot]) \to (H^*(A, A), \cup, [\cdot, \cdot])$$

is an isomorphism of Gerstenhaber algebras.

1.2. Formality.

Theorem 9 (Tamarkin). For an associative algebra A there exists a DG Gerstenhaber algebra $C^*(A)$, natural in A and

- (1) a DGLA quasiisomorphism $C^*(A) \to C^*(A, A)$
- (2) for A regular commutative or $C^{\infty}(X)$ (or...) there exists a quasiisomorphism of DG Gerstenhaber algebras

$$\mathcal{C}^*(A) \to \Lambda_A^* Der(A).$$

Remark 10. In other words, Hochschield cochains carry a structure of a DG Gerstenhaber algebra, if one chooses the model "correctly". This should be compared to the algebra of singular cochains on a topological space which carries a cup-product commutative up to cohomology. But if one chooses instead the model (over \mathbb{Q}) of Sullivan forms, it becomes graded commutative on the level of cochains.

A DGLA \mathcal{A}^* is formal, if there exists a chain of DGLA quasiisom. of the form

with $\mathcal{A}_i^* = \mathcal{A}^*$ and $\mathcal{A}_n^* = H^*(\mathcal{A}^*)$. As a "corollary"

Theorem 11 (Kontsevich). $C^{\infty}(X)$ is formal.

1.3. **Braces.** For $D, E_1, \ldots, E_n \in C^*(A, A)$, we can form braces

$$D\{E_1, ..., E_n\}(a_1, ..., a_N) = \sum \pm D(a_1, ..., E_1(a_{i_1+1}, ..., a_{i_{i_1+n_1}}), a_{\underline{\hspace{1cm}}}, E_2(\underline{\hspace{1cm}}), ..., \\ ..., E_n(\underline{\hspace{1cm}}), ..., a_N)$$

The sum is over all possible insertions of E_k 's, where the order of a's and E's is preserved. The sign is dictated by the rule:

transposition $a \leftrightarrow E$ contributes the sign $(-1)^{(|a|-1)(|E|-1)}$

Lemma 12 (Brace relations).

$$(D\{E_1, ..., E_m\})\{F_1, ..., F_n\} = \sum \pm D\{F_1, ..., E_1\{F_{i_1+1}, ...\}, ..., E_2\{F, ...\}, ..., E_m\{F_{i_m+1}, ...\}, ..., F_n\}$$

Recall what we used already:

- $\delta = [m, \cdot]$ respects \cup and $[\cdot, \cdot]$, where $D \cup E = (-1)^{|D|} m\{D, E\}$
- $[\cdot, \cdot]$ is a graded Lie bracket;
- $[D, E \cup F] \sim [D, E] \cup F \pm E \cup [D, F]$ with the homotopy given by $D\{E, F\}$.

The basic result says that $C^*(A, A)$ can be given a structure of a DG Gerstenhaber algebra, up to a quis of DGLA's. The idea of the proof is as follows.

 G_{∞} is a cofibrant resolution of the operad Gerst, and the dotted map exists by general principles. As a corollary, $C^*(A,A)$ is a G_{∞} -algebra and DG Gerstenhaber algebra $C^*(A)$ is its rectification.

From algebra to topology

Brace operations act on
$$C^*(A,A)$$

$$\downarrow \\$$
 Action $C_{-*}(Disc(n)) \otimes C^*(A,A)^{\otimes n} \to C^*(A,A)$

Existence of the bottom action is the "Deligne conjecture".

Back from topology to algebra

- $H_{-*}(Disc(n))$ is the natural operad Gerst(n) of n-ary operations on a Gerstenhaber algebra (Arnold, Cohen)
- $C_{-*}(Disc(n))) \to H_{-*}(Disc(n)) = Gerst(n)$ is a quasiisomorphism of operads, i.e. the chain operad of the little disc operad is formal (Tamarkin) this step involves an associator.
- 1.4. **Applications to deformation theory.** A deformation of an associative algebra A is an associative, k[[t]]-linear product * on A[[t]] of

the form

$$a * b = ab + \sum_{i>0} t^i D_i(a, b), \ D_i \in C^2(A, A).$$

An isomorphism of two deformations (A[[t]], *) and (A[[t]], *') is a k[[t]]-linear bijection $T: A[[t]] \to A[[t]]$ of the form

$$T(a) = a + \sum_{i>0} t^i T_i(a,b), \ T_i \in C^1(A,A)$$

satisfying T(a * b) = T(a) *' T(b). If we set a * b = ab + D(a, b), then D satisfies [m + D, m + D] = 0, or

$$\delta D + \frac{1}{2}[D, D] = 0.$$

So

Definition 13. Let (\mathfrak{g}^*, d) be a pronilpotent DGLA. A Maurer-Cartan element of \mathfrak{g} is an element $\omega \in \mathfrak{g}^1$ satisfying the Maurer-Cartan equation

$$d\omega + \frac{1}{2}[\omega, \omega] = 0.$$

two Maurer-Cartan elements ω_1 and ω_2 are gauge equivalent, if there exist an element $X \in \mathfrak{g}^0$ satisfying

$$d + \omega_2 = e^X (d + \omega_1) e^{-X}.$$

We set

$$Def(\mathfrak{g}) = \frac{Maurer\ Cartan\ elements}{gauge\ equivalence} (= \pi_0(\mathfrak{g}))$$

Theorem 14 (Goldmann-Nilsson, Yekuteli). A quasiisomorphism ϕ : $\mathfrak{g} \to \mathfrak{h}$ of pronilpotent DGLA's induces a bijection $Def(\mathfrak{g}) \to Def(\mathfrak{h})$.

Corollary 15. For a regular, commutative algebra A (or $A = C^{\infty}(X)$ or...)

$$Def(C^{*-1}(A,A)) \stackrel{\simeq}{\longleftarrow} Def(C^*(A))$$

$$\downarrow^{\simeq}$$

$$Def(\Lambda_A^*Der(A))).$$

In particular, we get a bijection

$$\frac{\textit{deformations of } C^{\infty}(X)}{\textit{isomorphisms}} \simeq \frac{\textit{formal Poisson structures } t\pi_1 + t^2\pi_2 + \dots}{\textit{formal diffeomorphisms}}$$

LECTURE 1

We get more precise information. Given $\pi = \sum_{1}^{\infty} t^n \pi_n$, $[\pi, \pi]_{Sch} = 0$, let $(A_{\pi}, *)$ be the corresponding algebra. Then we get

$$C^{*+1}(A, A) \longleftrightarrow C^{*+1}(A) \longrightarrow \Lambda_A^{*+1}Der(A)$$

$$D \leftarrow \Pi \longrightarrow \pi$$

where $D \in tC^2(A, A)$ satisfies

$$\delta D + \frac{1}{2}[D, D] = 0, \ a * b = ab + D(a, b)$$

In particular, we get the following

Corollary 16. There exists a chain of quasiisomorphisms of DGLA's

$$C^{*+1}(A_{\pi}, A_{\pi}) \longleftarrow C^{*+1}(A)[[t]] \longrightarrow \Lambda_A^{*+1}Der(A)[[t]]$$

$$[m_{\pi},\cdot] \leftarrow \delta + [\Pi,\cdot] \longrightarrow [\pi,\cdot]$$

In particular,

$$Z(A_{\pi}) \simeq \{ a \in A[[t]] \mid \pi(da, \cdot) = 0 \}$$

Remark 17. [Duflo isomorphism] The above isomorphism of the center of A_{π} with the Poisson center of π is as vector spaces.

2. Deformation 2-groupoids

Let $(\mathfrak{g}, [,], d)$ be a nilpotent DGLA starting from dimension -1:

$$\mathfrak{g}^{-1}\oplus\mathfrak{g}^0\oplus\mathfrak{g}^1\oplus\mathfrak{g}^2\oplus\ldots$$

As above, a Maurer-Cartan element $\mu \in \mathfrak{g}^1$ satisfies the equation

$$d\mu + \frac{1}{2}[\mu, \mu] = 0.$$

We will think of it as a flat connection

$$\nabla_{\mu} = d + [\mu,]$$

and will denote the set of Maurer-Cartan elements by $MC(\mathfrak{g})$ \mathfrak{g}^0 is a nilpotent Lie algebra and we will denote the corresponding Lie group by G^0 - think of it as the gauge group. G^0 acts on the space of flat connections by "gauge transformations":

$$d + ad\mu \rightarrow Ad(e^X)(d + ad\mu).$$

This descends to an action on Maurer Cartan elements, by

$$Ad(e^X)(d+ad\mu) = d + ad(\int_0^1 e^{adtX}(dX)dt + e^{adX}(\mu)).$$

Given μ , the bracket

$$[\theta,\phi]_{\mu} = [\nabla_{\mu}\theta,\tau]$$

defines a structure of Lie algebra on \mathfrak{g}^{-1} , and the corresponding group G_{μ}^{-1} acts on G^0 by multiplication by $e^{\nabla_{\mu}\theta}$.

All together, we get a Deligne two-groupoid $MC^2(\mathfrak{g})$:

- Objects Maurer Cartan elements μ .
- 1-morphisms e^X , $X \in \mathfrak{g}^0$, acting by $\mu \to \int_0^1 e^{adtX}(dX)dt + e^{adX}(\mu)$.
- 2-morphisms acting on $Hom(\mu_1, \mu_2)$ by multiplication by $e^{\nabla_{\mu_2}\theta}$ for $e^{\theta} \in G_{\mu_2}^{-1}$.

Theorem 18. A L_{∞} quasiisomorphism of two DGLA's vanishing in degrees below -1 induces an equivalence of the associated Deligne two groupoids.

In particular, the formality of, say, $C^*(C^{\infty}(X), C^{\infty}(X))$ says that the Deligne two groupoid of deformations of $C^{\infty}(X)$ is equivalent to the one, where

- objects are formal Poisson structures $\pi \in t\Lambda^2 T_X$
- 1-morphisms are the formal diffeomorphisms $exp(X), X \in t\Lambda^1T_X$
- 2-morphisms are the formal diffeomorphisms $exp(X_{\theta})$ associated to Hamiltonian vector fields $[\pi, \theta], \theta \in C^{\infty}(X)[[t]]$

To be more precise, let us define equivalence of two-groupoids of the form MC^2 . Given a DGLA \mathfrak{g} as above,

$$\Sigma(\mathfrak{g}) = \{ n \to MC(\mathfrak{g} \otimes \Omega^*(\Delta_n) \}$$

is a Kan simplicial set with homotopy vanishing in dimensions above 2, and two MC^2 's are equivalent if the corresponding Σ 's are homotopy equivalent.