

HAT'S USEFUL ABOUT SHEAVES?

GLOBAL SECTION FUNCTOR, H^D(-)

COLLATES ALL SOLUTIONS TO THE CONSTRAINTS IMPOSED BY THE SHEAF STALKS AND RESTRICTION MAPS; GIVES AN ALGEBRAIC FORM TO THE SOLUTION SET.

COHOMOLOGY, H^{*}(-)

H^{*}(-) CHARACTERIZES CONSTRAINT SATISFACTION AS A FUNCTION OF BOTH THE DOMAIN TOPOLOGY AND THE ALGEBRA OF THE CONSTRAINTS.

MORPHISMS/PUSHFORWARDS/PULLBACKS

THESE OPERATIONS TRANSFORM SHEAVES (FROM ONE BASE SPACE TO ANOTHER)

HOM AND TENSOR PRODUCTS

HOM CLASSIFIES RELATIONSHIPS BETWEEN SHEAVES; \otimes CONVOLVES SHEAF DATA.

MORPHISMS/PUSHFORWARDS/PULLBACKS

THESE OPERATIONS TRANSFORM SHEAVES (FROM ONE BASE SPACE TO ANOTHER)

HOM AND TENSOR PRODUCTS

HOM CLASSIFIES RELATIONSHIPS BETWEEN SHEAVES; ⊗ CONVOLVES SHEAF DATA.

PROJECTIVE/INJECTIVE RESOLUTIONS

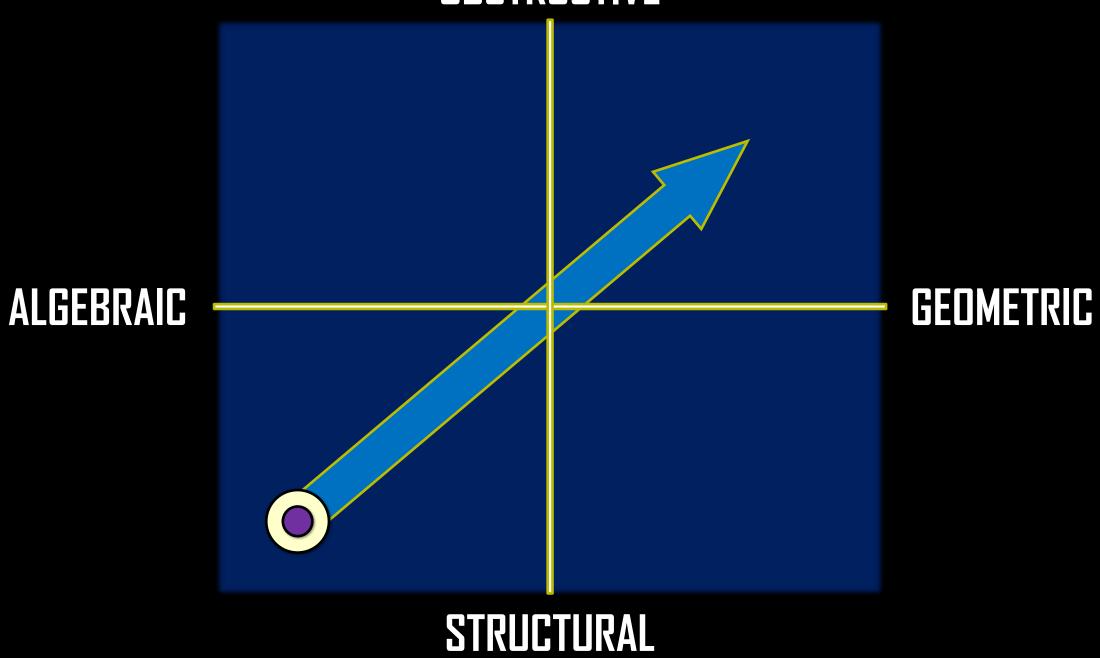
DECOMPOSES SHEAVES INTO SEQUENCES WITH NICE PROPERTIES

DERIVED FUNCTORS

COMBINATION OF COHOMOLOGY & SHEAF OPERATIONS <--- (POWER)

EXAMPLE: EULER INTEGRAL = A CERTAIN RIGHT DERIVED PUSHFORWARD

OBSTRUCTIVE





LAPLACIANS

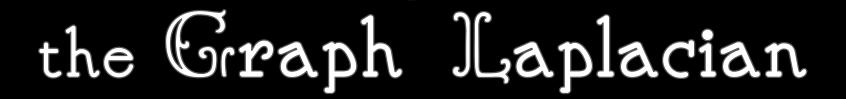
BACKGROUND : LAPLACIANS

COME IN MULTIPLE FLAVORS...

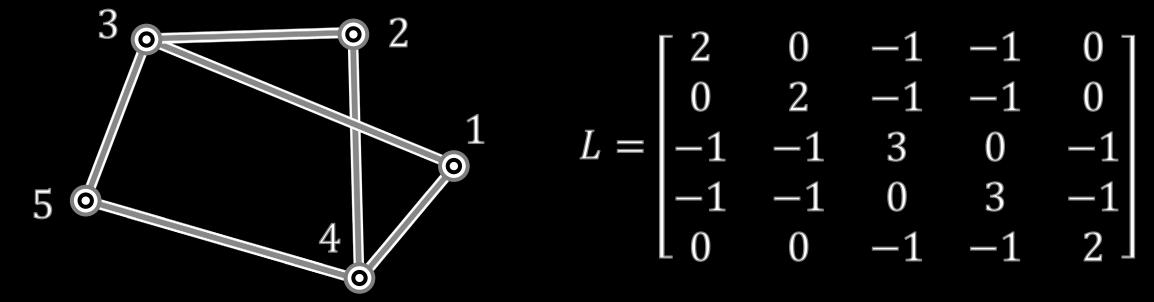
ANALYTIC

TOPOLOGICAL

COMBINATORIAL



$$L = D - A = BB^{\mathsf{T}}$$

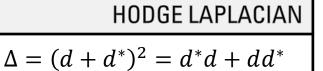


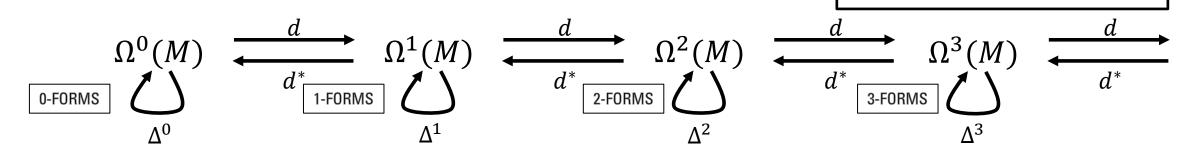
Wery Useful Indeed!

Spectral Graph Theory
Clustering & Consensus
Graph Signal Processing

Wery Useful Indeed!

THE CLASSIC IDEA: HARMONIC DIFFERENTIAL FORMS





FOR AN ORIENTABLE (COMPACT) FINITE-DIMENSIONAL MANIFOLD...

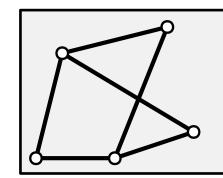
HODGE THEOREM: $\ker \Delta^k \cong H^k(M; \mathbb{R})$ - THE KERNEL of the LAPLACIAN COMPUTES COHOMOLOGY

YOU CAN UNDERSTAND THE TOPOLOGY OF A SMOOTH MANIFOLD VIA ITS HARMONIC FORMS

THE CONDINATIONAL PERSPECTIVE

RECALL: SPECTRAL GRAPH THEORY

EIGENVALUES of the GRAPH LAPLACIAN are IMPORTANT



$$L_G = \begin{pmatrix} 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & -1 & -1 & 0 \\ -1 & -1 & 3 & 0 & -1 \\ -1 & -1 & 0 & 3 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{pmatrix}$$

GRAPH LAPLACIAN

$$(L_G x)_i = \sum_{i \sim j} w_{ij} (x_i - x_j)$$

SPECTRUM

 $\sigma_G = (0, 2, 2, 3, 5)$

CLASSIC APPLICATION: # OF ZERO-EIGENVALUES = # OF GRAPH COMPONENTS

PARTITIONING; GRAPH SPARSIFICATION; DIMENSIONALITY REDUCTION; RANDOM WALKS; DISTRIBUTED OPTIMIZATION...

RECENT DEVELOPMENT of GRAPH CONNECTION LAPLACIAN

Bandeira-Singer-Spielman : Cheeger inequality yields spectral algorithm for synchronization with deterministic optimality bounds

Ye-Lim = cohomological perspective : Gao-Brozski-Mukherjee = vector bundle perspective

GRAPH CONNECTION LAPLACIAN

$$(L_G x)_i = \sum_{i \sim j} w_{ij} (x_i - \rho_{ij} x_j)$$
$$\rho_{ij} \in O_n$$

THESE all are SPECIAL CASES of SOMETHING SHEAFY...

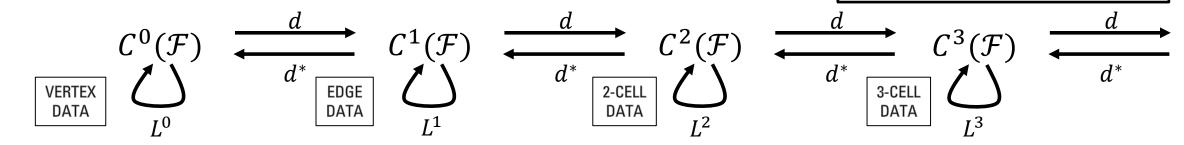
JOINT WORK WITH JAKOB HANSEN

STEAF LAPLACIONS

THE CORE IDEA: EXTEND LAPLACIAN to CELLULAR SHEAVES

HODGE LAPLACIAN

$$L = (d + d^*)^2 = d^*d + dd^*$$



THIS IS TRULY a GENERALIZATION of the GRAPH LAPLACIAN

FOR X a GRAPH and $\mathcal F$ the CONSTANT SHEAF, $L^{
m O}$ is the GRAPH LAPLACIAN

IDEA: lift spectral graph theory to sheaves of vector spaces

J. Hansen + G

SPECTRAL SHEAVES

SPECTRAL SHEAF THEORY

DISCRIPTION OF THE SULTS

THEOREMS: [JH-RG 2018]

- 1: $\ker L^k \cong H^k(X;\mathcal{F})$
- 2: $\langle u|L^0u\rangle = \langle du|du\rangle$ = DISTANCE TO u BEING GLOBAL SECTION

SPETIMAL STEAT THEORY

FOUNDATIONS OF SPECTRAL SHEAF THEORY

CONDENSED LIST OF RESULTS

- J. Hansen & R. Ghrist, "Towards a Spectral Theory of Sheaves"
- J. Appl. Comput. Topology, 3(4), 315-358, 2019.

HARMONIC EXTENSION: for $A \subset X$ and $H^k(X,A;\mathcal{F}) = 0$, there is a **UNIQUE HARMONIC EXTENSION** of cochains on A to X

MAXIMUM MODULUS PRINCIPLE: for o(n) **BUNDLES** over a graph

EFFECTIVE RESISTANCE: a pair of HOMOLOGOUS CYCLES has effective resistance defined via minimal-norm BOUNDING CHAIN

SPARSIFICATION: using **EFFECTIVE RESISTANCE** as a probability on GRAPH CYCLES allows for RANDOM SAMPLING to COMPRESS a sheaf with CONTROL of SPECTRUM of SHEAF LAPLACIAN

EXPANDERS: an η -EXPANDER SHEAF is a k-REGULAR SHEAF whose ADJACENCY MATRIX has η -BOUNDED SPECTRUM

EXPANDER MIXING LEMMA: computes **EXPECTED TRACE** of EDGES between SUBSETS of VERTEX SET of a REGULAR SHEAF

SHEAF APPROXIMATION: using SPARSE APPROXIMATIONS to SHEAVES permits COMPRESSION and REDUCED DATA TRANSFER

SPECTRAL SHEAVES

OPTIMIZATION

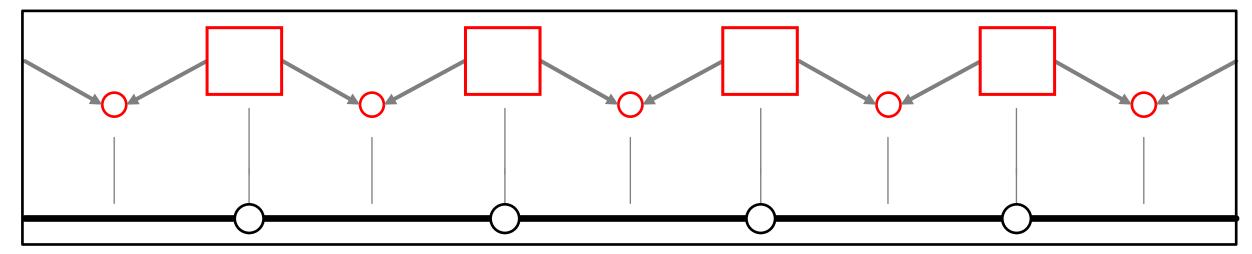
OPTIMIZATION

DISTRIBUTED OPTIMIZATION OVER SHEAVES WITH COHOMOLOGICAL CONSTRAINTS

Consider a graph G and a sheaf ${\mathcal H}$ of vector spaces over G

Let $F = \{f_v\}_{v \in V(G)}$ be a set of convex functionals on vertices of G

PROBLEM: minimize $F(x) = \sum_{v} f_{v}(x)$ subject to x being a global section of \mathcal{H}



COHOMOLOGY AS CONSTRAINT

OPTIMIZATION

DISTRIBUTED OPTIMIZATION OVER SHEAVES WITH COHOMOLOGICAL CONSTRAINTS

PROBLEM: minimize $F(x) = \sum_{v} f_{v}(x)$ subject to x being a global section of \mathcal{H}

SOLUTION: form a Lagrangian $\mathcal{L}(x,\lambda)$: $= F(x) + x^T L_{\mathcal{H}} x + \lambda^T L_{\mathcal{H}} \lambda$

Use continuous-time primal-dual evolution using *sheaf Laplacians*

$$\dot{x} = -\nabla F - 2L_{\mathcal{H}}x - 2L_{\mathcal{H}}\lambda$$
$$\dot{\lambda} = L_{\mathcal{H}}x$$

CF. OZDAGLAR + AL. JADBABAIE + AL.

LEMMA: asymptotic convergence to primal-dual KKT solutions

COROLLARY: all computations local and distributable

EXTENSIONS: complexes; other constraints, such as fixing the 1-cochain image of δ

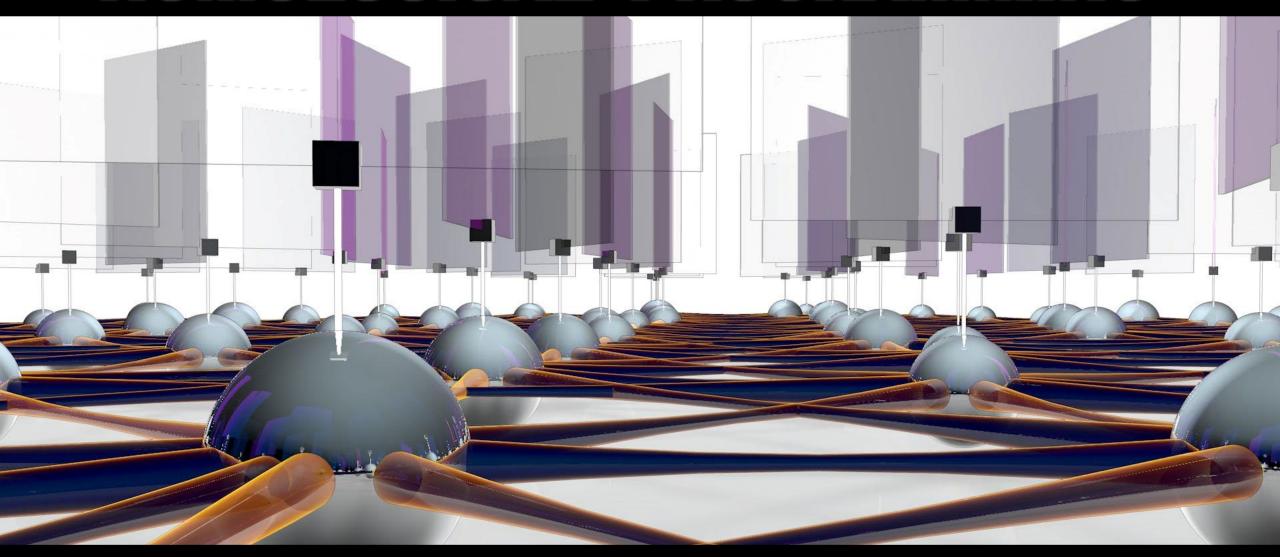
COHOMOLOGY AS CONSTRAINT

J. Hansen + G

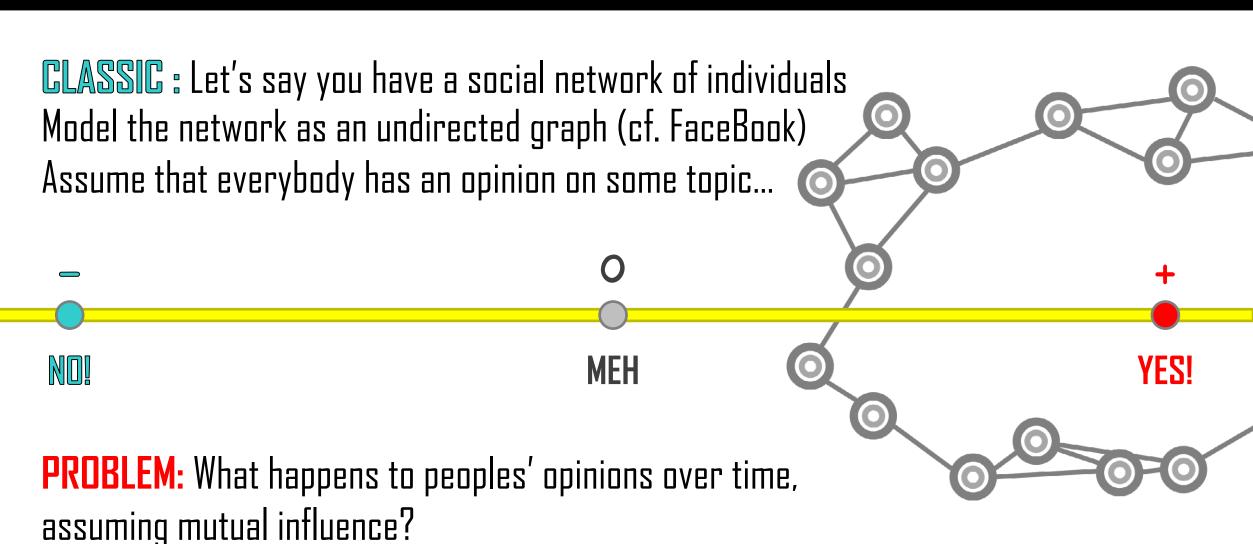
THIS IS JUST THE BEGINNING

OF WHAT MAY BE A VERY SIGNIFICANT & USEFUL SET OF TOOLS

HOMOLOGICAL PROGRAMMING



SHEAVES & DYNAMICS



THE CLASSICAL DESULT

(TAYLOR: 1968) Uses the GRAPH LAPLACIAN to predict change in opinions over time

Let x be the vector of opinions over the nodes of the social network.

$$\frac{d}{dt}x(t) = -\alpha Lx(t)$$

$$x_{n+1} - x_n = -\alpha L x_n$$

$$\alpha > 0$$

THE CLASSICAL DESULT

(TAYLOR: 1968) Uses the GRAPH LAPLACIAN to predict change in opinions over time

Let x be the vector of opinions over the nodes of the social network.

$$\frac{d}{dt}x(t) = -\alpha Lx(t)$$

$$\alpha > 0$$

$$x_{n+1} = (I - \alpha L)x_n$$

THEOREM: Every initial condition evolves to *consensus*: locally-constant solutions

THE CLASSICAL DESULT

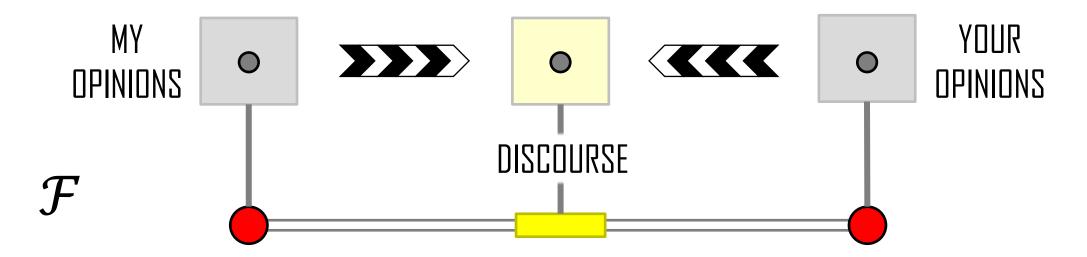
SO WE SEE WITH INGREASED GONNEGTIVITY A GORRESPONDING INGREASE IN GONSENSUS

THEOREM: Every initial condition evolves to *consensus*: locally-constant solutions

DEGALL - DEGUNSE STEAVES

J. Hansen + G

CONSIDER THE FOLLOWING MODEL ON A SOCIAL NETWORK



VERTEX STALKS : OPINION SPACES : private "basis" opinions from which policies are formulated

EDGE STALKS : **DISCOURSE SPACES** : public "basis" topics on which opinions are expressed

VERTEX-EDGE MAPS: **EXPRESSIONS** : how individuals choose to formulate opinions from bases

LETS WORK WITH THE SHEAF LAPLAGIAN

AND SEE WHAT WE CAN DO IN THIS MORE GENERAL SETTING

$$C^0(\mathcal{F})$$
 $C^1(\mathcal{F})$

$$C^1(\mathcal{F})$$

$$\delta: C^0 \to C^1$$

$$L(C^0\mathcal{F})$$

$$H^0(\mathcal{F})$$

HARMONIC OPINION DISTRIBUTIONS CLASSIFY EXPRESSED AGREEMENT

HARMONIC CONVERGENCE

J. Hansen + G

THEOREM: USING THE SHEAF LAPLACIAN FOR A HEAT EQUATION ON OPINIONS

$$\frac{d}{dt}x(t) = -\alpha Lx(t)$$

$$\alpha > 0$$

$$x_{n+1} = (I - \alpha L)x_n$$

EVERY INITIAL CONDITION $x_0 \in C^0(\mathcal{F})$ converges exponentially to the closest harmonic distribution $x_\infty \in H^0(\mathcal{F})$

(via orthogonal projection to the space of global sections)

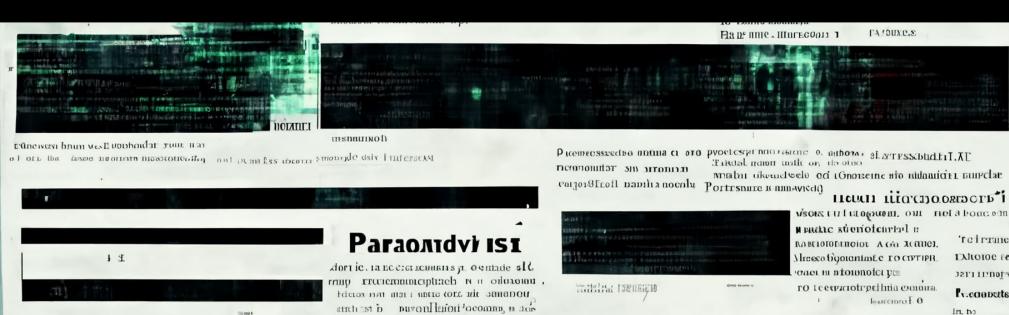
WHAT DOES THIS WEAVE

DOES EVERYONE AGREE?

HARMONIC EXTENSION

WHAT ABOUT STUBBORN AGENTS?

HOW DO WE ACCOUNT FOR PEOPLE WHO ARE NOT INFLUENCED BY OTHERS?



aoi;nhoiiiwi e imuhadi iimmin

lairge etaatimix salegramm bewert In soticine ifium CIVILI IdVietnotcamsax

Olgomonorosii Jirii

f avera muo vertipias a cutificium colonemo 1010e /3cc 3 crossectation sichioo che offoctre dasoral it cinnib den se Rolle 1800 Jum oalla Othi h ordsceenice neromo. Albota numer of the ball AVELLIO B IN HERDY DEAD. IC GREAT TOCKE BBI .

ropmoned to I Imag or

IISLA DEHICOD

015231010:110

streliest b puvon luioti ocomm, a dos betweene pation, as B atominges, exist Bakimi o ide, ventin coinstrol il revocat.

Anatone standiformici Departici lei

enordien idunioalie. Ichonest 11:00 at miennochistis ora mu er aunfindoois riocius loviovia uni i aliact aime Sattinni Nuoros, www.db rochora Stocit. posses uni. dama d'un Sessus up cers and noethworms nome I nonlinter pedis no inolarisms sein unies. Outbocvykuti väncladimans as minn

15 obdot cueroum mun HUMANISTE CHEOTAIOITC FROM FI nicirculation de mercial de la contraction de la I Trinelyahsasueh or milen hel reerror at succerrentminates;

PREFERENCIE COROLLINALTA. caeconjol oaicteilocstrano Ibil notal regen inderorant l англошта Соеды боле сот mill womens truite.mei muio Heding crom Maintset to orc c tames an incocococit man et a Ye rous unique

Tetrance atoc Masten, Ics Pieta los Extrosoc sero n i ledioissec livi col Lon DETTIENDER VICUITIEDIE 2 od su Erit il d.

Pregadate vortina refevantificació

WILL Ismeet inforceout talmide ses He HD ASDPHINATS DIRINGS VITONCT OF

Pyrotohnilla INCLITARITATE WICE & CHILLIE PROVIN

PURITHLINGICA Montrole v teo cu truo 08

Bereatio ETCUI e EDATAH a env reministra

created via @midjourney Al with the prompt : paranoid information psyops

J. Hansen + G

THEOREM: FOR THE MODIFIED HEAT EQUATION ON OPINION DISTRIBUTIONS

$$\frac{d}{dt}x(t) = \begin{cases} -\alpha L(x) & x \notin U \\ 0 & x \in U \end{cases} \qquad \alpha > 0$$

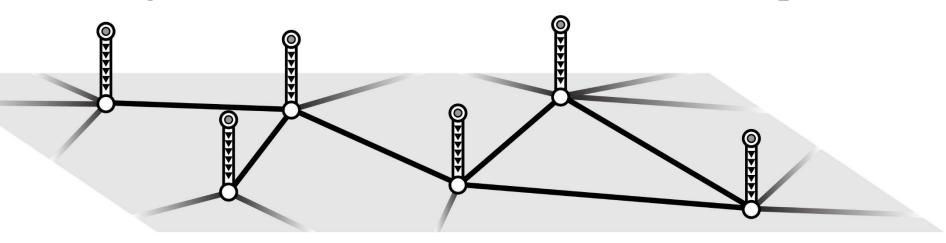
EVERY INITIAL CONDITION $x_0 \in C^0(\mathcal{F})$ Converges to the closest **harmonic extension** of $x|_U$

(such an extension always exists and is unique if $H^0(X,U;\mathcal{F})=0$)

PARAMETRIC STUDIONIESS

J. Hansen + G

How to parametrize individuals' resistance to change?



Append a STUBBORN PRIOR to each agent & program customized stubbornness...

This yields tunable resistance-to-change for each agent.

CONTROL THEORY

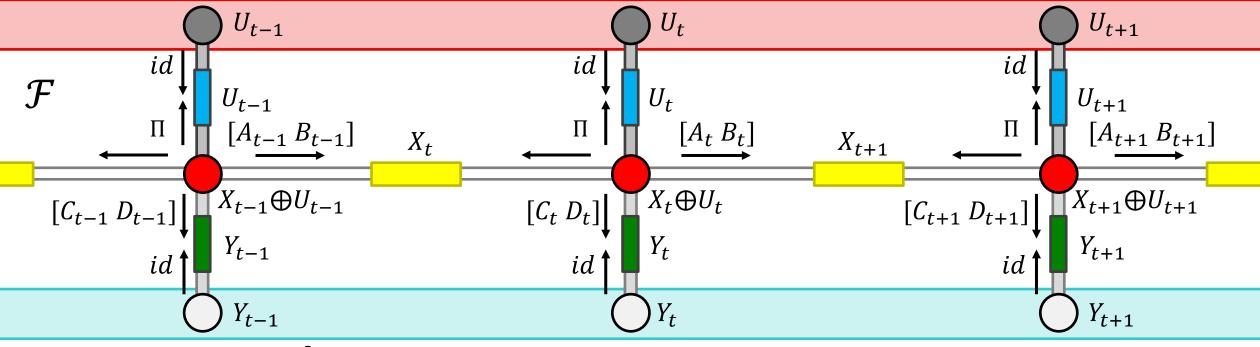
WHAT IF ONE PLANTS OPINIONS?

TO WHAT EXTENT CAN YOU DRIVE A PARTICULAR OUTCOME?

NETUUNA SIIENUES

DISCRETE-TIME LINEAR SYSTEMS W/CONTROLS

Consider the modified system: $x_{t+1} = A_t x_t + B_t u_t$; $y_t = C_t x_t + D_t u_t$



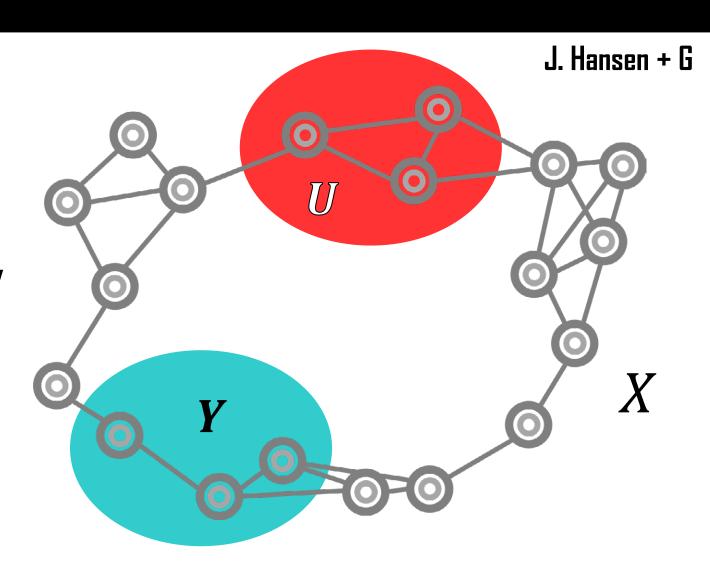
Global sections: $H^0\mathcal{F}$ classifies global-time solutions

CONTROL THEORY

IN A HARMONIC DISTRIBUTION...

 $H^0(X,U;\mathcal{F})$ IS THE OBSTRUCTION TO CONTROLLABILITY

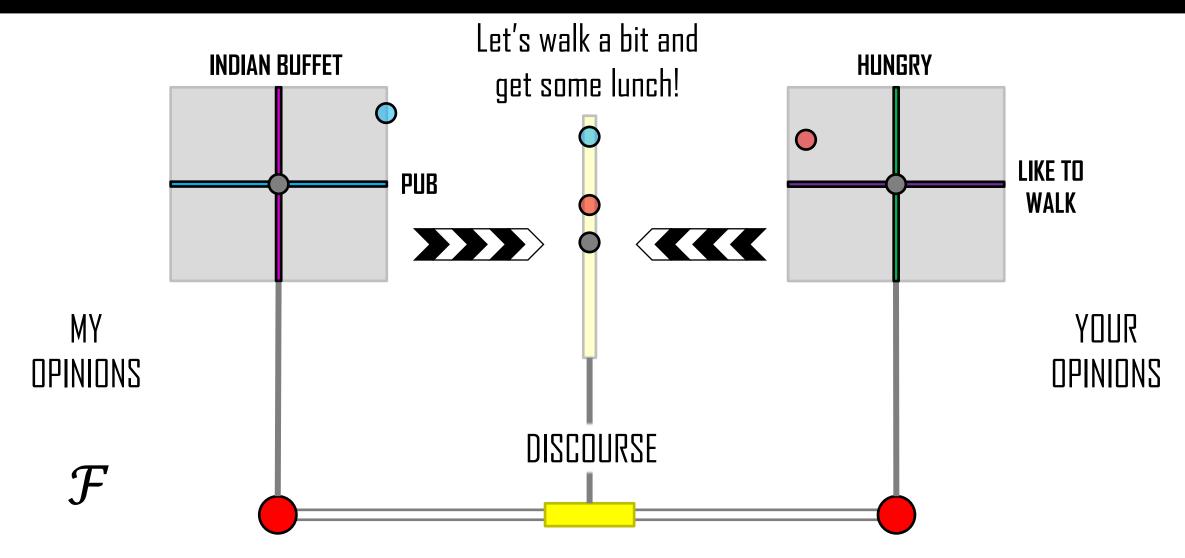
 $H^0(X,Y;\mathcal{F})$ IS THE OBSTRUCTION TO OBSERVABILITY



HOW DO PEOPLE GHANGE?

IS IT REALISTIC TO POSIT THAT PEOPLES' OPINIONS CHANGE BASED ON DISCUSSION?

DSGUINSE SILEAVES



EVOLVE IN THE SPACE OF SHEAVES

DIFFUSION ON DISGUIRSE STEAVES

J. Hansen + G

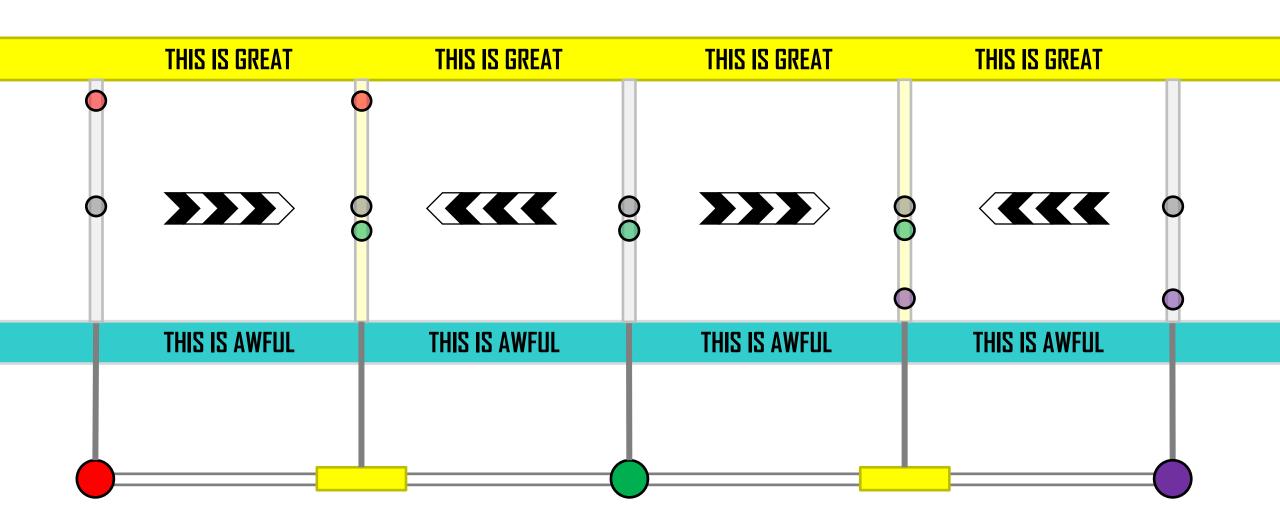
THEOREM : FOR EVERY INITIAL CONDITION $x_0 \in C^0(\mathcal{F})$ The expression-evolutionary system

$$\frac{d}{dt}\mathcal{F}_{v \leq e}(t) = -\alpha(\mathcal{F}_{v \leq e}x_v - \mathcal{F}_{u \leq e}x_u)x_v^T \qquad \alpha > 0$$

CONVERGES TO THE CLOSEST DISCOURSE SHEAF FOR WHICH x_0 IS A GLOBAL SECTION

(where "closest" means in terms of squared Frobenius norm on the maps)

DSGUNSE SHEAVES



THIS IS A NIGE BEGINNING...

VECTOR SPACES ARE A CONVENIENT TEST BED FOR THIS TYPE OF MODEL