Helly graphs and groups Masterclass "Topics in Geometric Group Theory"

Damian Osajda

Københavns Universitet

13-17 November 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dismantlability

Definition (Dismantlability)

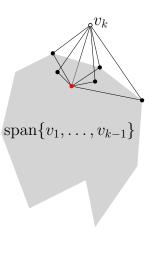
A finite graph Γ is *dismantlable* if its vertices can be enumerated as $v_1, v_2, v_3, ..., v_n$ such that for every $1 < k \leq n$ the vertex v_k is *dominated* in the subgraph induced by $v_1, ..., v_k$.

Theorem

Balls in locally finite Helly graphs are dismantlable.

Corollary

The clique complex $X(\Gamma)$ of a locally finite Helly graph Γ is contractible. Finite groups acting on such Helly graphs fix cliques. Fixed point sets are contractible.



Theorem (Characterizations of Helly graphs)

For a locally finite graph Γ TFAE:

Γ is Helly

э

(4 何) トイヨト イヨト

Theorem (Characterizations of Helly graphs)

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)

Theorem (Characterizations of Helly graphs)

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)
- **(3)** Γ is a retract of a strong product of paths $\boxtimes L_i$

Theorem (Characterizations of Helly graphs)

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)
- **(3)** Γ is a retract of a strong product of paths $\boxtimes L_i$
- Is weakly modular with dismantlable balls

Theorem (Characterizations of Helly graphs)

- Γ is Helly
- Γ is an absolute retract (in the category of simplicial graphs with simplicial maps)
- **(3)** Γ is a retract of a strong product of paths $\boxtimes L_i$
- Is weakly modular with dismantlable balls
- **⑤** Γ is weakly modular 1-Helly graph

Theorem (Local-to-global characterization)

A graph is Helly iff it is clique-Helly and its triangle complex is simply connected.

Theorem (Local-to-global characterization)

A graph is Helly iff it is clique-Helly and its triangle complex is simply connected.

Proof.

For a clique-Helly graph Γ We construct the universal cover \widetilde{X} of the clique complex $X := X(\Gamma)$ of Γ , together with the covering map $\pi : \widetilde{X} \to X$.

< 4[™] >

Theorem (Local-to-global characterization)

A graph is Helly iff it is clique-Helly and its triangle complex is simply connected.

Proof.

For a clique-Helly graph Γ We construct the universal cover \widetilde{X} of the clique complex $X := X(\Gamma)$ of Γ , together with the covering map $\pi : \widetilde{X} \to X$. (\widetilde{X}, π) is constructed step-by-step by constructing balls B_i around a chosen vertex O and "partial covering" maps $\pi|_{B_i} \to X$.

< 4[™] >

Theorem (Local-to-global characterization)

A graph is Helly iff it is clique-Helly and its triangle complex is simply connected.

Proof.

For a clique-Helly graph Γ We construct the universal cover \widehat{X} of the clique complex $X := X(\Gamma)$ of Γ , together with the covering map $\pi : \widetilde{X} \to X$. (\widetilde{X}, π) is constructed step-by-step by constructing balls B_i around a chosen vertex O and "partial covering" maps $\pi|_{B_i} \to X$. At each step we show that B_i satisfies the triangle condition and the enhanced quadrangle condition with respect to O, as well as, every ball is dismantlable.

Theorem (Local-to-global characterization)

A graph is Helly iff it is clique-Helly and its triangle complex is simply connected.

Proof.

For a clique-Helly graph Γ We construct the universal cover X of the clique complex $X := X(\Gamma)$ of Γ , together with the covering map $\pi : \widetilde{X} \to X$. (\widetilde{X}, π) is constructed step-by-step by constructing balls B_i around a chosen vertex O and "partial covering" maps $\pi|_{B_i} \to X$. At each step we show that B_i satisfies the triangle condition and the enhanced quadrangle condition with respect to O, as well as, every ball is dismantlable.

It follows that $\bigcup B_i$ is simply connected. By universal properties of universal coverings the construction does not depend of the choice of O, so the 1-skeleton of \widetilde{X} is Helly

▲ 問 ▶ ▲ ヨ ▶

Hely groups

Definition (Helly groups)

A group is *Helly* if it acts geometrically, that is, properly and cocompactly on a Helly graph.

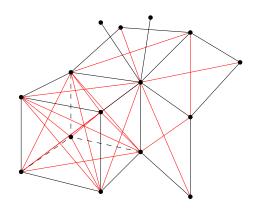
Hely groups

Definition (Helly groups)

A group is *Helly* if it acts geometrically, that is, properly and cocompactly on a Helly graph.

Example

Cocompact CAT(0) cubical groups are Helly. The proof goes via convexity of balls or via the local-to-global characterization.



Finite-type Artin groups

Definition (Artin group)

A finite simplicial graph Γ with edges labelled by $\{2, 3, 4, \ldots\}$ defines a presentation of the *Artin group* A_{Γ} :

 $A_{\Gamma} = \langle a \in V(\Gamma) \mid \underbrace{aba \cdots}_{m} = \underbrace{bab \cdots}_{m} \text{ for each edge } ab \text{ labelled with } m \rangle$

(4) (日本)

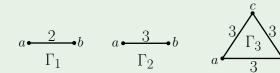
Finite-type Artin groups

Definition (Artin group)

A finite simplicial graph Γ with edges labelled by $\{2, 3, 4, \ldots\}$ defines a presentation of the Artin group A_{Γ} :

 $A_{\Gamma} = \langle a \in V(\Gamma) \mid \underbrace{aba \cdots}_{m} = \underbrace{bab \cdots}_{m} \text{ for each edge } ab \text{ labelled with } m \rangle$

Example



Finite-type Artin groups

Definition (Artin group)

A finite simplicial graph Γ with edges labelled by $\{2, 3, 4, \ldots\}$ defines a presentation of the Artin group A_{Γ} :

 $A_{\Gamma} = \langle a \in V(\Gamma) \mid \underbrace{aba \cdots}_{m} = \underbrace{bab \cdots}_{m} \text{ for each edge } ab \text{ labelled with } m \rangle$

Example $a \leftarrow 2 \rightarrow b \qquad a \leftarrow 3 \rightarrow b$ $\Gamma_1 \qquad \Gamma_2 \qquad a \checkmark$ $A_{\Gamma_1} = \langle a, b \mid ab = ba \rangle \cong \mathbb{Z}^2; A_{\Gamma_2} = \langle a, b \mid aba = bab \rangle$ $A_{\Gamma_2} = \langle a, b, c \mid aba = bab, bcb = cbc, cac = aca \rangle$ Damian Osajda (Københavns Universitet) 13-17 November 2023 6/9

There is an epimorphism $A_{\Gamma} \rightarrow C_{\Gamma}$ to the associated *Coxeter group* C_{Γ} - add relations requiring generators to be involutions.

3

(日) (四) (日) (日) (日)

There is an epimorphism $A_{\Gamma} \rightarrow C_{\Gamma}$ to the associated *Coxeter group* C_{Γ} - add relations requiring generators to be involutions.

Definition

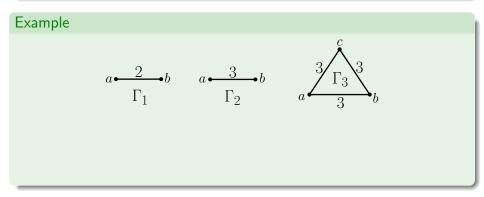
An Artin group A_{Γ} is of *finite type* if the Coxeter group C_{Γ} is finite.

(4 何) トイヨト イヨト

There is an epimorphism $A_{\Gamma} \rightarrow C_{\Gamma}$ to the associated *Coxeter group* C_{Γ} - add relations requiring generators to be involutions.

Definition

An Artin group A_{Γ} is of *finite type* if the Coxeter group C_{Γ} is finite.

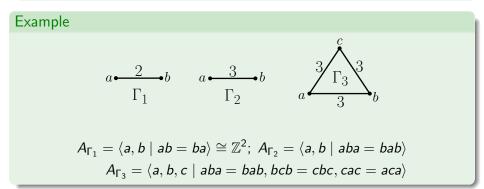


< □ > < □ > < □ > < □ > < □ > < □ >

There is an epimorphism $A_{\Gamma} \rightarrow C_{\Gamma}$ to the associated *Coxeter group* C_{Γ} - add relations requiring generators to be involutions.

Definition

An Artin group A_{Γ} is of *finite type* if the Coxeter group C_{Γ} is finite.



イロト 不得 トイラト イラト 一日

Theorem

Finite-type Artin groups are Helly.

э

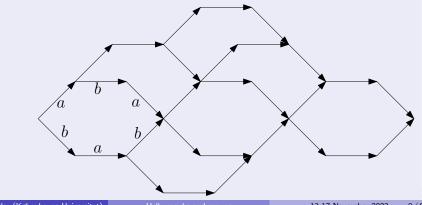
イロト イヨト イヨト イヨト

Theorem

Finite-type Artin groups are Helly.

Proof.

Consider a 'thickening' of the Cayley complex:

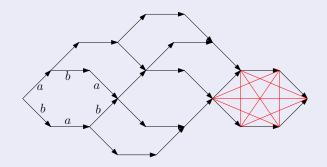


Theorem

Finite-type Artin groups are Helly.

Proof.

Consider a 'thickening' of the Cayley complex:



End of Lecture 2