

A characterization
of the
2-fusion
system of
 $L_4(q)$

Justin Lynd

The $L_2(q)$,
 A_7 problem
and prelimi-
naries

Classifying
simple
2-fusion
systems

A standard
form
problem for
 $L_2(q)$ in
fusion
systems

The
Thompson
transfor
lemma

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The Ohio State University
jlynd@math.ohio-state.edu

July 19, 2011

Fusion systems and p -local group theory
Copenhagen

Overview and notation

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

- 1 The $L_2(q)$, A_7 problem and preliminaries
- 2 Simple 2-fusion systems
- 3 An $L_2(q)$ standard form problem in fusion systems
- 4 Thompson transfer lemma for fusion systems
 - All fusion systems will be saturated.
 - $O_p(\mathcal{F})$ - the largest normal p -subgroup of \mathcal{F}
 - $Z(\mathcal{F})$ - the center of \mathcal{F} , a normal p -subgroup of \mathcal{F}
 - $O^p(\mathcal{F})$ on the hyperfocal subgroup $\text{hyp}(\mathcal{F})$
 - $O^{p'}(\mathcal{F})$ on S itself
 - The focal subgroup $\text{foc}(\mathcal{F}) = [S, \mathcal{F}]$
 - $L_m(q) = PSL(m, q)$, $U_m(q) = PSU(m, q)$, $S_m(q)$ and $\Omega_m(q)$ the simple symplectic, orthogonal groups.

A “standard form” problem for $L_2(q^2)$, A_7

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Problem

Let G be a finite group with an involution $x \in G$ such that $C := C_G(x)$ has a simple normal subgroup K isomorphic to $L_2(q^2)$ (q odd) or A_7 and such that $C_C(K)$ is a cyclic 2-group. Determine G .

- Originally one of the last problems to be completed in CFSG of component type; very difficult partly because of accidental isomorphisms.
- One example:

$$L_2(9) \cong A_6 \cong Sp_4(2)' \cong \Omega_5(2)$$

leading to pesky almost simple groups

$$L_5(2)\langle\gamma\rangle, U_5(2)\langle\gamma\rangle, \text{ and } S_4(4)\langle\varphi\rangle.$$

- One also has to identify S_8 , S_9 , HS and $L_4(q)$.
- Under weaker hypotheses, $S_4(q^2)$, A_{10} , A_{11} , M_{12} , J_1 , J_2 , $\text{Aut}(He)$. . . show up.

Normal subsystems and simple fusion systems

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Definition

Let \mathcal{F} be a fusion system on the finite p -group S . A subsystem \mathcal{E} on a strongly \mathcal{F} -closed subgroup T of S is

- *weakly normal* if $\alpha \text{Hom}_{\mathcal{E}}(P, Q)\alpha^{-1} \subseteq \text{Hom}_{\mathcal{E}}(\alpha(P), \alpha(Q))$ for any $P \leq Q \leq T$, and $\alpha \in \text{Hom}_{\mathcal{F}}(Q, S)$.
- *strongly normal* or just *normal* if in addition every $\varphi \in \text{Aut}_{\mathcal{E}}(T)$ extends to a morphism $\tilde{\varphi} \in \text{Aut}_{\mathcal{F}}(TC_S(T))$ such that $[C_S(T), \tilde{\varphi}] \leq Z(T)$.

Definition

A fusion system is *simple* if it has no nontrivial strongly normal subsystems.

Theorem (Craven)

Let \mathcal{F} be a fusion system and \mathcal{E} a subsystem. If \mathcal{E} is a weakly normal in \mathcal{F} , then $O^{p'}(\mathcal{E})$ is normal in \mathcal{F} .

Centralizers and components

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Definition

Given a fusion system \mathcal{F} on S and a *normal* subsystem \mathcal{E} on the strongly \mathcal{F} -closed subgroup T of S , let $C_S(\mathcal{E})$ be the largest subgroup of $C_S(T)$ such that $C_{\mathcal{F}}(C_S(\mathcal{E}))$ contains \mathcal{E} as a subsystem.

- $C_S(\mathcal{E})$ is strongly \mathcal{F} -closed; acts more like a “linking system centralizer”.

Definition

The fusion system \mathcal{F} is *quasisimple* if $O^2(\mathcal{F}) = \mathcal{F}$ and $\mathcal{F}/Z(\mathcal{F})$ is simple. A *component* of \mathcal{F} is a quasisimple subnormal subsystem.

Definition

The *generalized Fitting subsystem* $F^*(\mathcal{F})$ of a fusion system \mathcal{F} is the commuting product of the fusion systems of the p -group $O_p(\mathcal{F})$, and $E(\mathcal{F})$. Here $E(\mathcal{F})$ is a commuting product of the components of \mathcal{F} .

Theorem (Aschbacher)

$C_{\mathcal{F}}(F^*(\mathcal{F})) = Z(F^*(\mathcal{F})).$

Classifying simple fusion systems

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Question

Why classify simple 2-fusion systems?

Answers:

- Far fewer simple 2-fusion systems, easier to identify.
- No cores! May simplify parts of the CFSG.
- Structured search for new exotic 2-fusion systems.

The Baumann Dichotomy

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Definition

The *Thompson subgroup* $J(S)$ (for us) of a finite p -group S is the subgroup generated by the elementary abelian subgroups of S of maximal rank. The *Baumann subgroup* $\text{Baum}(S)$ of S is defined as $C_S(\Omega_1 Z J(S))$.

Definition

Let \mathcal{F} be a fusion system on a 2-group S .

- \mathcal{F} is of *Baumann characteristic 2-type* if for every fully \mathcal{F} -normalized subgroup $U \leq S$ with $\text{Baum}(S) \leq N_S(U)$, $N_{\mathcal{F}}(U)$ is constrained. I.e. $E(N_{\mathcal{F}}(U)) = 1$.
- \mathcal{F} is of *Baumann component type* if there exists a fully \mathcal{F} -centralized involution $x \in S$ such that $\text{Baum}(S) \leq C_S(x)$ and $E(C_{\mathcal{F}}(x)) \neq 1$.

Theorem (Dichotomy Theorem)

A 2-fusion system is either of Baumann characteristic 2-type or of Baumann component type.

Fusion systems of Baumann component type

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Roadmap for classification of simple 2-fusion systems of Baumann component type:

- Classical involution theorem (in progress: Aschbacher's quaternion fusion packets).
- Prove if an involution centralizer in \mathcal{F} has a quaternion fusion packet, so does \mathcal{F} or \mathcal{F} is a Solomon system.
- Component theorem (standard components, Aschbacher's tightly embedded subsystems).
- Standard form problems for groups of Lie type in even characteristic, $L_2(q)$, alternating groups, several sporadic groups, and the Solomon systems.

A standard form problem for $L_2(q)$ in fusion systems

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Theorem (L.)

Let \mathcal{F} be a fusion system on a 2-group S with $O^2(\mathcal{F}) = \mathcal{F}$ and $O_2(\mathcal{F}) = 1$. Suppose that $x \in S$ an involution such that

- $C_{\mathcal{F}}(x)$ on $T = C_S(x)$ has a component \mathcal{K} isomorphic to $\mathcal{F}_2(L_2(q^2))$ for some odd q ,
- $T = C_S(x)$ contains the Baumann subgroup of S , and
- $Q = C_T(\mathcal{K})$ is cyclic.

Then \mathcal{F} is the 2-fusion system of $L_4(q)$.

Full disclosure: One last case is left to be proved: S is of 2-rank 4, $Q = \langle x \rangle$ is of order 2, and P (the Sylow subgroup of \mathcal{K} , a nonabelian dihedral group) is of order at least 16. It is expected that this will result in a contradiction, giving the above Theorem.

Key ingredients in the proof:

- Reduced and tame fusion systems (Andersen-Oliver-Ventura)
- Thompson transfer lemma for fusion systems + 2-group/fusion analysis

Pinning down $T\mathcal{K}/Q$

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

The hypotheses amount to supposing that

$$F^*(C_{\mathcal{F}}(x)) = Q \times \mathcal{K}.$$

Group case: $T\mathcal{K}/Q$ is a subgroup of $\text{Aut}(K)$ containing K .

Example

Let $G = S_6$, $\mathcal{F} = \mathcal{F}_2(G)$ on T , $f \in G$ a transposition. Then f induces a trivial automorphism of $\mathcal{K} = \mathcal{F}_2(A_6)$, but $f \notin C_T(\mathcal{K}) = 1$.

We do know that $T\mathcal{K}/Q$ is a fusion system whose reduction (O^2) is isomorphic to \mathcal{K} , a fusion system of a finite group $K = L_2(q^2)$ which is *tame*. Therefore by Andersen-Oliver-Ventura,

Proposition

$T\mathcal{K}/Q$ is isomorphic to the fusion system of a subgroup of $\text{Aut}(K)$ containing K .

This allows one to begin to get ahold on the structure of the centralizer $T = C_S(x)$.

Thompson's original lemma

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Lemma (Thompson)

Suppose G is a finite group and S a Sylow 2-subgroup of G . Let $T < S$ be a maximal subgroup and u an involution in $S - T$. Then either u has a G -conjugate in T or else $u \notin O^2(G)$.

Proof.

The element u fixes an odd number of cosets of S in G , so the transfer map on u

$$\text{tr}_S^G(u) = \prod_{ugS=gS} g^{-1}ug \neq 1 \pmod{T}.$$

□

Extensions:

- One can relax to S/T cyclic and take u of least order in $S - T$. (Harada?)
- One can choose the G conjugate of u to be “extremal” (or “fully centralized”) (Goldschmidt)
- Can relax to S/T abelian if the set of G -conjugates of u in $S - T$ have linearly independent images in $\Omega_1(S/T)$. (Lyons)

Characteristic bisets

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Consider G as an S - S -biset. Then $sG_S = \coprod_{g \in [S \backslash G / S]} SgS$, and

$$SgS \cong (S \times S) / \Delta_{S \cap Sg}^{c_{g^{-1}}} \text{ as an } S \times S\text{-set.}$$

This decomposition gives rise to Mackey decomposition of the transfer map:

$$\begin{aligned} \text{tr}_S^G(u) &= \prod_{g \in [S \backslash G / S]} g \text{tr}_{S \cap Sg}^S(u) g^{-1} \quad \text{for } u \in S \\ &= \prod_{g \in I} c_{g^{-1}}(\text{tr}_{S_g}^S(u)) \end{aligned}$$

Theorem (Linckelmann-Webb, Broto-Levi-Oliver)

To any saturated fusion system \mathcal{F} , there exists an S - S -biset Ω in which each each transitive sub-biset is of the form $(S \times S) / \Delta_{S_i}^{\gamma_i}$ for some $\gamma_i \in \text{Hom}_{\mathcal{F}}(S_i, S)$ and in which the $\{\gamma_i\}_{i \in I}$ play the role of a “set of S - S double coset representatives of the fusion system \mathcal{F} ”.

Thompson transfer for fusion systems

A characterization of the 2-fusion system of $L_4(q)$

Justin Lynd

The $L_2(q)$, A_7 problem and preliminaries

Classifying simple 2-fusion systems

A standard form problem for $L_2(q)$ in fusion systems

The Thompson transfer lemma

Theorem (L.)

Let \mathcal{F} be a saturated fusion system on the p -group S , and let T be a subgroup of S with S/T abelian. Let $u \in S - T$, let \mathcal{I} be the set of fully centralized \mathcal{F} -conjugates of u in $S - T$, and let $T\mathcal{I}$ be the set of cosets determined by \mathcal{I} . Suppose that

- u is of least order, and
- $T\mathcal{I}$ is linearly independent in $\Omega_1(S/T)$.

Then either

- u has a fully centralized \mathcal{F} -conjugate in T , or
- $u \notin \text{foc}(\mathcal{F})$.

Thank you

A characterization
of the
2-fusion
system of
 $L_4(q)$

Justin Lynd

The $L_2(q)$,
 A_7 problem
and prelimi-
naries

Classifying
simple
2-fusion
systems

A standard
form
problem for
 $L_2(q)$ in
fusion
systems

The
Thompson
transfer
lemma

Thank you for listening!