

BEYOND (VECTOR) SPACE

CO/SIEIVES TAKING VALUES IN...

THERE ARE SEVERAL APPLICATIONS FOR SHEAVES WITH MORE GENERAL DATA CATEGORIES

SETS

REEB GRAPHS, SMOOTHING, APPROXIMATION CONTEXTUALITY, PARADOX

DE SILVA, MUNCH, & PATEL ABRAMSKY + AL.

SEMIGROUPS

POSITIVE CO/HOMOLOGY FOR SHEAVES OVER TIME AXIS

G + KRISHNAN

Z-MODULES

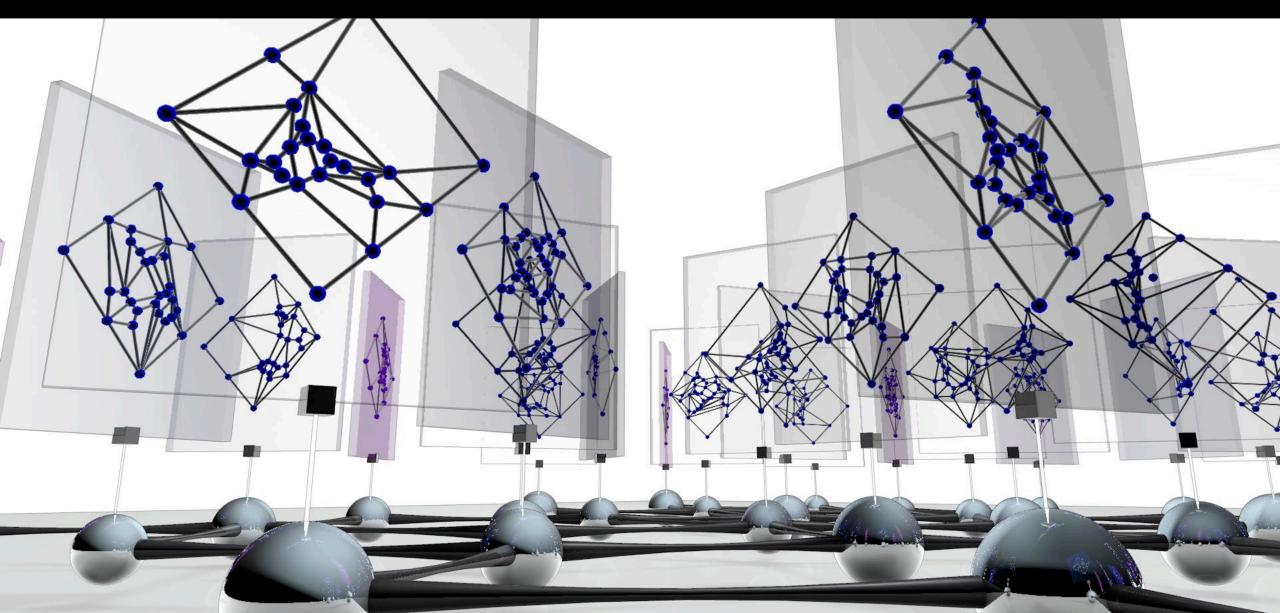
GENERALIZED PERSISTENCE ; BI-SHEAVES ; VERY GENERAL!

PATEL, MACPHERSON-PATEL

SOMETHING MORE GENERAL...

BASED ON WORK WITH HANS RIESS

SHEAVES OF LATTICES

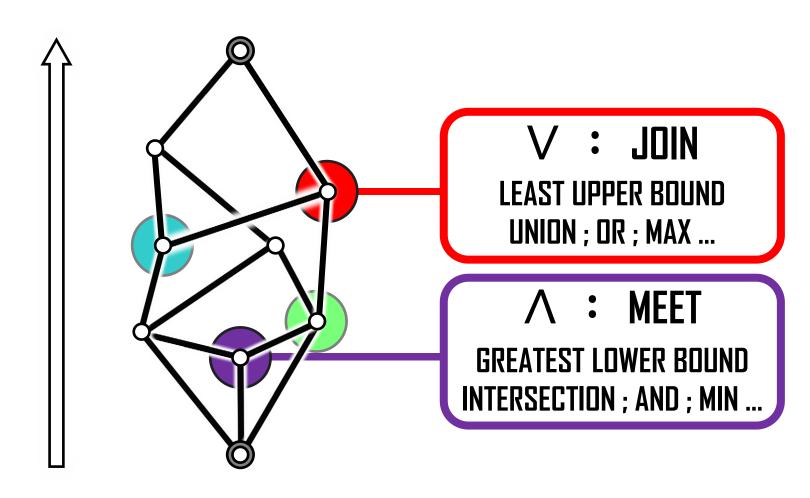


BACKGROUND : LATTICES

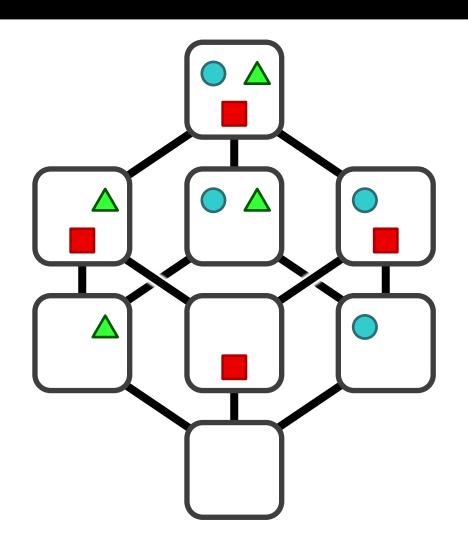
LATTICES are PARTIALLY ORDERED SETS with a PAIR of OPERATIONS

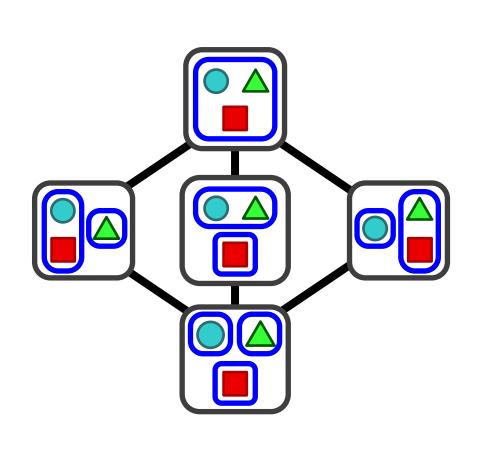
 $V: \Lambda$

COMMUTATIVE ASSOCIATATIVE IDEMPOTENT



EXAMPLES OF LATTICES





P(X) = PARTITIONS of X

GALOS // GONGEPT LATTIGES

Given a binary relation on two sets:

Acts as a **KERNEL** for a transform...

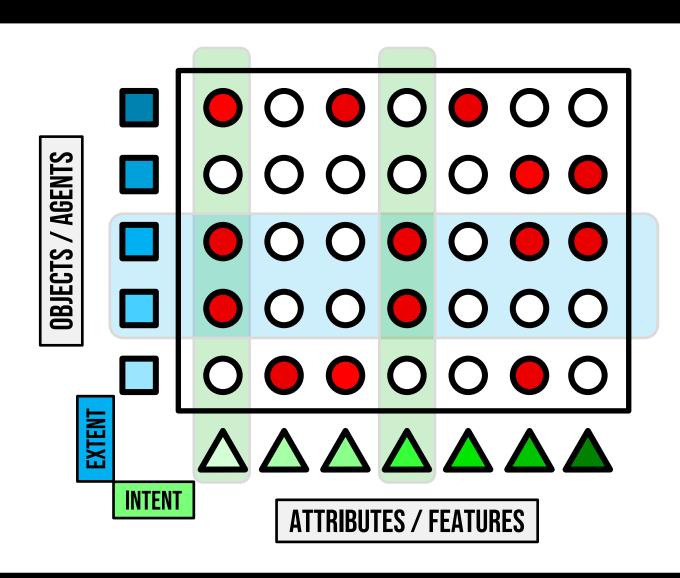
Inverse blocks are called **CONCEPTS**

Concepts are pairs INTENT-EXTENT

Concepts generate an ordering/lattice

CONCEPT LATTICE GALOIS LATTICE

[Wille, 1981 + more...]



GALOS / GONGEPT LATTIGES

EXAMPLE: Attributes of various social media platforms

		TEXT	IMAGE	VIDEO	DIRECTED	FOLLOWS	UP/LIKE	DOWN	USA	PRIVATE	DISINFO
		TXT	IMAG	VID	DIR	FOLL	UP	DOWN	USA	PRIV	DIS
TWITTER	Tw										
FACEBOOK	Fв										
INSTAGRAM	lg										
TIKTOK	Τĸ										
DISCORD	Dı										
YOUTUBE	ΥT										
REDDIT	Re										

GALOS // GONGEPT LATTIGES

The GALOIS LATTICE arranges the object-attribute pairs

It is illustrative to examine

UPSETS:

Yt

DOWNSETS : USA

	FO	LL VID	DIR	Die	<u> </u>
	(PRIV Tk			
		DO	WN	Fb	
Ξ	DISINFO				
	DIS	V	To To		
		TIP	Ig Tw	Re	
_					
			O		
		I			

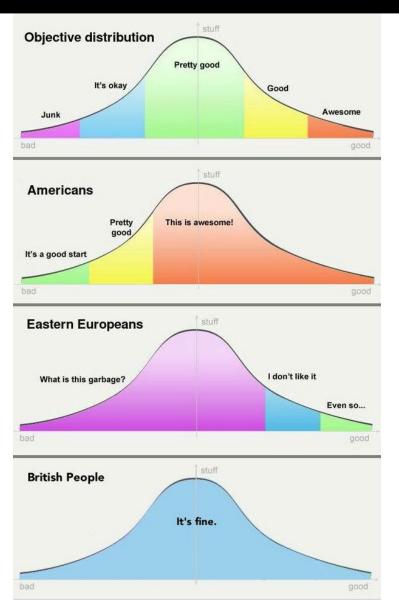
USA

		TEXT	IMAGE	VIDEO	DIRECTED	FOLLOWS	UP/LIKE	DOWN	USA	PRIVATE	DISINFO
		TXT	IMAG	VID	DIR	FOLL	UP	DOWN	USA	PRIV	DIS
TWITTER	Tw										
FACEBOOK	Fв										
INSTAGRAM	lg										
TIKTOK	Τĸ										
DISCORD	Dı										
YOUTUBE	ΥT										
REDDIT	RE										

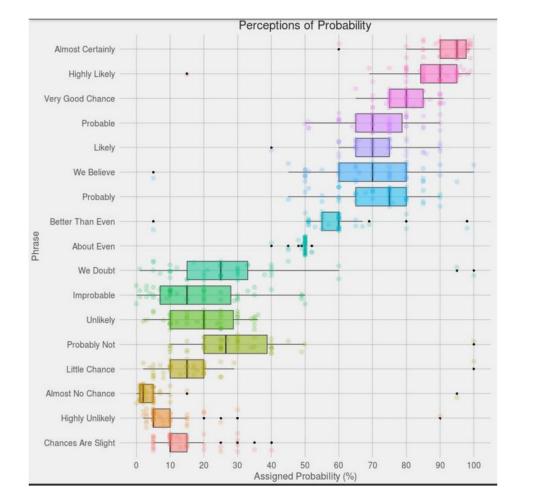
IDEA: NONLINEARITY VIA LATTICES

IF YOU WANT NONLINEAR SHEAVES, NON-LINEAR ORDERED SETS IS A GOOD START...

PERSONAL SCALES



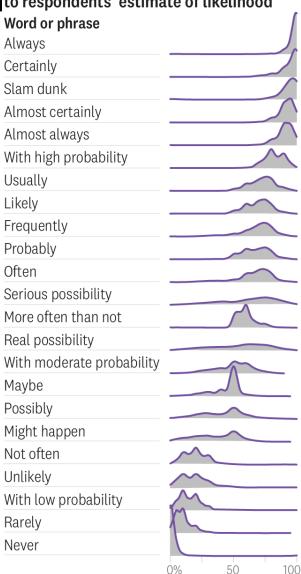
Individuals maintain personal structures for opinions, preferences, & perceptions



How People Interpret Probabilistic Words

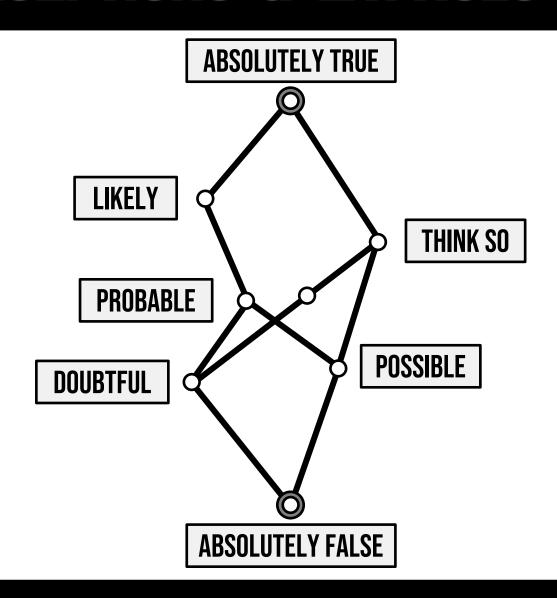
"Always" doesn't always mean always.

Distribution of responses according to respondents' estimate of likelihood

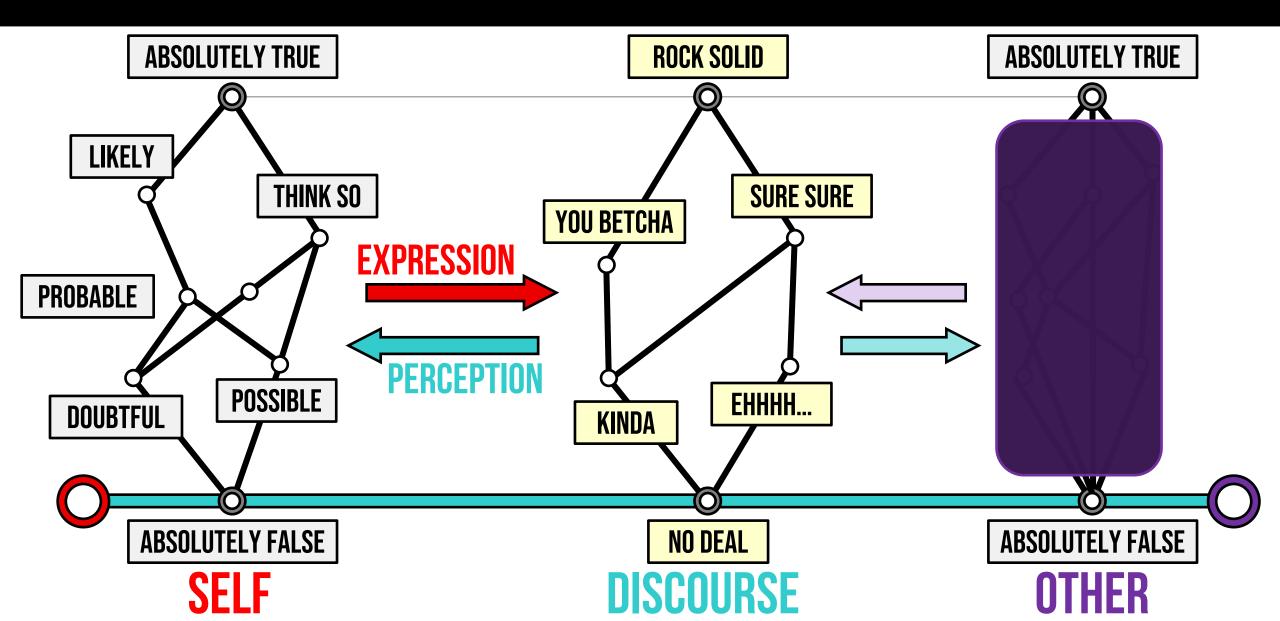


Source: Andrew Mauboussin and Michael J. Mauboussin

TRUITI G PERGEPTIONS G LATTICES



THE PROPLEM OF COMMUNICATION



EXAMPLE GUALITON-BUILDING

Consider a cover of a social network by neighborhoods N_v Consider a sheaf ${\mathcal F}$ whose stalks correspond to the NERVE POWERSETS

$$\mathcal{F}(v) = 2^{N_v} \qquad \mathcal{F}(e) = 2^{N_u \cap N_v} \qquad \partial e = \{u, v\}$$

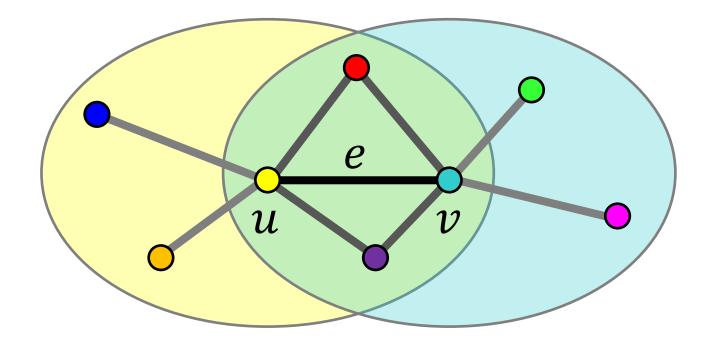
Vertex stalks $\mathcal{F}(v)$ are private estimates of who supports the coalition Maps to edge stalks $\mathcal{F}(e)$ are pairwise expressions of membership estimates

Think about how one could grow a coalition

EXAMPLE GUALITON-BUILDING

$$\mathcal{F}(v) = 2^{N_v}$$

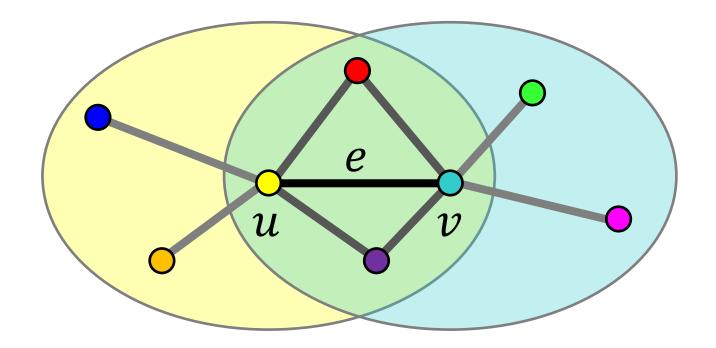
$$\mathcal{F}(e) = 2^{N_u \cap N_v}$$



Think about how one could grow a coalition

EXAMPLE GUALITON-BUILDING

Expression/Inference can be more subtle than "Are you for or against?"



Think about how one could grow a coalition

COMMUNICATION IN LATTICES

IS A BIT SUBTLE...

LATTIGE WORPIISWS

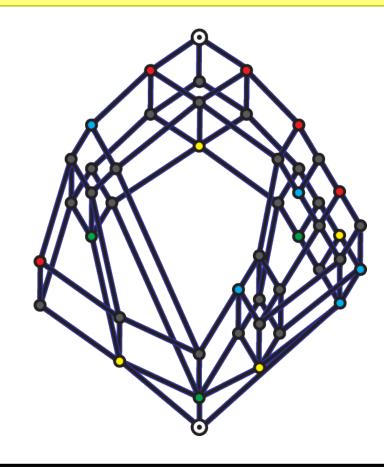
GALDIS CONNECTIONS

LATTICE CONNECTIONS come in ADJOINT PAIRS

$$X \xrightarrow{f_{\bullet}} Y \qquad f_{\bullet}(x) \le y \iff x \le f^{\bullet}(y)$$

$$f_{\bullet}(x) = \bigwedge f^{\bullet-1}(x^{\uparrow})$$

$$f^{\bullet}(y) = \bigvee f_{\bullet}^{-1}(y^{\downarrow})$$



WE WANT GLOBAL SECTIONS

BUT WE CAN'T JUST "RUN THE HEAT EQUATION" ON THESE SHEAVES LIKE WE COULD DO FOR VECTOR-VALUED SYSTEMS

DEFINITION: TARSKI LAPLAGIAN

DEFINITION: Let \mathcal{F} be a NETWORK SHEAF of LATTICES Let $\mathbf{x} = (x_n) \in \mathcal{C}^0$ be a D-COCHAIN

TARSKI LAPLACIAN

$$L: C^0\mathcal{F} \to C^0\mathcal{F}$$

$$(L\mathbf{x})_v = \bigwedge_{e \in \delta v} (\mathcal{F}_{v \leqslant e})^{\bullet} \left(\bigwedge_{w \in \partial e} (\mathcal{F}_{w \leqslant e})_{\bullet} (x_w) \right)$$

WINY IS THIS A CAPLAGIANT OF

IT CERTAINLY DOESN'T LOOK LIKE IT...

DEFINITION: TARSKI LAPLAGIAN

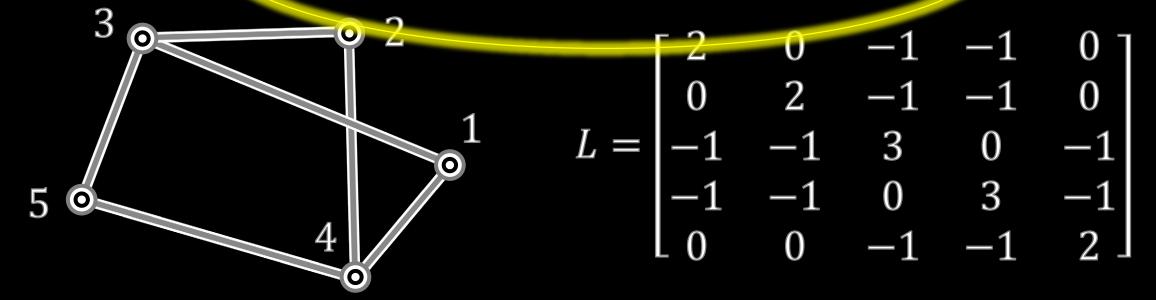
LEMMA: the TARSKI LAPLACIAN decomposes as

$$(L\mathbf{x})_v = \bigwedge_{e \in \delta v} (\mathcal{F}_{v \leqslant e})^{\bullet} \left(\bigwedge_{w \in \partial e} (\mathcal{F}_{w \leqslant e})_{\bullet} (x_w) \right)$$

$$= \underbrace{\left(\bigwedge_{e \in \delta v} (\mathcal{F}_{v \leqslant e})^{\bullet} (\mathcal{F}_{v \leqslant e})_{\bullet} (x_{v})\right)}_{e \in \delta v} \wedge \underbrace{\left(\bigwedge_{\substack{e \in \delta v \\ w \in \partial e - \{v\}}} (\mathcal{F}_{v \leqslant e})^{\bullet} (\mathcal{F}_{w \leqslant e})_{\bullet} (x_{w})\right)}_{e \in \delta v}$$

EXPANSION

MIXING



DEFINITION: TARSAI LAPLAGIAN

LEMMA: the TARSKI LAPLACIAN decomposes as

$$(L\mathbf{x})_v = \bigwedge_{e \in \delta v} (\mathcal{F}_{v \leqslant e})^{\bullet} \left(\bigwedge_{w \in \partial e} (\mathcal{F}_{w \leqslant e})_{\bullet} (x_w) \right) \quad \mathbf{BBT}$$

$$= \underbrace{\left(\bigwedge_{e \in \delta v} (\mathcal{F}_{v \leqslant e})^{\bullet} (\mathcal{F}_{v \leqslant e})_{\bullet} (x_{v})\right)}_{e \in \delta v} \wedge \underbrace{\left(\bigwedge_{\substack{e \in \delta v \\ w \in \partial e - \{v\}}} (\mathcal{F}_{v \leqslant e})^{\bullet} (\mathcal{F}_{w \leqslant e})_{\bullet} (x_{w})\right)}_{e \in \delta v}$$

EXPANSION

D - A

MIXING

DIFFUSION

THEOREM: For a COMPLETE LATTICE, X, and an order-preserving endomorphism $f: X \to X$ the fixed point set Fix(f) is a NONEMPTY COMPLETE QUASI-SUBLATTICE of X

MAIN THEOREM : For a network sheaf ${\mathcal F}$ of COMPLETE LATTICES, the GLOBAL SECTIONS are computed via the TARSKI LAPLACIAN

$$H^0\mathcal{F} = Fix(Id \wedge L)$$

COMPARE: $x_{n+1} = (I - L)x_n$

COMPARE: dx/dt = -Lx

COROLLARY : $H^0\mathcal{F}$ is a NONEMPTY COMPLETE QUASI-SUBLATTICE of $C^0\mathcal{F}$

HIGHER DIMENSIONS

THEOREM : For a network sheaf ${\mathcal F}$ of COMPLETE LATTICES, the GLOBAL SECTIONS are computed via the TARSKI LAPLACIAN

$$H^0\mathcal{F} = Fix(Id \wedge L)$$

DOES HIGHER DIMENSIONAL SHEAF COHOMOLOGY MAKE SENSE?

DEGALL TARSKI LAPLAGIAN

TARSKI LAPLACIAN

$$L: C^0\mathcal{F} \to C^0\mathcal{F}$$

$$(L\mathbf{x})_v = \bigwedge_{e \in \delta v} (\mathcal{F}_{v \leqslant e})^{\bullet} \left(\bigwedge_{w \in \partial e} (\mathcal{F}_{w \leqslant e})_{\bullet} (x_w) \right)$$

EASY! Replace vertices with k-cells and edges with cofaces.

$$L_k: C^k \mathcal{F} \to C^k \mathcal{F}$$

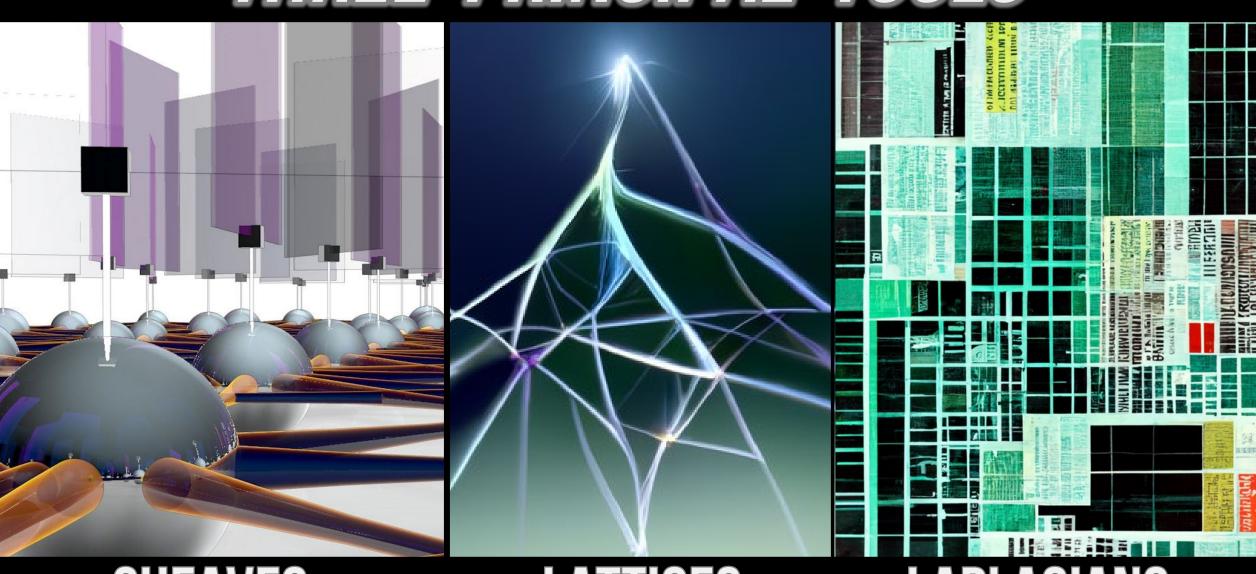
DEFINITION : For a cellular sheaf ${\mathcal F}$ of complete lattices on a cell complex, the TARSKI COHOMOLOGY is defined via the TARSKI LAPLACIAN

$$TH^k\mathcal{F} := Fix(Id \wedge L_k)$$

THEOREM : $TH^k\mathcal{F}$ is a nonempty complete quasi-sublattice of $\mathcal{C}^k\mathcal{F}$

THAT'S A GOOD QUESTION...

THREE PRINCIPAL TOOLS



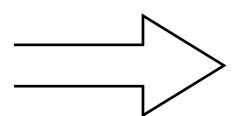
SHEAVES

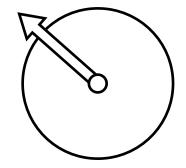
LATTICES

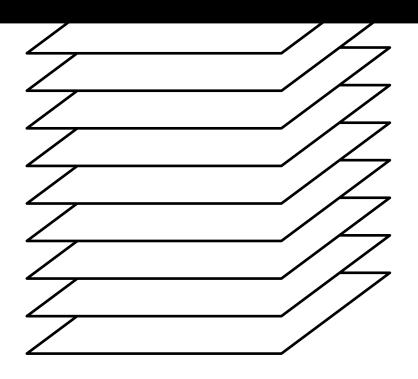
LAPLACIANS

TOWARDS REASONING

ADDITONAL / HIGHER LATTICE STRUCTURES







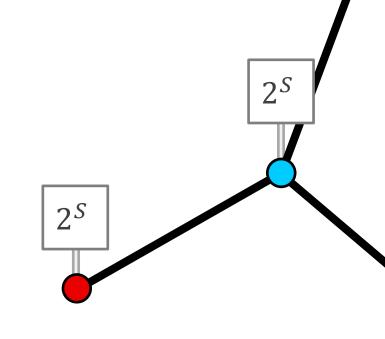
KNIPKE SEVANTUS A DSTRUUTED REASONNG

GIVEN: Kripke frame = $(S, \mathcal{K}_i \subset S \times S)$

DERIVE : Galois connections on powerset of states ${\mathcal S}$

$$2^{S} \xrightarrow{K_{i}^{\exists}} 2^{S}$$

$$K_{i}^{\forall}$$



SEMANTIC SHEAF: A graph of agents contemplating propositions S, communicating over the network to neighbors about knowledge/beliefs...

KNIPKE SEVANTUS & DSTRIBUTED REASONING

SEMANTIC SHEAF: A graph of agents contemplating propositions S, communicating over the network to neighbors about knowledge/beliefs...

DUAL TARSKI LAPLACIANS: For knowledge/possibility consensus

$$(L\sigma)_{i} = \bigwedge_{j \to i} \mathcal{K}_{i}^{\forall} \mathcal{K}_{j}^{\exists}(\sigma_{j})$$
$$(L^{*}\sigma)_{i} = \bigvee_{j \to i} \mathcal{K}_{j}^{\exists} \mathcal{K}_{i}^{\forall}(\sigma_{j})$$

HODGE-TARSKI THEOREM

Iteration yields knowledge (resp. possibility) consensus over the network...

MONN PROBRESS

W/ PAIGE RANDALL NORTH: HANS RIESS: MIGUEL LOPEZ

LATTICE: of propositions and implications via up-sets

FUZZY LATTICE THEORY: strength of implication

cf. work of R. Bêlohlávek (1999)

NEW INGREDIENT = ENRICHED CATEGORY THEORY

BOOLEAN LATTICE = category enriched in $\{0,1\}$ with all finite meets/joins

FUZZY LATTICE = category enriched in a commutative ordered monoid with all finite meets/joins (e.g., [0,1] for the classic residuated theory)

WEIGHTED LIMITS/COLIMITS -->> Laplacian & Hodge-Tarski fixed point theorem

OPEN QUESTIONS/DIRECTIONS

BEYOND NETWORKS: higher-dimensional complexes & cohomologies

BEYOND DIFFUSION: waves, reaction-diffusion, patterns, drift, ...

BEYOND LATTICES: coefficients are the programming language of a sheaf

BEYOND SHEAVES : stacks! & more...

BEYOND MATHEMATICS: so much for us to do in AI/ML/GSP +

ACKNOWLEDGEMENTS

APPLIED TOPOLOGY GROUP

ROBERT GHRIST, PROFESSOR, MATH/ESE, PENN
JAKOB HANSEN, BLUE LIGHT AI
IRIS YOON, POSTDOC, MATH, OXFORD
DARRICK LEE, POSTDOC, MATH, OXFORD
HANS RIESS, PHD CANDIDATE, ESE, PENN
ZOE COOPERBAND, PHD CANDIDATE, ESE, PENN
JULIAN GOULD, PHD CANDIDATE, MATH, PENN
PAIGE RANDALL NORTH, POSTDOC, MATH/ESE, PENN
MIGUEL LOPEZ, PHD CANDIDATE, AMCS, PENN

