Ryszard Nest

The totally ordered case

Ring theoretic structure of \mathcal{N} Operations on

ree module

Characterisation of free modules

Main results

we assume that X is linearly ordered

Ryszard Nest

The totally ordered case

Ring theoretic structure of ${\mathcal N}$

filtrated K-th

Free modules

Characterisation of free modules

Recall from yesterday:

Theorem

The following are equivalent for an NT-module M:

- M is a direct sum of free modules.
- M is projective.
- M is free as an Abelian group and exact.

Ryszard Nest

The totally ordered case

Ring theoretic

Operations on

IIItrated K-th

Free modules

Characterisation of free modules

Theorem

The following are equivalent for an NT-module M:

- M has a projective resolution of length 1.
- M has a projective resolution of finite length.
- M is exact.
- *M* is in the range of filtrated K-theory.

Ryszard Nest

The totally ordered case

structure of N

Free modules

Characterisation o free modules

Hence there are $\mathcal{N}\mathcal{T}\text{-modules}$ without a projective resolution of finite length, but these cannot arise as filtrated K-groups.

Ryszard Nest

T1 . . . 11

Ring theoretic

structure of $\mathcal{N}\mathcal{T}$

filtrated K-theo

Free modules

Characterisation of free modules

The totally ordered case

The setup

Let
$$X = \{1, \dots, n\}$$
, write $[a, b] := \{a, a+1, \dots, b\}$ and let

$$\mathbb{O}(X) := \{[1, k], k = 0, \dots, n\}.$$

Ryszard Nest

ordered ca

Ring theoretic structure of $\mathcal{N}\mathcal{T}$ Operations on

Free modules

Characterisation of free modules

- $\mathbb{LC}(X)^* = \{ [a, b] \mid 1 \le a \le b \le n \}$
- For n = 3: $\mathbb{LC}(X)^* = \{1, 12, 123, 2, 23, 3\}$
- $\mathcal{R}_{[1,k]} = i_k \mathbb{C}$
- We have $[a,b]=[1,b]\setminus [1,a-1]$, and the inclusion $[1,a-1]\subseteq [1,b]$ corresponds to an inclusion morphism $f_{ba}\colon i_b\mathbb{C}\to i_{a-1}\mathbb{C}$.
- The K-theory long exact sequence for

$$A([1,a-1]) \rightarrow A([1,b]) \rightarrow A([a,b])$$

must correspond to an exact triangle

$$\mathcal{R}_{[a,b]} \to \mathcal{R}_{[1,b]} \to \mathcal{R}_{[1,a-1]} \to \mathcal{R}_{[a,b]}[1].$$

Ryszard Nest

The totally ordered case

Ring theoretic

Operations on filtrated K-theory

Free module

Characterisation of free modules

The representing objects

Lemma

The mapping cone of f_{ba} is a model for $\mathcal{R}_{[a,b]}$. Thus

$$\mathcal{R}_{[a,b]}(Y) = \left\{ \begin{array}{ll} \mathcal{C}_0((0,1]) & a-1,b \in Y, \\ \mathcal{C}_0((0,1)) & a-1 \in Y,\ b \notin Y, \\ \mathbb{C} & a-1 \notin Y,\ b \in Y, \\ 0 & a-1,b \notin Y. \end{array} \right.$$

and
$$\mathcal{NT}(Z,Y) := \mathsf{KK}^X_*(\mathcal{R}_Y,\mathcal{R}_Z) \cong \mathsf{K}_*(\mathcal{R}_Z(Y))$$
 is

$$\mathcal{NT}([a,b],Y) = \left\{ \begin{array}{ll} 0 & a-1,b \in Y, \\ \mathbb{Z}^{\mathrm{odd}} & a-1 \in Y,\ b \notin Y, \\ \mathbb{Z}^{\mathrm{even}} & a-1 \notin Y,\ b \in Y, \\ 0 & a-1,b \notin Y. \end{array} \right.$$

Ryszard Nest

The totally ordered case

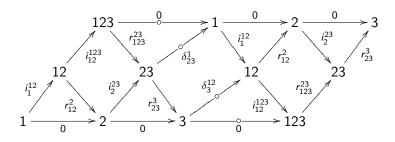
Ring theoretic structure of ${\cal N}$

Operations on filtrated K-theory

Characterisation of free modules

Modules over $\mathcal{N}\mathcal{T}$ for n=3

Modules over $\mathcal{N}\mathcal{T}$ consist of 6 Abelian groups together with maps as indicated in the following skew-periodic diagram:



- The diagram commutes.
- Arrows marked with a circle are of degree 1.
- Arrows marked zero denote zero maps.

Ryszard Nest

ordered case

Ring theoretic

filtrated K-tl

Free modules

free modules

Definition (Free modules)

$$F(\mathcal{R}_Z) = \bigoplus_{Y \in \mathbb{LC}(X)^*} \mathsf{K}_*(\mathcal{R}_Z(Y)) = \bigoplus_{Y \in \mathbb{LC}(X)^*} \mathcal{NT}(Z, Y)$$

Free modules are projective

Ryszard Nest

The totally ordered case

structure of N

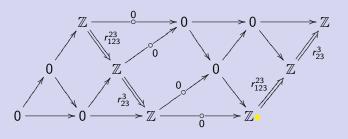
filtrated K-theo

Free modules

Characterisation of free modules

Example

For n = 3, the free module $F(\mathcal{R}_{123})$ looks as follows:



Ryszard Nest

The totally ordered case

structure of N

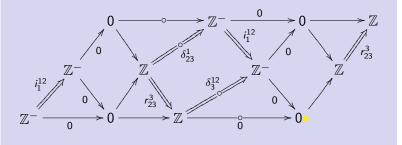
Operations on filtrated K-theo

Free modules

Characterisation of free modules

Example

For n = 3, the free module $F(\mathcal{R}_{23})$ looks as follows:



Ryszard Nest

The totally ordered case

Operations of

Free modules

Free module

free modules

Theorem

The following are equivalent for an NT-module M:

- M is a direct sum of free modules.
- M is projective.
- M is free as an Abelian group and exact.

Ryszard Nest

ordered case

Ring theoretic structure of ${\mathcal N}$

filtrated K-tl

Free modules

Characterisation of free modules

Theorem

The following are equivalent for an NT-module M:

- M has a projective resolution of length 1.
- M has a projective resolution of finite length.
- M is exact.
- M is in the range of filtrated K-theory.

Ryszard Nest

ordered case

Ring theoretic structure of N

Operations on filtrated K-theor

Free modules

rice moduli

free modules

Proof.

- $(1)\Longrightarrow(2)$ is trivial and
- $(1)\Longrightarrow(4)$ follows from the fact that free modules are representable.
- $(2) \Longrightarrow (3)$ follows by iterating the two-out-of-three property of exactness for extensions.
- $(4) \Longrightarrow (3)$ is just excision for KK.
- $(3)\Longrightarrow(1)$

Let $K \rightarrow P \rightarrow M$ be a module extension with projective P.

Then K is exact because P and M are, and a free Abelian group because $K \subseteq P$ and P is free. These two conditions are sufficient for projectivity by previous theorem.

Ryszard Nest

The totally

Ring theoretic structure of \mathcal{N}

Operations on

Free modules

Characterisation of free modules Thus everything reduces to proving that exact, torsionfree $\ensuremath{\mathcal{NT}}\xspace$ -modules are projective.

Characterisation of free modules

Ryszard Nest

The totally ordered case

Ring theoretic structure of NT
Operations on filtrated K-theory

Characterisation of free modules

Question

Does the ring $\mathcal{N}\mathcal{T}$ have some special features?

- $\mathcal{N}\mathcal{T}$ is finitely generated as an Abelian group.
- $\mathcal{N}\mathcal{T}$ is a split extension of a semisimple ring by a nilpotent ideal:

Definition and Lemma

Let $\mathcal{NT}_{ss} \subseteq \mathcal{NT}$ be $\bigoplus \mathcal{NT}(Y, Y)$. Let $\mathcal{NT}_{nil} \subseteq \mathcal{NT}$ be $\bigoplus_{Y \neq Z} \mathcal{NT}(Y, Z)$.

Then

- \mathcal{NT}_{nil} is a nilpotent ideal,
- \mathcal{NT}_{ss} is a semi-simple subring, and
- $\mathcal{N}\mathcal{T} = \mathcal{N}\mathcal{T}_{\mathsf{nil}} \rtimes \mathcal{N}\mathcal{T}_{\mathsf{ss.}}$

Free versus projective modules

Ryszard Nest

ordered case

Ring theoretic

Operations on filtrated K-theo

Free modules

Characterisation of free modules

Corollary

The projection $\mathcal{N}\mathcal{T} \twoheadrightarrow \mathcal{N}\mathcal{T}_{ss}$ induces a bijection between isomorphism classes of projective modules over $\mathcal{N}\mathcal{T}$ and $\mathcal{N}\mathcal{T}_{ss}$. The latter are just families of free $\mathbb{Z}/2$ -graded Abelian groups $(G_Y)_{Y\in\mathbb{LC}(X)^*}$.

Any projective $\mathcal{N}\mathcal{T}$ -module is of the form $\mathcal{N}\mathcal{T} \otimes_{\mathcal{N}\mathcal{T}_{ss}} P$ for a free $\mathcal{N}\mathcal{T}_{ss}$ -module and hence a direct sum of free modules.

Ryszard Nest

Characterisation of

free modules

Lemma

Let M be an NT-module that is free as an Abelian group. Then $M_{ss} := \mathcal{NT}_{ss} \otimes_{\mathcal{NT}} M$ is a free Abelian group as well, and $P := \mathcal{N}\mathcal{T} \otimes_{\mathcal{N}\mathcal{T}_{ss}} M_{ss}$ is a free $\mathcal{N}\mathcal{T}$ -module.

There is a canonical map $P \rightarrow M$, which induces an isomorphism $P_{ss} \rightarrow M_{ss}$.

Ryszard Nest

The totally ordered cas

Operations on filtrated K-theo

Free modules

Characterisation of free modules

The Trivial Nakayama Lemma

A a unital ring

I a nilpotent ideal in A: $I^k = 0$ for some $k \in \mathbb{N}$

M an A-module

Lemma

If $I \cdot M = M$ or, equivalently, $(A/I) \otimes_A M \cong 0$, then M = 0.

Proof.

$$I \cdot M = M \Longrightarrow 0 = 0 \cdot M = I^k \cdot M = M$$

 $(A/I) \otimes_A M \cong M/I \cdot M.$

Another criterion for projective modules

Ryszard Nest

Characterisation of free modules

Lemma

Let $f: P \to M$ be a map between two $\mathcal{N}\mathcal{T}$ -modules.

Assume that $f_{ss}: P_{ss} \to M_{ss}$ is an isomorphism and that P is projective.

Then f is surjective, and it is injective if and only if $\operatorname{Tor}_{1}^{\mathcal{NT}}(\mathcal{NT}_{ss},M)=0.$

Ryszard Nest

Characterisation of free modules

Proof.

The Trivial Nakayama Lemma yields coker(f) = 0 because

$$coker(f)_{ss} = coker(f_{ss}) = 0.$$

Let $K := \ker(f)$. Then there is an exact sequence

$$0 \to \mathsf{Tor}_1^{\mathcal{NT}}\big(\mathcal{NT}_{\mathsf{ss}}, \mathit{M}\big) \to \mathit{K}_{\mathsf{ss}} \to \mathit{P}_{\mathsf{ss}} \xrightarrow[\simeq]{\mathit{f}_{\mathsf{ss}}} \mathit{M}_{\mathsf{ss}} \to 0.$$

$$K = 0 \iff K_{ss} = 0 \iff \operatorname{Tor}_{1}^{\mathcal{NT}}(\mathcal{NT}_{ss}, M) = 0.$$

Ryszard Nest

The totally ordered case

Operations on filtrated K-theory

Characterisation of free modules

The crucial step

- Let M be an exact \mathcal{NT} -module that is free as an Abelian group. We want to show that M is projective.
- We have constructed a projective $\mathcal{N}\mathcal{T}$ -module P and a map $f: P \to M$ such that f_{ss} is invertible.
- By the Trivial Nakayama Lemma, f is surjective.
- We get a module extension $K \rightarrow P \rightarrow M$.
- It remains to prove $K_{ss} = 0$.

Lemma

Let $h: K \to P$ be an injective $\mathcal{N}\mathcal{T}$ -module homomorphism. If K is exact, then $h_{ss}: K_{ss} \to P_{ss}$ is injective as well.

• This lemma applies because K is exact, and yields $K_{ss} = 0$ as needed, showing that M is projective.

Ryszard Nest

The totally

Ring theoretic structure of N

Free modules

Characterisation of free modules

Proof of the crucial lemma

Lemma

Let $h: K \to P$ be an injective $\mathcal{N}\mathcal{T}$ -module homomorphism. If K is exact, then $h_{ss}: K_{ss} \to P_{ss}$ is injective as well.

Ryszard Nest

The totally ordered case

ordered case

Operations of

Free modules

Characterisation of

Characterisation o free modules

Proof.

Let $x \in K(Y)$. We must show:

$$h(x) \in \mathcal{NT}_{\mathsf{nil}} \cdot P(Y) \implies x \in \mathcal{NT}_{\mathsf{nil}} \cdot K(Y).$$

- There are one or two generators α_Y , β_Y of $\mathcal{NT}(?, Y)$ such that $(\mathcal{NT}_{\mathsf{nil}} \cdot P)(Y) = \mathsf{range}\,\alpha_Y + \mathsf{range}\,\beta_Y$.
- Let $\gamma_Y \in \mathcal{NT}(Y,?)$ be the longest arrow out of Y. Then range $\alpha_Y + \text{range } \beta_Y \subseteq \ker \gamma_Y$, with equality for any exact module.

$$\implies \gamma_Y(h(x)) = 0$$

 $\implies \gamma_Y(x) = 0$ because h is injective

$$\implies x \in \mathcal{NT}_{\mathsf{nil}} \cdot K(Y)$$
 because K is exact.

Ryszard Nest

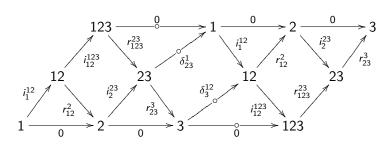
The totally ordered case

ordered case

Operations on filtrated K-theor

Characterisation of free modules

An example of the proof method



- Any arrow to Y=23 factors through $\alpha_Y=i_2^{23}$ or $\beta_Y=r_{123}^{23}$, and the longest arrow out of Y is $\gamma_Y=\delta_3^{12}r_{23}^3$.
- $\gamma_{\mathbf{Y}} \circ \alpha_{\mathbf{Y}} = \mathbf{0}$ and $\gamma_{\mathbf{Y}} \circ \beta_{\mathbf{Y}} = \mathbf{0}$
- For an exact module, range $\alpha_Y = \ker r_{23}^3$ and

$$r_{23}^3(\text{range }\beta_Y) = \text{range } r_{123}^3 = \ker \delta_3^{12}.$$

 \implies ker $\gamma_Y = \text{range } \alpha_Y + \text{range } \beta_Y$ for an exact module.

Ryszard Nest

The totally ordered case

Ring theoretic structure of $\mathcal{N}\mathcal{T}$ Operations on filtrated K-theory Free modules Characterisation of

free modules

Further reading (see arxiv)

The Baum-Connes conjecture via localisation of categories.

Meyer and Nest.

Homological algebra in bivariant K-theory and other triangulated categories. I.

Meyer.

Homological algebra in bivariant K-theory and other triangulated categories. II.

Meyer and Nest.

 C^* -Algebras over topological spaces: the bootstrap class.

Meyer and Nest.

 C^* -Algebras over topological spaces: filtrated K-theory.