Exercises F-modules

- (1) In (1.2) we have shown that if a best offender acts nontrivially on a submodule, it induces an offender on this submodule too. Now prove that a best offender induces a best offender. Precisely:
 - Let V a faithful \mathbb{F}_pG -module, $A \in \mathcal{P}(G, V)$ and W be a submodule with $1 \neq [A, W] \leq W$. Then $AC_G(W)/C_G(W) \in \mathcal{P}(N_G(W)/C_G(W), W)$.
- (2) There is something like a maximal best offender, if we drop the assumption that offender have to be abelian. So show:
 - Let V be a faithful \mathbb{F}_p -module for G. Let A, B be p-groups with $|A||C_V(A)| = |B||C_V(B)|$ maximal. If $\langle A, B \rangle$ is a p-group, then $\langle A, B \rangle = AB$ and $|C_V(AB)||AB| = |A||C_V(A)|$.
- (3) Let A be a faithful F-module offender on V, and $V = V_1 \times V_2$ with $1 \neq [V_i, A] \leq V_i$, i = 1, 2. Suppose that $|V_i : C_{V_i}(A)| \geq |A/C_A(V_i)|$ (in particular A does not induce an over offender on any V_i), then $A = C_A(V_1)C_A(V_2)$ and $C_A(V_i)$ is an offender on V_{3-i} , i = 1, 2.
- (4) Let G = Sym(5) and V be an F-module over \mathbb{F}_p with $C_V(G) = 1$. Show
 - (i) If p = 2, then |V| = 16.
 - (ii) If $p \geq 5$, there is no F-module
 - (iii) What happens with p = 3?

Don't use any outside information about irreducible modules for G, not the classification theorem for F-modules from the lecture nor results about quadratic modules, which were not present in the first lecture.

(5)* Show that Alt(6) does not possess an F-module over \mathbb{F}_3 . (Don't not use results about quadratic action from the second lecture.)