Pre-exercises on fusion systems, etc.

July 14, 2011

For a category \mathcal{C} with objects a and b, we write $\mathcal{C}(a,b)$ to denote $\operatorname{Hom}_{\mathcal{C}}(a,b)$ and $\mathcal{C}(a)$ for $\operatorname{Aut}_{\mathcal{C}}(a)$.

Let S be a p-group. Recall that a fusion system on \mathcal{F} is a category whose objects are the subgroups of S and whose morphisms are some collection of injective group homomorphisms between the subgroups such that (1) every map induced by conjugation by some element of S is a morphism of \mathcal{F} and (2) every morphism factors as an isomorphism (in \mathcal{F}) followed by an an inclusion.

Recall that a subgroup $P \leq S$ is called fully normalized (in \mathcal{F}) (resp., fully centralized) if $|N_S(P)| \geq |N_S(P')|$ (resp., $|C_S(P)| \geq |C_S(P')|$) for all P' \mathcal{F} -isomorphic to P. Then we say that \mathcal{F} is saturated if

- (I) Every fully normalized subgroup P is fully centralized, and moreover $\operatorname{Aut}_S(P) \in \operatorname{Syl}_p(\mathcal{F}(P))$.
- (II) If Q is fully normalized and $\varphi \in \mathcal{F}(P,Q)$ is an isomorphism, then there exists an extension of φ in $\mathcal{F}(N_{\varphi},S)$, where

$$N_{\varphi} := \{ n \in N_S(P) | \varphi \circ c_n \circ \varphi^{-1} \in \operatorname{Aut}_S(Q) \}.$$

Exercise 1. Suppose that G is a finite group with $S \in \operatorname{Syl}_p(G)$. Let $\mathcal{F}_S(G) = \mathcal{F}$ denote the category whose objects are the subgroups of S and with $\mathcal{F}(P,Q) = \operatorname{Hom}_G(P,Q)$ is the set of morphisms induced by conjugation by some element of G. Show that \mathcal{F} is a saturated fusion system.

Exercise 2. Find a finite group G with a non-Sylow p-subgroup P such that $\mathcal{F}_P(G)$ is saturated.

Given a saturated fusion system \mathcal{F} on S, we say that $P \leq S$ is \mathcal{F} -centric if for all P' \mathcal{F} -isomorphic to P, we have $C_S(P') = Z(P')$. We also define the (minimal) centric transporter system on S to be the category $\mathcal{T} = \mathcal{T}_S^c(S)$ whose objects are the \mathcal{F} -centric subgroups of S and where $\mathcal{T}(P,Q) = N_S(P,Q)$ is the set of elements of S that conjugate P into Q.

A centric linking system on \mathcal{F} is a category \mathcal{L} whose objects are the \mathcal{F} -centric subgroups of S together with functors

$$T_S^c(S) \xrightarrow{\delta} \mathcal{L} \xrightarrow{\pi} \mathcal{F}^c$$

where \mathcal{F}^c is the full subcategory of \mathcal{F} with objects the \mathcal{F} -centric subgroups of S. We require that the following axioms are satisfied:

- (A) Both δ and π are the identity on objects, while on morphisms δ is injective and π is surjective. Moreover, Z(P) acts freely on $\mathcal{L}(P,Q)$ (i.e., no nonidentity element of Z(P) stabilizes any element of $\mathcal{L}(P,Q)$) via δ and right composition, and $\pi: \mathcal{L}(P,Q) \to \mathcal{F}(P,Q)$ is the orbit map of this action (i.e., so that $\pi(\mathfrak{g}) = \pi(\mathfrak{h})$ if and only if there is some $z \in Z(P)$ such that $\mathfrak{h} = \mathfrak{g} \cdot z$).
- (B) The composite $\pi \circ \delta$ sends any $n \in N_S(P,Q)$ to $c_n \in \mathcal{F}(P,Q)$.
- (C) For any $\mathfrak{g} \in \mathcal{L}(P,Q)$ and $a \in P$, the following diagram commutes in \mathcal{L} :

$$P(a) \xrightarrow{\mathfrak{g}} Q$$

$$\delta_{P} \downarrow \qquad \qquad \downarrow \delta_{Q}(\pi(\mathfrak{g})(a))$$

$$P \xrightarrow{\mathfrak{g}} Q$$

Exercise 3. Let G be a finite group with $S \in \operatorname{Syl}_p(G)$, and let $\mathcal{F} = \mathcal{F}_S(G)$ be the induced saturated fusion system on S.

- (a) Show that a subgroup $P \leq S$ is \mathcal{F} -centric if and only if P is p-centric in G, i.e., iff $Z(P) \in \mathrm{Syl}_p(C_G(P))$.
- (b) Define a category $\mathcal{L} = \mathcal{L}_S^c(G)$ whose objects are the \mathcal{F} -centric subgroups of S and whose morphisms are defined by $\mathcal{L}(P,Q) = N_G(P,Q)/O^p(C_G(P))$. Show that \mathcal{L} naturally has the structure of a linking system on \mathcal{F} .