Unbounded families of minimal 2-surfaces and Einstein 4-manifolds

Antoine Song

UC Berkeley

April 2021, Copenhagen
Bounded families

Constructions of minimal surfaces or Einstein 4-manifolds are often non-explicit, so that the relation between topology and geometry is unclear.
Bounded families

Constructions of minimal surfaces or Einstein 4-manifolds are often non-explicit, so that the relation between topology and geometry is unclear.

We saw last time that sufficiently strong geometric bounds imply finiteness theorems via compactness. This idea goes back to Cheeger.
Bounded families

Constructions of minimal surfaces or Einstein 4-manifolds are often non-explicit, so that the relation between topology and geometry is unclear.

We saw last time that sufficiently strong geometric bounds imply finiteness theorems via compactness. This idea goes back to Cheeger.

In our case, the bound can be imposed on an energy (the Morse index and area, or the L^2-norm of the Riemann curvature and volume). Then due to ε-regularity theorems, if this energy is bounded by $\leq A$ along a sequence, then the energy can concentrate at most at $\sim A$ points and the curvature can blow-up at most at $\sim A$ points. Then a bubbling argument enables to conclude finiteness.
Examples

Sharp, Chodosh-Ketover-Maximo:

If \(\{\Sigma_i\} \) is a sequence of minimal surfaces in \((N, g)\) such that Morse index(\(\Sigma_i\)) \(\leq C\), and Area(\(\Sigma_i\)) \(\leq C\) then the genus of \(\Sigma_i\) is uniformly bounded.
Examples

Sharp, Chodosh-Ketover-Maximo:

If \(\{\Sigma_i\} \) is a sequence of minimal surfaces in \((N, g)\) such that Morse index(\(\Sigma_i\)) \(\leq C\), and Area(\(\Sigma_i\)) \(\leq C\) then the genus of \(\Sigma_i\) is uniformly bounded.

Anderson, Bando-Kasue-Nakajima, Gao, Anderson-Cheeger:

If \(\{(M_i, g_i)\} \) is a sequence of Einstein 4-manifolds such that \(\chi(M_i) \leq C\) and \(\text{Vol}(M_i, g_i) \geq C^{-1}\) and \(\text{Diam}(M_i, g_i) \leq C\) then the number of diffeomorphism types of \(M_i\) is finite.
The previous results were improved and generalized by removing one of the geometric bounds. The general strategy remains the same: the bounds left still suffice to produce well-behaved limits, and the compactness/finiteness results follow from analysing those limits. The difficulty is to understand the nature of these limits (minimal laminations, or non-collapsed Einstein Ricci-limits).
X. Zhou-H. Li, Chodosh-Ketover-Maximo:

If \(\{ \Sigma_i \} \) is a sequence of minimal surfaces in \((N, g)\) such that Morse index\((\Sigma_i) \leq C \) then \(\Sigma_i \) converges to a smooth minimal lamination and the topology can concentrate only at \(\lesssim C \) points.
Examples

X. Zhou-H. Li, Chodosh-Ketover-Maximo:

If \(\{\Sigma_i\} \) is a sequence of minimal surfaces in \((N, g)\) such that Morse index\((\Sigma_i) \leq C\) then \(\Sigma_i\) converges to a smooth minimal lamination and the topology can concentrate only at \(\lesssim C\) points.

Cheeger-Naber:

If \(\{(M_i, g_i)\}\) is a sequence of Einstein 4-manifolds such that \(\text{Vol}(M_i, g_i) \geq C^{-1}\) and \(\text{Diam}(M_i, g_i) \leq C\) then the number of diffeomorphism types of \(M_i\) is finite.
What about unbounded families?

In general, we would like to say something about minimal surfaces or Einstein manifolds without a priori bounds (such families exist!). One possibility is to try to relate quantitatively geometric, analytic, and topological invariants. For minimal surfaces: how are area, Morse index, genus related? For Einstein manifolds: how are “minimal volume” and Euler characteristic related?

\[
\text{minvol}(M) := \inf \left\{ \text{Vol}(M, g) \mid |\text{sec}_g| \leq 1 \right\}
\]

(Gromov)
What about unbounded families?

In general, we would like to say something about minimal surfaces or Einstein manifolds without a priori bounds (such families exist!). One possibility is to try to relate quantitatively geometric, analytic, and topological invariants. For minimal surfaces: how are area, Morse index, genus related? For Einstein manifolds: how are “minimal volume” and Euler characteristic related?

That is difficult due to the fact that taking limit is either useless or not well-defined. As a first step towards such unbounded estimates, we can rely on the large/small decomposition principle. The object is divided into two pieces A and B: the first piece A is locally trivial but globally controlled, while the other piece B is locally special. Our goal is then to quantitatively control the piece A.
Consider $v_0 > 0$ and $\epsilon > 0$ small constants. For an Einstein 4-manifold (M, g), define at $p \in M$:

$$r_\epsilon(p) := \sup\{r \in (0, 1]; \int_{B(p, r)} |\text{Rm}|^2 \leq \epsilon\},$$

and set

"thick" $M_{> v_0} := \{x \in M; \quad \text{Vol}(B(x, r_\epsilon(x))) > v_0 r_\epsilon(x)^4\}$,

"thin" $M_{\leq v_0} := \{x \in M; \quad \text{Vol}(B(x, r_\epsilon(x))) \leq v_0 r_\epsilon(x)^4\}$.
$M_{>r_0}$ is locally trivial by e.g.

$M_{<r_0}$ carry a "F-structure"

(Cheeger - Gromov)
Let \((N, g)\) be a 3-manifold. Consider \(n_0 > 0\) a large constant and \(\bar{r} > 0\) a small constant. For a minimal surface \(\Sigma \subset N\), define at \(p \in N\):

\[
\Sigma(p) := \sup\{r \leq \bar{r}; \quad \Sigma \cap B(p, r) \text{ is stable}\},
\]

and set

\[
\Sigma_{> n_0} := \{x \in \Sigma; \quad \Sigma \cap B(x, s(x)) \text{ has area larger than } n_0 s(x)^2\},
\]

\[
\Sigma_{\leq n_0} := \{x \in \Sigma; \quad \Sigma \cap B(x, s(x)) \text{ has area at most } n_0 s(x)^2\}.
\]
here non-sheeted part $\Sigma_{\neq n_0}$ is locally simple

sheeted part $\Sigma_{> n_0}$
Theorem 1: Let \((N, g)\) be a closed 3-manifold, there is a constant
\(C = C(N, g)\) such that for any minimal surface \(\Sigma \subset N\) and \(n_0 > 0\),
\[
genus(\Sigma_{\leq n_0}) \leq Cn_0(\text{Morse index}(\Sigma) + 1).
\]
Theorem 1: Let \((N, g)\) be a closed 3-manifold, there is a constant \(C = C(N, g)\) such that for any minimal surface \(\Sigma \subset N\) and \(n_0 > 0\),

\[
\text{genus}(\Sigma_{\leq n_0}) \leq Cn_0(\text{Morse index}(\Sigma) + 1).
\]

Theorem 2: There are constants \(C, \epsilon, v_0\), such that for any closed Einstein 4-manifold \((M, g)\), \(M_{> v_0}\) admits a metric \(h\) with

\[
|\text{Rm}_h| \leq 1, \quad \text{injrad}_h \geq 1 \quad \text{and} \quad \text{Vol}(M_{\geq v_0}, h) \leq C\chi(M).
\]
Results expressed with triangulation

Theorem 1: Let \((N, g)\) be a closed 3-manifold, there is a constant \(C = C(N, g)\) such that for any minimal surface \(\Sigma \subset N\) and \(n_0 > 0\), \(\Sigma_{\leq n_0}\) has a triangulation with degree \(\leq C\) and total number of vertices \(\leq Cn_0(\text{Morse index}(\Sigma) + 1)\).

Theorem 2: There are constants \(C, \varepsilon, \nu_0\), such that for any closed Einstein 4-manifold \((M, g)\), \(M_{> \nu_0}\) has a triangulation with degree \(\leq C\) and total number of vertices \(\leq C\chi(M)\).
Proof idea for minimal surfaces

Fix $n_0 \gg 1$. To simplify the discussion, we start with a minimal surface $\Sigma \subset N$ which has area $\ll n_0$ (so that $\Sigma \ll n_0 = \Sigma$) and Σ is not stable in any ball of radius $\geq \bar{r}$ (depending only on the ambient 3-manifold N).
Proof idea for minimal surfaces

Fix $n_0 \gg 1$. To simplify the discussion, we start with a minimal surface $\Sigma \subset N$ which has area $\ll n_0$ (so that $\Sigma_{>n_0} = \Sigma$) and Σ is not stable in any ball of radius $\geq \bar{r}$ (depending only on the ambient 3-manifold N).

Goal: construct a triangulation of Σ with degree $\leq C$ and total number of vertices less than $\leq C$.Morse index(Σ), for $C > 0$ independent of Σ.
Proof idea for minimal surfaces

Fix $n_0 \gg 1$. To simplify the discussion, we start with a minimal surface $\Sigma \subset N$ which has area $\ll n_0$ (so that $\Sigma_{>n_0} = \Sigma$) and Σ is not stable in any ball of radius $\geq \bar{r}$ (depending only on the ambient 3-manifold N).

Goal: construct a triangulation of Σ with degree $\leq C$ and total number of vertices less than $\leq C$.Morse index(Σ), for $C > 0$ independent of Σ.

By the ϵ-regularity theorem, if in the ball $B(p, r) \subset N$, the minimal surface is stable, then the second fundamental form of Σ is pointwise bounded in $B(p, r/2)$.
Proof idea for minimal surfaces

Fix $n_0 \gg 1$. To simplify the discussion, we start with a minimal surface $\Sigma \subset N$ which has area $\ll n_0$ (so that $\Sigma_{\leq n_0} = \Sigma$) and Σ is not stable in any ball of radius $\geq \bar{r}$ (depending only on the ambient 3-manifold N).

Goal: construct a triangulation of Σ with degree $\leq C$ and total number of vertices less than $\leq C$.Morse index(Σ), for $C > 0$ independent of Σ.

By the ϵ-regularity theorem, if in the ball $B(p, r) \subset N$, the minimal surface is stable, then the second fundamental form of Σ is pointwise bounded in $B(p, r/2)$. Hence $\Sigma \cap B(p, r/2)$ has bounded topology. To simplify the discussion, we will assume that $\Sigma \cap B(p, r/2)$ is a flat disk of scale $\sim r/2$.

\begin{center}
\includegraphics[width=0.5\textwidth]{proof_idea.png}
\end{center}
Proof idea for minimal surfaces

- At each \(p \in \Sigma \), remember the “stability radius”

\[
s(p) := \sup\{ r \leq \bar{r} ; \quad \Sigma \cap B(p, r) \text{ is stable} \},
\]

so that \(\Sigma \cap B(p, s(p)) \) is stable but \(\Sigma \cap B(p, 2s(p)) \) has Morse index \(\geq 1 \).

Remember we are assuming that \(\Sigma \cap B(p, s(p)/2) \) is a disk of size \(\simeq s(p)/2 \).
Proof idea for minimal surfaces

- At each $p \in \Sigma$, remember the “stability radius”

$$s(p) := \sup \{ r \leq \bar{r}; \quad \Sigma \cap B(p, r) \text{ is stable} \},$$

so that $\Sigma \cap B(p, s(p))$ is stable but $\Sigma \cap B(p, 2s(p))$ has Morse index ≥ 1.

Remember we are assuming that $\Sigma \cap B(p, s(p)/2)$ is a disk of size $\approx s(p)/2$.

- Cover Σ with q_1 balls of the form $B(p, s(p)/2)$, and q_1 as small as possible. We can construct a triangulation of Σ with $\lesssim q_1$ vertices.
Proof idea for minimal surfaces

- At each \(p \in \Sigma \), remember the “stability radius”

\[
s(p) := \sup \{ r \leq \bar{r}; \quad \Sigma \cap B(p, r) \text{ is stable} \},
\]

so that \(\Sigma \cap B(p, s(p)) \) is stable but \(\Sigma \cap B(p, 2s(p)) \) has Morse index \(\geq 1 \).

Remember we are assuming that \(\Sigma \cap B(p, s(p)/2) \) is a disk of size \(\simeq s(p)/2 \).

- Cover \(\Sigma \) with \(q_1 \) balls of the form \(B(p, s(p)/2) \), and \(q_1 \) as small as possible. We can construct a triangulation of \(\Sigma \) with \(\lesssim q_1 \) vertices.

- Find a subfamily of disjoint \(q_2 \) balls, where \(q_2 \geq q_1 \).
Proof idea for minimal surfaces

- At each $p \in \Sigma$, remember the “stability radius”

$$s(p) := \sup\{r \leq \bar{r}; \quad \Sigma \cap B(p, r) \text{ is stable}\},$$

so that $\Sigma \cap B(p, s(p))$ is stable but $\Sigma \cap B(p, 2s(p))$ has Morse index ≥ 1.

Remember we are assuming that $\Sigma \cap B(p, s(p)/2)$ is a disk of size $\sim s(p)/2$.

- Cover Σ with q_1 balls of the form $B(p, s(p)/2)$, and q_1 as small as possible. We can construct a triangulation of Σ with $\lesssim q_1$ vertices.

- Find a subfamily of disjoint q_2 balls, where $q_2 \gtrsim q_1$.

We would be done if we could prove that Morse index$(\Sigma) \gtrsim q_2$. But the problem is that the balls in the subfamily are not disjoint enough.
\[\text{ind}(\mathcal{Z}) \geq 2 \]
Proof idea for minimal surfaces

\[\sum \setminus \{ \text{almost conical regions} \} \]

In fact, the issue can occur only around almost conical regions. But almost conical regions do not add topology, so we can remove these regions: we cover the complement of these regions by balls \(B(x_1, s(x_1)/2), \ldots, B(x_{q_1}, s(x_{q_1})/2) \) then try to get a subfamily of balls \(B(y_1, s(y_1)/2), \ldots, B(y_{q_2}, s(y_{q_2})/2) \), so that

\[q_2 \geq q_1 \text{ and } \forall i \neq j, B(y_i, 2s(y_j)) \cap B(y_j, 2s(y_j)) = \emptyset. \]

(This is possible by a counting argument.)

\[\Rightarrow \text{ Morse index } \geq q_2 \gg q_1 \]
Idea of proof for Einstein 4-manifolds

The previous combinatorial arguments work well for Einstein n-manifolds with $\int |\mathcal{R}m|^{n/2}$ replacing the Morse index. However in dimension 4, there is a more efficient way to proceed by using Cheeger-Naber.
The previous combinatorial arguments work well for Einstein n-manifolds with $\int |Rm|^{n/2}$ replacing the Morse index. However in dimension 4, there is a more efficient way to proceed by using Cheeger-Naber.

For simplicity we will assume that (M, g) is an Einstein 4-manifold, non-collapsed: $\text{Vol}(B(p, 1)) > v_0 > 0$ for any $p \in M$.
Idea of proof for Einstein 4-manifolds

The previous combinatorial arguments work well for Einstein n-manifolds with $\int |Rm|^{n/2}$ replacing the Morse index. However in dimension 4, there is a more efficient way to proceed by using Cheeger-Naber.

For simplicity we will assume that (M, g) is an Einstein 4-manifold, non-collapsed: $\text{Vol}(B(p, 1)) > v_0 > 0$ for any $p \in M$. $\Rightarrow M_{>v_0}=M$

Goal: construct a triangulation of M with degree $\leq C$ and total number of vertices less than $\leq C\cdot \chi(M)$, for $C > 0$ independent of M.

Idea of proof for Einstein 4-manifolds

- Cover M with a family of balls B_1, \ldots, B_q of radius 1 with uniformly bounded overlap multiplicity.
Idea of proof for Einstein 4-manifolds

- Cover M with a family of balls $B_1, ..., B_q$ of radius 1 with uniformly bounded overlap multiplicity.
- In each B_i the diameter and volume are controlled by hypothesis, so by Cheeger-Naber we can construct a triangulation of $B_i \subset M$ with $\lesssim C$ vertices.
Idea of proof for Einstein 4-manifolds

- Cover M with a family of balls B_1, \ldots, B_q of radius 1 with uniformly bounded overlap multiplicity.
- In each B_i the diameter and volume are controlled by hypothesis, so by Cheeger-Naber we can construct a triangulation of $B_i \subset M$ with $\lesssim C$ vertices.
- Glue these local triangulations into a triangulation with $\lesssim Cq$ vertices.
Idea of proof for Einstein 4-manifolds

- Cover M with a family of balls $B_1, ..., B_q$ of radius 1 with uniformly bounded overlap multiplicity.
- In each B_i the diameter and volume are controlled by hypothesis, so by Cheeger-Naber we can construct a triangulation of $B_i \subset M$ with $\lesssim C$ vertices.
- Glue these local triangulations into a triangulation with $\lesssim Cq$ vertices.
- Each B_i eats up a certain amount of L^2-curvature so actually $q \leq C \int |Rm|^2 = C \chi(M)$.
Idea of proof for Einstein 4-manifolds

- Cover M with a family of balls B_1, \ldots, B_q of radius 1 with uniformly bounded overlap multiplicity.
- In each B_i the diameter and volume are controlled by hypothesis, so by Cheeger-Naber we can construct a triangulation of $B_i \subset M$ with $\lesssim C$ vertices.
- Glue these local triangulations into a triangulation with $\lesssim Cq$ vertices.
- Each B_i eats up a certain amount of L^2-curvature so actually $q \leq C \int |Rm|^2 = C\chi(M)$.
- Conclude.