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Graphical models emerged in the 1980s on the interface between Statistics and Artificial
Intelligence. This was a time when probabilistic approaches to model larger systems still
faced some skepticism: How to compute with 2100 probabilities when studying a system with
100 on/off switches? This skepticism quickly disappeared as graphical models provided an
abstract framework in which algorithms for efficient computation with structured probability
distributions could be developed at a general level. Since these early days, the field has seen
tremendous growth during which graphical models have found wide-spread applications and
have also become an important tool for rigorous statistical investigation of causality.1

What is a graphical model? Let (Xi)i∈V be a finite collection of random variables. In
a statistical context, the joint probability distribution of the variables is unknown and to be
inferred from data. A statistical model is a set of candidates for the unknown distribution.
In graphical modeling, each model is induced by a graph whose vertices correspond to the
variables Xi. The graph’s edges then encode structure that the model assumes of the un-
known distribution. How this works precisely depends on the type of graph. Here I will focus
on directed graphs, which naturally capture cause-effect relationships among the variables.

Let G = (V, E) be a directed graph with vertex set V and edge set E ⊆ V × V , without
self-loops, so (i, i) /∈ E for all i ∈ V . For each vertex i, define a set of parents pa(i) = {j ∈
V : (j, i) ∈ E}. The model induced by the graph G hypothesizes that each variable Xi is a
function of its parents Xj , j ∈ pa(i), and a stochastic noise term εi. Let us consider the case
where the functional relationships are linear, as frequently assumed in practice.

Example. Take G to be the following graph (known in the field as the Verma graph):
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The model induced byG is comprised of the joint distributions of random vectors (X1, . . . , X5)
that solve the equation system

X1 = ε1,

X2 = λ12X1 + λ52X5 + ε2,

X3 = λ13X1 + λ23X2 + ε3,

X4 = λ34X3 + λ35X5 + ε4,

X5 = ε5,

for a choice of real coefficients λij and independent random variables ε1, . . . , ε5. As G is
acyclic, the equation system is triangular and always has a unique solution.

The equations write each variable as a (linear) function of other variables and noise.
Taking the functional relations seriously and thinking of them as making an assignment of
values is the basis for the model’s causal interpretation, i.e., for letting the model also make
statements about different experimental settings. To explain briefly, imagine an experimenter

1For a summary of the state-of-the-art, see the “Handbook of Graphical Models” which just appeared

(co-edited by Marloes Maathuis, Steffen Lauritzen, Martin Wainwright and myself).
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is able to “turn off” variable X3 without changing how our hypothetical 5-variable system
behaves. Then a model for this new experimental intervention is obtained by replacing the
third equation by X3 = 0 but leaving all other equations unchanged.

Research interests. My interest in graphical models is broad. On one hand, new
applications continually call for refinements of models and methods. For instance, assump-
tions such as linearity or errors with Gaussian distributions may be inappropriate, or careful
statistical considerations may be required to accurately estimate low-dimensional structure
from high-dimensional data. On the other hand, there remain challenging open problems
about fundamental properties of basic models, such as the exemplified models based on linear
relations. I would like to elaborate on this latter point here.

Take up the above example. When the errors εi are Gaussian, all information about the
underlying graph is captured by the (positive definite) covariance matrix of the variables
Xi. In this sense, the model corresponds to a set of positive definite matrices. According
to the “trek-rule,” the covariances have beautiful combinatorial structure, which has driven
graphical solutions to many statistical problems. For instance, in the above example, the
covariance between X2 and X3 is

Cov[X2, X3] = λ12λ13ω1 + λ212λ23ω1 + λ23ω2 + λ23λ
2
52ω5,

with ωi being the variance of noise term εi. Observe how each one of the four summands
corresponds to a particular path (or rather walk) between nodes 2 and 3 in the graph.

A lot is known about the set of covariance matrices when the considered graph G = (V, E)
is an acyclic digraph:

a) Its dimension is simply |V |+ |E|, the count of vertices plus edges.
b) A simple rational expression recovers each coefficient λij from the covariance matrix.
c) Each set of covariance matrices is a smooth manifold cut out by conditional indepen-

dence relations (algebraically, these are special subdeterminants).
d) We understand precisely and can check efficiently if two graphs induce the same

model/set of covariance matrices.

These facts have a natural generalization for models obtained from possibly non-linear func-
tional relations, and they provide the basis for effective statistical methodology that learns
from data the graph underlying a model as well as all unknown model parameters.

However, many practical problems bring about complications. For instance, often not all
relevant variables can be measured (i.e., some variables are latent/unobserved) or a system
may contain feedback loops (i.e., the graph may contain directed cycles). Taking up our
running example, suppose we only observe (X1, . . . , X4). Then there are no conditional
independence relations holding among these variables alone and the theory outlined above
yields no useful information. Now this example is simple enough to derive that a positive
definite 4 × 4 matrix Σ = (σij) is the covariance matrix of (X1, X2, X3, X4) under our
graphical model if and only if Σ satisfies a polynomial constraint of degree 4 with 8 terms.
The constraint can be written, e.g., as the determinant of a matrix of 2× 2 minors:

fVerma =

∣∣∣∣|Σ12,12| |Σ12,13|
|Σ34,12| |Σ34,13|

∣∣∣∣ = 0.

However, for more complicated graphs it may be unclear what relations among observable
covariances are when there are latent variables/feedback loops. It may also be unclear
what the dimension of such a model is, or whether other graphs yield the same model for
the observed variables. These types of questions have driven a significant part of my recent
research,2 and although much progress has been made, many questions still await an answer.3

2https://arxiv.org/find/math,stat/1/au:+Drton_M/0/1/0/all/0/1
3A relatively recent review can be found in https://arxiv.org/abs/1612.05994.
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