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Finite-type Artin groups

Definition (Artin group)

A finite simplicial graph Γ with edges labelled by {2, 3, 4, . . .} defines a
presentation of the Artin group AΓ:

AΓ = 〈a ∈ V (Γ) | aba · · ·︸ ︷︷ ︸
m

= bab · · ·︸ ︷︷ ︸
m

for each edge ab labelled with m〉

Definition

An Artin group AΓ is of finite type if the Coxeter group CΓ is finite.

Theorem

Finite-type Artin groups are Helly.

Theorem

FC-type Artin groups are Helly.
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Garside groups

Theorem

Weak Garside groups of finite type are Helly.
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C(4)-T(4) small cancellation groups

Theorem

Finitely presented C(4)-T(4) (graphical) small cancellation groups are
Helly.

Proof.

Consider a ‘thickening’ of the Cayley complex:
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Buildings

Theorem

Uniform lattices in Euclidean buildings of type C are Helly.

Proof.

Consider a ‘thickening’ of the building:
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Properties of Helly groups

Theorem (Properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ. Then:

1 The clique complex X (Γ) of Γ is a finite-dimensional cocompact
model for the classifying space EG for proper actions. As a particular
case, G is always of type F∞ and of type F when it is torsion-free.

2 G has finitely many conjugacy classes of finite subgroups.

3 G is (Gromov) hyperbolic if and only if Γ does not contain an
isometrically embedded infinite `∞–grid.

4 G has at most quadratic Dehn function.
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Constructions preserving Hellyness

Theorem

Let G ,G1,G2, . . . ,Gn be Helly groups. Then:

1 a free product G1 ∗F G2 of G1,G2 with amalgamation over a finite
subgroup F , and the HNN-extension G1∗F over F are Helly;

2 every graph product of G1, . . . ,Gn is Helly, in particular, the direct
product G1 × · · · × Gn is Helly;

3 the quotient Γ/N by a finite normal subgroup N C Γ is Helly.

Proof.

“Amalgamation of Helly graphs along a vertex is Helly. Strong product of
Helly graphs is Helly. Fixed-point set is Helly.”
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Hellyfication

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called
Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space ZΓ of integer-valued functions with the supremum
metric d(f , g) = supx∈Γ |f (x)− g(x)|.

The Kuratowski embedding e : Γ→ ZΓ : x 7→ d(x , ·) is an isometric
embedding.

A function f ∈ ZΓ is called an integral metric form if
f (x) + f (y) > d(x , y). It is extremal if it is point-wise minimal.

We define Helly(Γ) as the space of extremal metric forms, with the
isometric embedding e

Additionaly, Helly(Γ) = E (Γ) ∩ ZΓ.
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Injective hull vs Hellyfication

Theorem

Let Γ be a locally finite Helly graph.

(1) The injective hull E (Γ) of Γ is proper and has the structure of a locally
finite polyhedral complex with only finitely many isometry types of
n-cells, isometric to injective polytopes in (Rn, d∞), for every n ≥ 1.
Moreover, dH(E (Γ), e(Γ)) ≤ 1. Furthermore, if Γ has uniformly
bounded degrees, then E (Γ) has finite combinatorial dimension.

(2) A group acting cocompactly, properly or geometrically on Γ acts,
respectively, cocompactly, properly or geometrically on its injective
hull E (Γ).

Corollary

Helly groups act geometrically on spaces with convex, reversible,
consistent geodesic bicombing = act geometrically on CAT(0)-like spaces
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Further properties of Helly groups

Theorem (Further properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ. Then:

1 G admits an EZ-boundary ∂Γ.

2 G satisfies the Farrell-Jones conjecture with finite wreath products.

3 G satisfies the coarse Baum-Connes conjecture.

4 The asymptotic cones of G are contractible.

Proof.

Follows immediately from results by Descombes-Lang, Kasprowski-Rüping,
Fukaya-Oguni.
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β-stable intervals

Definition (Lang)

For β ≥ 1, the graph Γ has β-stable intervals if for every triple of vertices
w , v , v ′ with v ∼ v ′, we have dH(I (w , v), I (w , v ′)) ≤ β, where dH denotes
the Hausdorff distance.

w

v

v′

≤ β

Remark

This property is equivalent to the FFTP.
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Graphs with β-stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β-stable intervals. Then the injective
hull of Γ is proper (that is, bounded closed subsets are compact) and has
the structure of a locally finite polyhedral complex with only finitely many
isometry types of n-cells, isometric to injective polytopes in (Rn, d∞), for
every n ≥ 1.

Theorem

Weakly modular graphs (in particular, Helly graphs) have 1-stable
intervals.

Example

For Γ being the 1-skeleton of a regular cubical grid in E3 or a regular
triangulation of E2 we have dH(e(Γ),E (Γ)) =∞, equivalently,
dH(e(Γ),Helly(Γ)) =∞.
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Coarse Helly

Definition

A metric space (X , d) has the coarse Helly property if there exists δ ≥ 0
such that for any family {Bri (xi ) : i ∈ I} of pairwise intersecting closed
balls of X , the intersection

⋂
i∈I Bri+δ(xi ) is not empty.

Theorem

A metric space (X , d) has the coarse Helly property iff
dH(e(X ),E (X )) <∞.
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Coarse Helly=“dH(e(X ),E (X )) <∞”

Theorem

A geodesic metric space (X , d) has the coarse Helly property iff
dH(e(X ),E (X )) <∞.

Proof.

(⇒) Let f ∈ E (X ).

By the coarse Helly property (applied to the radius
function f ) there exists a point z ∈ X such that d(z , x) ≤ f (x) + δ for any
x ∈ X . We claim that d∞(f , e(z)) ≤ δ. We have
d∞(f , e(z)) = supx∈X |f (x)− d(x , z)|. By the choice of z in Bf (x)+δ(x),
d(x , z)− f (x) ≤ δ. We show now that f (x)− d(x , z) ≤ δ. Assume by
contradiction that f (x)− d(x , z) > δ. Let ε = 1

2 (f (x)− d(x , z)− δ) and
observe that f (x) > d(x , z) + δ + ε. By extremality of f , there exists
y ∈ X such that f (x) + f (y) < d(x , y) + ε. Since z ∈ Bf (y)+δ(y), we have
f (y) ≥ d(y , z)− δ, and consequently, we have
f (x)+f (y) > d(x , z)+δ+ε+d(y , z)−δ = d(x , z)+d(y , z)+ε ≥ d(x , y)+ε,
a contradiction. End of Lecture 2
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function f ) there exists a point z ∈ X such that d(z , x) ≤ f (x) + δ for any
x ∈ X . We claim that d∞(f , e(z)) ≤ δ. We have
d∞(f , e(z)) = supx∈X |f (x)− d(x , z)|.

By the choice of z in Bf (x)+δ(x),
d(x , z)− f (x) ≤ δ. We show now that f (x)− d(x , z) ≤ δ. Assume by
contradiction that f (x)− d(x , z) > δ. Let ε = 1

2 (f (x)− d(x , z)− δ) and
observe that f (x) > d(x , z) + δ + ε. By extremality of f , there exists
y ∈ X such that f (x) + f (y) < d(x , y) + ε. Since z ∈ Bf (y)+δ(y), we have
f (y) ≥ d(y , z)− δ, and consequently, we have
f (x)+f (y) > d(x , z)+δ+ε+d(y , z)−δ = d(x , z)+d(y , z)+ε ≥ d(x , y)+ε,
a contradiction. End of Lecture 2
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