Ryszard Nest

Ideals and projectives

The ABC spectral

Let & be an abelian category

We call a covariant functor $F: \mathfrak{T} \to \mathfrak{C}$ homological if

$$F(C) \rightarrow F(A) \rightarrow F(B)$$

is exact for any distinguished triangle

$$\Sigma B \to C \to A \to B.$$

We define $F_n(A) := F(\Sigma^n A)$ for $n \in \mathbb{Z}$. Similarly, we call a contravariant functor $F: \mathfrak{T} \to \mathfrak{C}$ cohomological if $F(B) \rightarrow F(A) \rightarrow F(C)$ is exact for any distinguished triangle, and we define $F^n(A) := F(\Sigma^n A)$.

Ryszard Nest

Homologica algebra

Ideals and projectives

J-exact complexes

The phantom towe

Assembly map

The ABC spectral

sequence

Example: $\Gamma = \mathbb{Z}$

Coactions of compact groups

We will always be in the following situation.

- **1** $\mathfrak C$ is some abelian category equipped with a shift $\Sigma:\mathfrak C\to\mathfrak C$ ($\mathfrak C$ is stable).
- **2** Our functors $F: \mathfrak{T} \to \mathfrak{C}$ are homological and stable, i. e. commute with Σ .

Ryszard Nest

Ideals and projectives

The ABC spectral

We will do homological algebra relative to some ideal in $\mathfrak T$ wich satisfies the following property.

Definition

An ideal $\mathfrak{I} \subseteq \mathfrak{T}$ is called *stable* if the suspension isomorphisms $\Sigma \colon \mathfrak{T}(A,B) \xrightarrow{\cong} \mathfrak{T}(\Sigma A,\Sigma B)$ for $A,B \in \mathfrak{T}$ restrict to isomorphisms

$$\Sigma \colon \mathfrak{I}(A,B) \xrightarrow{\cong} \mathfrak{I}(\Sigma A, \Sigma B).$$

Definition

An ideal $\mathfrak{I} \subset \mathfrak{T}$ in a triangulated category is called *homological* if it is the kernel of a stable homological functor.

Ryszard Nest

Homologica algebra

Ideals and projectives

The phantom towe

Assembly map

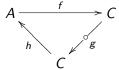
Derived functors
The ABC spectral

sequence

Example: $\Gamma = \mathbb{Z}$

Coactions of compact groups

Before continuing with definitions, recall the picture of distinguished triangle in $\ensuremath{\mathfrak{T}}.$



Ryszard Nest

Ideals and projectives

The ABC spectral

Definition

Let $\mathfrak T$ be a triangulated category and let $\mathfrak I\subseteq\mathfrak T$ be a homological ideal. Let $f: A \to B$ be a morphism in $\mathfrak T$ and embed it in an exact triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$.

- We call $f \Im$ monic if $h \in \Im$.
- We call $f \Im$ epic if $g \in \Im$.
- We call f an \Im equivalence if f is both \Im monic and \Im epic or, equivalently, if $g, h \in \mathfrak{I}$.
- We call f an \Im phantom map if $f \in \Im$.

An object $A \in \mathfrak{T}$ is called \mathfrak{I} contractible if $\mathrm{id}_A \in \mathfrak{I}(A,A)$. An exact triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ in \mathfrak{T} is called \mathfrak{I} exact if $h \in \mathfrak{I}$.

Ryszard Nest

algebra
Ideals and projective

3-exact complexes
Projective objects

The phantom tow

Derived functors

The ABC spectral sequence

Example: $\Gamma = \mathbb{Z}$ Coactions of

Consider a chain complex $C_{\bullet} = (C_n, d_n)$. For each $n \in \mathbb{N}$, we may embed the map d_n in an exact triangle

$$C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{f_n} X_n \xrightarrow{g_n} \Sigma C_n,$$
 (1.1)

which is determined uniquely up to (non-canonical) isomorphism of triangles. Hence the following definition does not depend on auxiliary choices:

Definition

The chain complex C_{\bullet} is called $\Im exact$ in degree n if the composite map $X_n \xrightarrow{g_n} \Sigma C_n \xrightarrow{\Sigma f_{n+1}} \Sigma X_{n+1}$ belongs to \Im . It is called $\Im exact$ if it is $\Im exact$ in degree n for all $n \in \mathbb{Z}$.

Ryszard Nest

algebra

3-exact complexes

Projective objects
The phantom tower

Assembly man

Derived functors

The ABC spectral

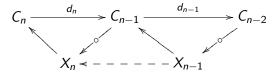
The ABC specti

Example: $\Gamma = \mathbb{Z}$

Coactions of

compact group

If we recall from yesterday, in the diagram



the composition given by the stipled arrow is in $\ensuremath{\mathfrak{I}}.$

Ryszard Nest

3-exact complexes

The ABC spectral

Lemma

Let $F: \mathfrak{T} \to \mathfrak{C}$ be a stable homological functor into some stable Abelian category \mathfrak{C} . Let C_{\bullet} be a chain complex over \mathfrak{T} . The complex C. is KerF exact in degree n if and only if the sequence

$$F(C_{n+1}) \xrightarrow{F(d_{n+1})} F(C_n) \xrightarrow{F(d_n)} F(C_{n-1})$$

in \mathfrak{C} is exact at $F(C_n)$.

Later we will meet homological ideals given as intersections kernels of a family of homological ideals.

Ryszard Nest

Homological algebra

J-exact complexe

Projective objects

The phantom tow

Assembly map

The ABC spectral

sequence

sequence

Example: $\Gamma = \mathbb{Z}$ Coactions of

Definition

An object $A\in \mathfrak{T}$ is called \mathfrak{I} projective if the functor $\mathfrak{T}(A, \square)\colon \mathfrak{T} \to \mathfrak{Ab}$ is \mathfrak{I} exact.

We write $\mathcal{P}_{\mathfrak{I}}$ for the class of \mathfrak{I} projective objects in $\mathfrak{T}.$

Ryszard Nest

Projective objects

The ABC spectral

emma

An object $A \in \mathcal{T}$ is \mathfrak{I} projective if and only if $\mathfrak{I}(A,B) = 0$ for all $B \in \mathfrak{T}$.

Lemma

The class $\mathcal{P}_{\mathfrak{I}}$ of \mathfrak{I} projective objects is closed under (de)suspensions, retracts, and possibly infinite direct sums (as far as they exist in \mathfrak{T}).

Ryszard Nest

algebra
Ideals and projectives

J-exact complexes

The phantom towe

Assembly map

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Example: $\Gamma = \mathbb{Z}$

Coactions of compact groups

The following will supply us with projective objects.

Theorem

1 Suppose that F is \mathfrak{I} -exact and $Q \in \mathfrak{T}$ satisfies

$$\mathfrak{T}(Q,A)=\mathfrak{C}(X,F(A))$$

for some object X in \mathfrak{C} . Then Q is \mathfrak{I} -projective.

2 Suppose that $\mathfrak{I}=$ Ker F. Then an object P of \mathfrak{T} is projective iff F(P) is projective in \mathfrak{C}

Ryszard Nest

algebra
Ideals and projective

J-exact complexes
Projective objects

The phantom tower

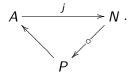
Derived functors

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coactions of

 ${\mathfrak T}$ contains enough projectives if, for any object A in ${\mathfrak T}$, there exists an exact triangle of the form



with P projective and $j \in \mathfrak{I}(A, N)$. Then we can construct projective resolutions.

Ryszard Nest

The phantom tower

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

The phantom tower.

Ryszard Nest

Homologica algebra

Ideals and projective \Im -exact complexes

The phantom tower

A 11

Derived functors

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coactions of compact groups

The phantom tower.

$$A = N_0$$

Ryszard Nest

Homologica algebra

Ideals and projectiv

The phantom tower

Derived functors

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coactions of

The phantom tower.

$$A = N_0$$
 π_0
 P_0

Ryszard Nest

The phantom tower

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

The phantom tower.

We will use above to construct a projective resolution.

$$A = N_0 \xrightarrow{\iota_0^1} N_1$$

$$P_0$$

mapping cone of π_0

Ryszard Nest

Homologica algebra

Ideals and projectives

3-exact complexes

The phantom tower

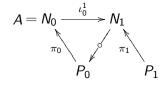
Derived functor

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coartions of

The phantom tower.



Ryszard Nest

Homologica algebra

Ideals and projectives

3-exact complexes

The phantom tower

Derived functors
The ABC spectral

sequence

Example: $\Gamma = \mathbb{Z}$

Coartions of

The phantom tower.

We will use above to construct a projective resolution.

$$A = N_0 \xrightarrow{\iota_0^1} N_1 \xrightarrow{\iota_1^2} N_2$$

$$P_0 \qquad P_1$$

mapping cone of π_1

Ryszard Nest

Homologica

Ideals and projective \Im -exact complexes

The phantom tower

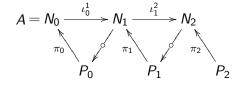
Derived functor

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coactions of

The phantom tower.



Ryszard Nest

Homologica

Ideals and projectives

3-exact complexes

The phantom tower

Derived functor

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coactions of

The phantom tower.

We will use above to construct a projective resolution.

$$A = N_0 \xrightarrow{\iota_0^1} N_1 \xrightarrow{\iota_1^2} N_2 \xrightarrow{\iota_2^3} N_3$$

$$P_0 \qquad P_1 \qquad P_2$$

mapping cone of π_2

Ryszard Nest

Homologica

Ideals and projectives 3-exact complexes

The phantom tower

Assembly map

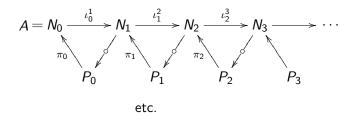
Derived functor

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coactions of

The phantom tower.



Ryszard Nest

Homological

Ideals and projective

3-exact complexes

The phantom tower

Assembly map Derived functors

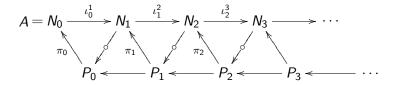
The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coactions of

The phantom tower.

We will use above to construct a projective resolution.



The succesive compositions produce the projective resolution of A

Ryszard Nest

Assembly map

The ABC spectral

Example

- 1 $\mathfrak{T} = KK^{\Gamma}$ for a discrete group Γ
- 2 $j \in \mathfrak{I}$ if, for all torsion subgroups $H \subset \Gamma$, j = 0 in KK^H
- 3 \mathcal{P}_{γ} coincides with the usual class of proper Γ -algebras.

Definition

Given A, its projective cover is a \Im -projective object P_A and $D_A \in KK^{\Gamma}(P_A, A)$ such that every $k \in KK^{\Gamma}(Q, A)$ with $Q \in \mathcal{P}_{\mathfrak{I}}$ factorizes through D.

$$Q \xrightarrow{k} P_{A}$$

Ryszard Nest

Homolo algebra

Ideals and projecti

3-exact complexe

Projective objects

Assembly map

Derived functors

The ABC spectral sequence

Example: $\Gamma = \mathbb{Z}$

Coactions of

Example continued

Such a P_A always exists!

In fact, it is of the form $(P_{\mathbb{C}} \otimes A, D_{\mathbb{C}} \otimes 1)$, where $D_{\mathbb{C}}$ is the usual Dirac operator (mostly familiar if $B\Gamma$ is a spin-manifold)

γ element

 Γ has a γ -element if $D_{\mathbb{C}}$ has the right inverse, i. e. there exists a $d \in KK^{\Gamma}(\mathbb{C}, P_{\mathbb{C}})$ (dual Dirac) such that

$$d_{\mathbb{C}} \circ D_{\mathbb{C}} = id|_{P_{\mathbb{C}}}.$$

In this case the exterior Kasparov product with $\gamma = D_{\mathbb{C}} \circ d_{\mathbb{C}} \in KK^{\Gamma}(\mathbb{C}, \mathbb{C})$ is the projection onto the complement of \mathcal{N} , the \mathfrak{I} -contractible objects, and

$$KK^{\Gamma} = <\mathcal{P}_{\mathfrak{I}}> \oplus \mathcal{N}$$

Ryszard Nest

Homological

Ideals and projective 3-exact complexes

Projective objects

I ne pnantom to

Assembly map

Derived functors
The ABC spectral

sequence

Example: $\Gamma=2$

Coactions of

Example continued

Given homological functor F, which vanishes on \mathfrak{I} , it has a total left derived functor $\mathbb{L}F$ with a natural transformation

$$\mathbb{L}F \to F$$
.

In fact, $\mathbb{L}F(A) = F(P_A)$.

Theorem

Let $F(A) = K_*(A \rtimes_{red} \Gamma)$. Then $\mathbb{L}F(A) = K_{\Gamma}^*(A)$ and

$$K_{\Gamma}^*(A) = \mathbb{L}F(A) \to F(A) = K_*(A \rtimes_{red} \Gamma)$$

is the assembly map.

Ryszard Nest

Homologica algebra Ideals and project

Ideals and projecti

3-exact complexe

Projective objects

The phantom tow

Assembly map

Derived functors The ABC spectral sequence Example: $\Gamma = \mathbb{Z}$ Coactions of

Example continued

Theorem

Suppose that Γ satisfies strong Baum-Connes conjecture, i. e. it has the γ -element equal to one. Then KK^{Γ} coincides with the localizing subcategory generated by \mathcal{P}_3 .

Recall that f. ex. amenable groups satisfy the hypothesis. Moreover $\mathcal{P}_{\mathcal{I}}$ is generated by homogeneous actions of Γ , hence any stable homological functor on KK^{Γ} which coincides with K_{Γ}^* on homogeneous actions is the same as K_{Γ}^* .

Corollary

Suppose that Γ satisfies the strong Baum-Connes conjecture, Γ acts on X and that A is a Γ - C^* -algebra in $\mathfrak{C}^*\mathfrak{alg}(X)$. If A is in $\mathcal{B}(X)$, then so is $A \rtimes_{red} \Gamma$.

Ryszard Nest

Homological algebra

J-exact complexes
Projective objects

The phantom tow

Derived functors

The ABC spectral

Evample: F — 7

Example: $\Gamma = \mathbb{Z}$

Once we have a notion of exactness for chain complexes, we can do homological algebra in the homotopy category $\text{Ho}(\mathfrak{T})$ of all chain complexes over \mathfrak{T} .

Ryszard Nest

Derived functors The ABC spectral

Definition

Let $\mathfrak I$ be a homological ideal in a triangulated category $\mathfrak T$ with enough projective objects. Let $F: \mathfrak{T} \to \mathfrak{C}$ be an additive functor with values in an Abelian category \mathfrak{C} . Applying Fpointwise to chain complexes, we get an induced functor $F : Ho(\mathfrak{T}) \to Ho(\mathfrak{C})$. Let $P : \mathfrak{T} \to Ho(\mathfrak{T})$ be the functor that maps an object of \mathfrak{T} to a projective resolution of \mathfrak{T} . Let H_n : Ho(\mathfrak{C}) $\to \mathfrak{C}$ be the *n*th homology functor. The composite functor

$$\mathbb{L}_n F \colon \mathfrak{T} \xrightarrow{P} \mathsf{Ho}(\mathfrak{T}) \xrightarrow{\bar{F}} \mathsf{Ho}(\mathfrak{C}) \xrightarrow{H_n} \mathfrak{C}$$

for $n \in \mathbb{N}$ is called the *n*th *left derived functor* of F. If $F: \mathfrak{T}^{\mathrm{op}} \to \mathfrak{C}$ is a contravariant additive functor, then the corresponding composite functor $\mathbb{R}^n F \colon \mathfrak{T}^{\mathrm{op}} \to \mathfrak{C}$ is called the nth right derived functor of F.

Ryszard Nest

Homological

J-exact complexe

The phantom tov

Derived functors

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

compact groups

More concretely, $\mathbb{L}_n F(A)$ for a covariant functor F and $A \in \mathfrak{T}$ is the homology of the chain complex

$$\cdots \to F(P_{n+1}) \xrightarrow{F(\delta_{n+1})} F(P_n) \xrightarrow{F(\delta_n)} F(P_{n-1}) \to \cdots \to F(P_0)$$

at $F(P_n)$ in degree n, where $(P_{\bullet}, \delta_{\bullet})$ is an \mathfrak{I} projective resolution of A. Similarly, $\mathbb{R}^n F(A)$ for a contravariant functor F is the cohomology of the chain complex

$$\cdots \leftarrow F(P_{n+1}) \stackrel{F(\delta_{n+1})}{\longleftarrow} F(P_n) \stackrel{F(\delta_n)}{\longleftarrow} F(P_{n-1}) \leftarrow \cdots \leftarrow F(P_0)$$

at $F(P_n)$ in degree -n.

Ryszard Nest

Homological algebra

 \Im -exact complexes
Projective objects
The phantom tower

Assembly map

The ABC spectral

sequence

Coactions of compact groups

The phantom tower of A generates spectral sequences. For simplicity, we consider a homological functor $F\colon \mathfrak{T} \to \mathfrak{C}$ Since we are not going to use it later, we'll just describe the *exact couple* which generates it.

Ryszard Nest

algebra

J-exact complexes
Projective objects
The phantom towe

Derived functors
The ABC spectral

sequence

Example: $\Gamma = \mathbb{Z}$

Coactions of

Let $N_n := A$ for $n \in -\mathbb{N}$ and define bigraded Abelian groups

$$egin{aligned} D &:= \sum_{p,q \in \mathbb{Z}} D_{pq}, \qquad D_{pq} &:= F_{p+q+1}(N_{p+1}), \ E &:= \sum_{p,q \in \mathbb{Z}} E_{pq}, \qquad E_{pq} &:= F_{p+q}(P_p), \end{aligned}$$

and homogeneous group homomorphisms

$$D \xrightarrow{i} D$$
 $i_{pq} := (\iota_{p+1}^{p+2})_* : D_{p,q} \to D_{p+1,q-1}, \qquad \deg i = (1,-1),$ $j_{pq} := (\varepsilon_p)_* : D_{p,q} \to E_{p,q}, \qquad \deg j = (0,0),$ $k_{pq} := (\pi_p)_* : E_{p,q} \to D_{p-1,q}, \qquad \deg k = (-1,0).$

Since F is homological, the chain complexes

$$\cdots \to F_{m+1}(N_{n+1}) \xrightarrow{\varepsilon_{n*}} F_m(P_n) \xrightarrow{\pi_{n*}} F_m(N_n) \xrightarrow{\iota_{n*}^{n+1}} F_m(N_{n+1}) \to \cdots$$

are exact for all $m \in \mathbb{Z}$. This means that (D, E, i, j, k) is an exact couple.

Ryszard Nest

Homologica algebra

3-exact complexe

Projective objects

Assembly map

Derived functors

The ABC spectral

The ABC spectra sequence

Example: $\Gamma = \mathbb{Z}$

Coactions of

Theorem

The ABC spectral sequence for homological functor is independent of auxiliary choices, functorial in Aand abuts at F(A). The second tableaux involves only the derived functors:

$$E_{pq}^2 \cong \mathbb{L}_p F_q(A),$$

There is a similar result for cohomological functors.

Ryszard Nest

Homological

Ideals and project

3-exact complex

Projective objects

The phantom tov

Assembly map

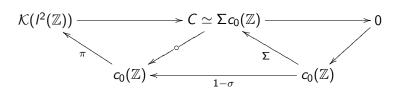
The ABC spectral sequence Example: $\Gamma = \mathbb{Z}$

Coactions of compact groups

Γ = ℤ

• $\mathfrak{I} = Ker : KK^{\mathbb{Z}} \to KK$

The \Im -projective resolution of $\mathbb C$ has the form



The projective cover of $\mathbb C$ is just the mapping cone

$$c_0(\mathbb{Z}) o c_0(\mathbb{Z}) o \Sigma C_{1-\sigma}.$$

But this is just the rotated exact triangle associated to the extension

$$0 \to \Sigma c_0(\mathbb{Z}) \to C_0(\mathbb{R}) \to c_0(\mathbb{Z}) \to 0$$
,

the *-homomorphism $C_0(\mathbb{R}) \to c_0(\mathbb{Z})$ given by the evaluation $f \to f|_{\mathbb{Z}}$.

Ryszard Nest

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Conclusion

 $P_{\mathbb{C}} = C_0(\mathbb{R}^2)$, $D = \overline{\partial}$, the usual Dirac operator (or rather its phase),

$$K_{\mathbb{Z}}^*(A) = K_*((A \otimes C_0(\mathbb{R}^2)) \rtimes \mathbb{Z}) \to K_*(A \rtimes \mathbb{Z}),$$

where the assembly map is given by the product with Dirac operator.

The spectral sequence computing $K_{\mathbb{Z}}^*(A)$ becomes the six term exact sequence in K-theory associated to the extension

$$\Sigma(A\otimes c_0(\mathbb{Z}))\rtimes\mathbb{Z}\hookrightarrow (A\otimes C_0(\mathbb{R}^2))\rtimes\mathbb{Z}\twoheadrightarrow (A\otimes c_0(\mathbb{Z}))\rtimes\mathbb{Z}$$

Since $A \otimes c_0(\mathbb{Z}) \rtimes \mathbb{Z} \simeq A \otimes \mathcal{K}$, this is just the usual Pimsner-Voiculescu exact sequence.

Ryszard Nest

Homological algebra

3-exact complexe Projective objects

The phantom tow

Derived functors
The ABC spectral

The ABC spectra sequence

Example: $\Gamma = \mathbb{Z}$

Coactions of compact groups We assume that G is a compact, connected group.

- $\mathfrak{T}=\mathsf{KK}^{\hat{\mathsf{G}}}$, the KK-category of G-coalgebras,
- $\mathfrak{I} = \mathit{Ker} : \mathit{KK}^{\hat{\mathsf{G}}} \to \mathsf{KK}$
- $F(A) = K^*(A \times \hat{G})$

Theorem

Baum-Connes for coactions

$$<\mathcal{P}_{\mathfrak{I}}>=\mathsf{KK}^{\hat{\mathsf{G}}}$$

Ryszard Nest

Homolo

Ideals and projectiv

The phantom too

Assembly map Derived functors

The ABC spectral

Example: $\Gamma = \mathbb{Z}$

Coactions of compact groups

The spectral sequence computing $K_{\hat{G}}^*(A) = \mathbb{L}F(A)$ becomes a spectral sequence for the K-theory of $B = A \rtimes \hat{G}$:

$$E_{p,q}^* \Longrightarrow K_{p+q}(A \rtimes \hat{G})$$

and the E^2 -term has form

$$E_{-p,q}^2 = H^p(R_G, K_q(A))$$

In terms of a G-algebra $B = A \rtimes \hat{G}$ we get

Corollary

Let G be a connected compact group and B a separable G- C* algebra. Then

$$K_*^G(B) = K_*(B \rtimes G) = 0 \Longrightarrow K_*(B) = 0.$$