Helly graphs and groups Masterclass "Topics in Geometric Group Theory"

Damian Osajda

Københavns Universitet

13-17 November 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Finite-type Artin groups

Definition (Artin group)

A finite simplicial graph Γ with edges labelled by $\{2,3,4,\ldots\}$ defines a presentation of the Artin group A_{Γ} :

 $A_{\Gamma} = \langle a \in V(\Gamma) \mid \underbrace{aba \cdots}_{m} = \underbrace{bab \cdots}_{m} \text{ for each edge } ab \text{ labelled with } m \rangle$

Definition

An Artin group A_{Γ} is of *finite type* if the Coxeter group C_{Γ} is finite.

Theorem

Finite-type Artin groups are Helly.

Theorem

FC-type Artin groups are Helly.

Garside groups

Theorem

Weak Garside groups of finite type are Helly.

э

(4) (5) (4) (5)

< 1 k

C(4)-T(4) small cancellation groups

Theorem

Finitely presented C(4)-T(4) (graphical) small cancellation groups are Helly.

3

・ 何 ト ・ ヨ ト ・ ヨ ト

C(4)-T(4) small cancellation groups

Theorem

Finitely presented C(4)-T(4) (graphical) small cancellation groups are Helly.

Proof.

Consider a 'thickening' of the Cayley complex:

Buildings

Theorem

Uniform lattices in Euclidean buildings of type C are Helly.

э

A D N A B N A B N A B N

Buildings

Theorem

Uniform lattices in Euclidean buildings of type C are Helly.

Proof.

Consider a 'thickening' of the building:

Buildings

Theorem

Uniform lattices in Euclidean buildings of type C are Helly.

Proof.

Consider a 'thickening' of the building:

Theorem (Properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

 The clique complex X(Γ) of Γ is a finite-dimensional cocompact model for the classifying space <u>E</u>G for proper actions. As a particular case, G is always of type F_∞ and of type F when it is torsion-free.

Theorem (Properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- The clique complex X(Γ) of Γ is a finite-dimensional cocompact model for the classifying space <u>E</u>G for proper actions. As a particular case, G is always of type F_∞ and of type F when it is torsion-free.
- **Q** *G* has finitely many conjugacy classes of finite subgroups.

4 1 1 4 1 1 1

Theorem (Properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- The clique complex X(Γ) of Γ is a finite-dimensional cocompact model for the classifying space <u>E</u>G for proper actions. As a particular case, G is always of type F_∞ and of type F when it is torsion-free.
- **Q** G has finitely many conjugacy classes of finite subgroups.
- G is (Gromov) hyperbolic if and only if Γ does not contain an isometrically embedded infinite l_∞-grid.

< □ > < 同 > < 三 > < 三 >

Theorem (Properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- The clique complex X(Γ) of Γ is a finite-dimensional cocompact model for the classifying space <u>E</u>G for proper actions. As a particular case, G is always of type F_∞ and of type F when it is torsion-free.
- **2** *G* has finitely many conjugacy classes of finite subgroups.
- G is (Gromov) hyperbolic if and only if Γ does not contain an isometrically embedded infinite l_∞-grid.
- G has at most quadratic Dehn function.

.

Theorem

Let G, G_1, G_2, \ldots, G_n be Helly groups. Then:

a free product G₁ *_F G₂ of G₁, G₂ with amalgamation over a finite subgroup F, and the HNN-extension G_{1*F} over F are Helly;

4 1 1 4 1 1 1

Theorem

Let G, G_1, G_2, \ldots, G_n be Helly groups. Then:

- a free product G₁ *_F G₂ of G₁, G₂ with amalgamation over a finite subgroup F, and the HNN-extension G_{1*F} over F are Helly;
- every graph product of G_1, \ldots, G_n is Helly, in particular, the direct product $G_1 \times \cdots \times G_n$ is Helly;

< □ > < 同 > < 三 > < 三 >

Theorem

Let G, G_1, G_2, \ldots, G_n be Helly groups. Then:

- a free product G₁ *_F G₂ of G₁, G₂ with amalgamation over a finite subgroup F, and the HNN-extension G_{1*F} over F are Helly;
- every graph product of G_1, \ldots, G_n is Helly, in particular, the direct product $G_1 \times \cdots \times G_n$ is Helly;
- **③** the quotient Γ/N by a finite normal subgroup $N \lhd \Gamma$ is Helly.

< □ > < 同 > < 三 > < 三 >

Theorem

Let G, G_1, G_2, \ldots, G_n be Helly groups. Then:

- a free product G₁ *_F G₂ of G₁, G₂ with amalgamation over a finite subgroup F, and the HNN-extension G_{1*F} over F are Helly;
- every graph product of G_1, \ldots, G_n is Helly, in particular, the direct product $G_1 \times \cdots \times G_n$ is Helly;
- **③** the quotient Γ/N by a finite normal subgroup $N \lhd \Gamma$ is Helly.

Proof.

"Amalgamation of Helly graphs along a vertex is Helly. Strong product of Helly graphs is Helly. Fixed-point set is Helly." $\hfill\square$

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

The Kuratowski embedding $e \colon \Gamma \to \mathbb{Z}^{\Gamma} \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

The Kuratowski embedding $e \colon \Gamma \to \mathbb{Z}^{\Gamma} \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{Z}^{\Gamma}$ is called an *integral metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal.

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

The Kuratowski embedding $e \colon \Gamma \to \mathbb{Z}^{\Gamma} \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{Z}^{\Gamma}$ is called an *integral metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal. We define Helly(Γ) as the space of extremal metric forms, with the isometric embedding e

Theorem (Jawhari-Pouzet-Misane, Pesch)

For every graph Γ there exists a minimal Helly graph Helly(Γ), called Hellyfication of Γ into which Γ embeds isometrically.

Proof.

Consider the space \mathbb{Z}^{Γ} of integer-valued functions with the supremum metric $d(f,g) = \sup_{x \in \Gamma} |f(x) - g(x)|$.

The Kuratowski embedding $e \colon \Gamma \to \mathbb{Z}^{\Gamma} \colon x \mapsto d(x, \cdot)$ is an isometric embedding.

A function $f \in \mathbb{Z}^{\Gamma}$ is called an *integral metric form* if $f(x) + f(y) \ge d(x, y)$. It is *extremal* if it is point-wise minimal. We define Helly(Γ) as the space of extremal metric forms, with the isometric embedding e

Additionaly, $\operatorname{Helly}(\Gamma) = E(\Gamma) \cap \mathbb{Z}^{\Gamma}$.

Theorem

Let Γ be a locally finite Helly graph.

• The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of *n*-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \ge 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \le 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.

4 1 1 1 4 1 1 1

Theorem

Let Γ be a locally finite Helly graph.

- The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \ge 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \le 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull E(Γ).

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let Γ be a locally finite Helly graph.

- The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \ge 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \le 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull E(Γ).

Corollary

Helly groups act geometrically on spaces with convex, reversible, consistent geodesic bicombing

3

A D N A B N A B N A B N

Theorem

Let Γ be a locally finite Helly graph.

- The injective hull $E(\Gamma)$ of Γ is proper and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in (\mathbb{R}^n, d_∞) , for every $n \ge 1$. Moreover, $d_H(E(\Gamma), e(\Gamma)) \le 1$. Furthermore, if Γ has uniformly bounded degrees, then $E(\Gamma)$ has finite combinatorial dimension.
- A group acting cocompactly, properly or geometrically on Γ acts, respectively, cocompactly, properly or geometrically on its injective hull E(Γ).

Corollary

Helly groups act geometrically on spaces with convex, reversible, consistent geodesic bicombing = act geometrically on CAT(0)-like spaces

3

Theorem (Further properties of Helly groups)

Let G be a group acting geometrically on a Helly graph $\Gamma.$ Then:

1 G admits an EZ-boundary $\partial \Gamma$.

4 1 1 1 4 1 1 1

Theorem (Further properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- G admits an EZ-boundary $\partial \Gamma$.
- **2** *G* satisfies the Farrell-Jones conjecture with finite wreath products.

Theorem (Further properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- G admits an EZ-boundary $\partial \Gamma$.
- **②** *G* satisfies the Farrell-Jones conjecture with finite wreath products.
- **③** G satisfies the coarse Baum-Connes conjecture.

Theorem (Further properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- G admits an EZ-boundary $\partial \Gamma$.
- **a** *G* satisfies the Farrell-Jones conjecture with finite wreath products.
- I G satisfies the coarse Baum-Connes conjecture.
- The asymptotic cones of G are contractible.

Theorem (Further properties of Helly groups)

Let G be a group acting geometrically on a Helly graph Γ . Then:

- G admits an EZ-boundary $\partial \Gamma$.
- **②** G satisfies the Farrell-Jones conjecture with finite wreath products.
- I G satisfies the coarse Baum-Connes conjecture.
- The asymptotic cones of G are contractible.

Proof.

Follows immediately from results by Descombes-Lang, Kasprowski-Rüping, Fukaya-Oguni.

4 3 5 4 3 5 5

β -stable intervals

Definition (Lang)

For $\beta \geq 1$, the graph Γ has β -stable intervals if for every triple of vertices w, v, v' with $v \sim v'$, we have $d_H(I(w, v), I(w, v')) \leq \beta$, where d_H denotes the Hausdorff distance.

1 E N 1 E N

β -stable intervals

Definition (Lang)

For $\beta \geq 1$, the graph Γ has β -stable intervals if for every triple of vertices w, v, v' with $v \sim v'$, we have $d_H(I(w, v), I(w, v')) \leq \beta$, where d_H denotes the Hausdorff distance.

Remark

This property is equivalent to the FFTP.

3

(日)

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n \geq 1$.

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n \geq 1$.

Theorem

Weakly modular graphs (in particular, Helly graphs) have 1-stable intervals.

4 1 1 4 1 1 1

Graphs with β -stable intervals

Theorem (Lang)

Let Γ be a locally finite graph with β -stable intervals. Then the injective hull of Γ is proper (that is, bounded closed subsets are compact) and has the structure of a locally finite polyhedral complex with only finitely many isometry types of n-cells, isometric to injective polytopes in $(\mathbb{R}^n, d_{\infty})$, for every $n \geq 1$.

Theorem

Weakly modular graphs (in particular, Helly graphs) have 1-stable intervals.

Example

For Γ being the 1-skeleton of a regular cubical grid in \mathbb{E}^3 or a regular triangulation of \mathbb{E}^2 we have $d_H(e(\Gamma), E(\Gamma)) = \infty$, equivalently, $d_H(e(\Gamma), \operatorname{Helly}(\Gamma)) = \infty$.

3

A D N A B N A B N A B N

Coarse Helly

Definition

A metric space (X, d) has the *coarse Helly property* if there exists $\delta \ge 0$ such that for any family $\{B_{r_i}(x_i) : i \in I\}$ of pairwise intersecting closed balls of X, the intersection $\bigcap_{i \in I} B_{r_i+\delta}(x_i)$ is not empty.

4 3 5 4 3 5 5

Coarse Helly

Definition

A metric space (X, d) has the *coarse Helly property* if there exists $\delta \ge 0$ such that for any family $\{B_{r_i}(x_i) : i \in I\}$ of pairwise intersecting closed balls of X, the intersection $\bigcap_{i \in I} B_{r_i+\delta}(x_i)$ is not empty.

Theorem

A metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

A B F A B F

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$.

イロト 不得 トイヨト イヨト

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \leq f(x) + \delta$ for any $x \in X$.

< 17 ▶

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$.

< □ > < /□ >

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$.

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x, z) - f(x) \leq \delta$.

ヘロト 人間 ト イヨト イヨ

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$.

ヘロマ 人間マ ヘヨマ ヘヨ

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$.

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z,x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$. Let $\epsilon = \frac{1}{2}(f(x) - d(x, z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$.

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

(⇒) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) \leq \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x, z) - f(x) \leq \delta$. We show now that $f(x) - d(x, z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$. Let $\epsilon = \frac{1}{2}(f(x) - d(x, z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$. By extremality of f, there exists $y \in X$ such that $f(x) + f(y) < d(x, y) + \epsilon$.

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) < \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z) - f(x) \leq \delta$. We show now that $f(x) - d(x,z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$. Let $\epsilon = \frac{1}{2}(f(x) - d(x, z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$. By extremality of f, there exists $y \in X$ such that $f(x) + f(y) < d(x, y) + \epsilon$. Since $z \in B_{f(y)+\delta}(y)$, we have $f(y) \geq d(y, z) - \delta$, and consequently, we have $f(x)+f(y) > d(x,z)+\delta+\epsilon+d(y,z)-\delta = d(x,z)+d(y,z)+\epsilon \ge d(x,y)+\epsilon,$

э

Coarse Helly="
$$d_H(e(X), E(X)) < \infty$$
"

A geodesic metric space (X, d) has the coarse Helly property iff $d_H(e(X), E(X)) < \infty$.

Proof.

 (\Rightarrow) Let $f \in E(X)$. By the coarse Helly property (applied to the radius function f) there exists a point $z \in X$ such that $d(z, x) \leq f(x) + \delta$ for any $x \in X$. We claim that $d_{\infty}(f, e(z)) < \delta$. We have $d_{\infty}(f, e(z)) = \sup_{x \in X} |f(x) - d(x, z)|$. By the choice of z in $B_{f(x)+\delta}(x)$, $d(x,z) - f(x) \leq \delta$. We show now that $f(x) - d(x,z) \leq \delta$. Assume by contradiction that $f(x) - d(x, z) > \delta$. Let $\epsilon = \frac{1}{2}(f(x) - d(x, z) - \delta)$ and observe that $f(x) > d(x, z) + \delta + \epsilon$. By extremality of f, there exists $y \in X$ such that $f(x) + f(y) < d(x, y) + \epsilon$. Since $z \in B_{f(y)+\delta}(y)$, we have $f(y) \geq d(y, z) - \delta$, and consequently, we have $f(x)+f(y) > d(x,z)+\delta+\epsilon+d(y,z)-\delta = d(x,z)+d(y,z)+\epsilon \ge d(x,y)+\epsilon,$ a contradiction. End of Lecture 2

• • • • • • • • • • • • •