Exercises on p-local finite groups

July 16, 2011

Let \mathcal{F} be a fusion system on the p-group S. Recall that an abstract transporter system on \mathcal{F} is a category \mathcal{T} whose objects are a collection of subgroups of S, closed under \mathcal{F} -conjugacy and overgroups, together with a pair of functors

$$\mathcal{T}_{\mathrm{Ob}(\mathcal{T})}(S) \xrightarrow{\delta} \mathcal{T} \xrightarrow{\pi} \mathcal{F}$$

that satisfy

(A) On objects, δ is the identity and π is the inclusion. Moreover, for each $P, Q \in Ob(\mathcal{T})$, the group

$$E(P) := \ker[\pi_{P,P} : \mathcal{T}(P) \to \mathcal{F}(P)]$$

acts freely (i.e., with trivial stabilizers) on $\mathcal{T}(P,Q)$ by right composition, and $\pi_{P,Q}: \mathcal{T}(P,Q) \to \mathcal{F}(P,Q)$ is the orbit map of this action. In particular, π is surjective on morphisms. Also, E(Q) acts freely on $\mathcal{T}(P,Q)$ by left composition.

- (B) The functor δ is injective on morphisms, and for any $g \in N_S(P,Q)$, the composite $\pi_{P,Q} \circ \delta_{P,Q}$ sends g to $c_q \in \mathcal{F}(P,Q)$.
- (C) For all $\mathfrak{g} \in \mathcal{T}(P,Q)$ and $a \in P$, the diagram

$$\begin{array}{c|c} P & \xrightarrow{\mathfrak{g}} Q \\ \delta_{P,P}(a) \middle| & & & \downarrow \delta_{Q,Q}(\pi(\mathfrak{g})(a)) \\ P & \xrightarrow{\mathfrak{g}} Q \end{array}$$

commutes in \mathcal{T} .

- (I) $\delta_{S,S}(S) \in \operatorname{Syl}_n(\mathcal{T}(S))$.
- (II) For any $\mathfrak{g} \in \mathcal{T}(P,Q)_{\mathrm{Iso}}$ and normal overgroups $P \unlhd P' \subseteq S$ and $Q \unlhd Q' \subseteq S$ such that

$$\mathfrak{g} \circ \delta_{P,P}(P') \circ \mathfrak{g}^{-1} \le \delta_{Q,Q}(Q')$$

there is an element ("extension of \mathfrak{g} ") $\mathfrak{g}' \in \mathcal{T}(P',Q')$ such that

$$P' \xrightarrow{\mathfrak{g}'} Q'$$

$$\delta_{P,Q}(1) \qquad \qquad \uparrow \\ \delta_{Q,Q'}(1)$$

$$P \xrightarrow{\mathfrak{g}} Q$$

commutes in \mathcal{T} .

Exercise 1. Let \mathcal{T} be an abstract transporter system (e.g., a centric linking system), and let \mathfrak{i} denote any "inclusion" morphism, namely, any morphism of the form $\delta_{P,Q}(1)$ for $P \leq Q$. Let $\mathrm{Iso}(\mathcal{T})$ denote the set of isomorphisms of \mathcal{T} , and let \sim denote the equivalence relation on $\mathrm{Iso}(\mathcal{T})$ generated by restriction. Explicitly, if $P \leq Q$ and we have isomorphisms $\mathfrak{g}_P \in \mathcal{T}(P,P')_{\mathrm{Iso}}$ and $\mathfrak{g}_Q \in \mathcal{T}(Q,Q')_{\mathrm{Iso}}$, we have $\mathfrak{g}_P \sim \mathfrak{g}_Q$ if the diagram

$$Q \xrightarrow{\mathfrak{g}_Q} Q'$$

$$\downarrow \downarrow \qquad \qquad \downarrow i$$

$$P \xrightarrow{\mathfrak{g}_P} P'$$

commutes in \mathcal{T} . In general, \sim is the symmetric, transitive closure of this relation.

- (a) Suppose that $P \leq Q$, R are objects of \mathcal{T} , and set $A = Q \cap R$. Given $\mathfrak{g}_Q, \mathfrak{g}_R \in \mathrm{Iso}(\mathcal{T})$ two isomorphisms with sources Q and R, respectively, such that $\mathfrak{g}_Q|_P = \mathfrak{g}_R|_P =: \mathfrak{g}_P$, show that $\mathfrak{g}_Q|_A = \mathfrak{g}_R|_A$, and that this morphism is an extension of \mathfrak{g}_P .
- (b) Suppose that $P \subseteq Q$, R are objects of \mathcal{T} . Given $\mathfrak{g}_Q, \mathfrak{g}_R \in \mathrm{Iso}(\mathcal{T})$ two isomorphisms with sources Q and R, respectively, such that $\mathfrak{g}_Q|_P = \mathfrak{g}_R|_P =: \mathfrak{g}_P$, show that there is some $\mathfrak{g}_U \in \mathrm{Iso}(\mathcal{T})$ with source $U := \langle Q, R \rangle$ whose restrictions to P, Q, and R are the respective isomorphisms.

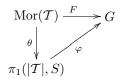
Hint: The extension axioms for transporter systems and fusion systems should both be helpful.

(c) Let $\mathfrak{g}_Q \in \operatorname{Iso}(\mathcal{T})$ be an isomorphism in \mathcal{T} with source Q, and suppose that \mathfrak{g}_Q has no proper extensions in \mathcal{T} . Show that if $\mathfrak{g}_R \in \operatorname{Iso}(\mathcal{T})$ is another isomorphism (with source R) such that $\mathfrak{g}_Q \sim \mathfrak{g}_R$, then in fact $R \leq Q$ and $\mathfrak{g}_R = \mathfrak{g}_Q|_R$.

Hint: Use that \mathfrak{g}_Q does not have any proper extensions to conclude that we must only consider the case where we have $P \leq Q, R$ is an object of \mathcal{T} and $\mathfrak{g}_Q|_P = \mathfrak{g}_R|_P$. Induct downward on the order of such a P.

Exercise 2. Let \mathcal{T} be a transporter system.

- (a) Define an interesting map θ from the set $Mor(\mathcal{T})$ of morphisms of \mathcal{T} to $\pi_1(|\mathcal{T}|, S)$ (here we view the object S of \mathcal{T} as a basepoint for the fundamental group) that sends inclusions to the identity and compositions to multiplication.
- (b) Show that the map θ from (a) is universal in the following sense: If $F: \mathcal{T} \to \mathcal{B}G$ is a functor from \mathcal{T} to the classifying category of a discrete group that sends inclusions to the identity, there is a unique homomorphism $\varphi: \pi_1(|\mathcal{T}|, S) \to G$ such that



commutes. You may assume the result from topology that states that the image of θ generates $\pi_1(|\mathcal{T}|, S)$.

(c) Conclude with a description of $\pi_1(|\mathcal{T}|, S)$ in terms of generators and relations.

Exercise 3. Use the results of Exercise 1 to construct a partial group whose elements are the maximal isomorphisms of \mathcal{T} . Describe $\pi_1(|\mathcal{T}|, S)$ in terms of this partial group.